JPS605041B2 - Method for manufacturing magnetic material for magnetic recording media - Google Patents

Method for manufacturing magnetic material for magnetic recording media

Info

Publication number
JPS605041B2
JPS605041B2 JP52021510A JP2151077A JPS605041B2 JP S605041 B2 JPS605041 B2 JP S605041B2 JP 52021510 A JP52021510 A JP 52021510A JP 2151077 A JP2151077 A JP 2151077A JP S605041 B2 JPS605041 B2 JP S605041B2
Authority
JP
Japan
Prior art keywords
powder
metal
recording media
magnetic
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52021510A
Other languages
Japanese (ja)
Other versions
JPS53107700A (en
Inventor
保太郎 上坂
誠一 朝田
英夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP52021510A priority Critical patent/JPS605041B2/en
Publication of JPS53107700A publication Critical patent/JPS53107700A/en
Publication of JPS605041B2 publication Critical patent/JPS605041B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 本発明は、金属粉末の製造方法に関するものである。[Detailed description of the invention] The present invention relates to a method for producing metal powder.

さらに詳細には、磁気テープ、磁気ドラム、磁気ディス
クなどの高密度磁気記録媒体としての用途をもつ強磁性
金属粉末、とくに、鉄もしくは鉄を主体とする強磁性金
属粉末の製造方法に関するものである。鉄もしくは鉄を
主体とする針状強磁性金属粉末は、次代の高密度記録用
媒体材料として非常に有望であると認められている。
More specifically, the present invention relates to a method for producing ferromagnetic metal powders, particularly iron or iron-based ferromagnetic metal powders, which are used as high-density magnetic recording media such as magnetic tapes, magnetic drums, and magnetic disks. . Iron or iron-based acicular ferromagnetic metal powders are recognized as very promising as materials for next-generation high-density recording media.

鉄もしくは鉄を主体とする針状強磁性金属粉末の代表的
な製造の一つに、鉄を主体とする針状金属酸化物もしく
は針状金属酸水酸化物を還元性ガス雰囲気中で加熱還元
する方法がある。該製法の長所は、所望の大きさの針状
金属酸化物もしくは針状金属酸水酸化物を作製する方法
が公知であるため、所望の大きさの針状金属粉末を容易
に作製できる点にある。該製法の短所は、加熱還元中に
金属粉末の暁結が生じ易く、このため得られる金属粉末
の保磁力が低下することである。この保磁力の低下は高
密度記録用媒体材料としての金属粉の特徴を矢なわしめ
るものである。すなわち、加熱還元方式による金属粉末
の作製においては、如何に競縞を防止するかが最重要な
ポイントである。加熱還元法において金属粉末の鱗精を
防止する方法としては、従来、‘1}原料である金属酸
化物あるいは金属水酸化物をAg+イオンを含有する溶
液に浸潰させた後加熱還元する方法や、‘2’加熱還元
中に試料を常時回転させ、金属粉粒子間の長時間の接触
を防止する方法が知られている。
One of the typical production methods of iron or iron-based acicular ferromagnetic metal powder is the heating reduction of iron-based acicular metal oxides or acicular metal acid hydroxides in a reducing gas atmosphere. There is a way to do it. The advantage of this production method is that since the method for producing acicular metal oxides or acicular metal acid hydroxides of desired sizes is known, acicular metal powders of desired sizes can be easily produced. be. A disadvantage of this manufacturing method is that the metal powder tends to crystallize during thermal reduction, which reduces the coercive force of the resulting metal powder. This decrease in coercive force is a characteristic of metal powder as a material for high-density recording media. That is, in the production of metal powder by the thermal reduction method, the most important point is how to prevent race fringes. Conventionally, methods for preventing scale formation of metal powder in the thermal reduction method include methods such as 1) immersing the raw material metal oxide or metal hydroxide in a solution containing Ag+ ions and then reducing the metal powder by heating. , '2' A method is known in which the sample is constantly rotated during thermal reduction to prevent long-term contact between metal powder particles.

このうち、‘11の方法では、原料をAg+イオンを含
有する溶液に浸潰させた後、これを乾燥するというプロ
セスが入るため生産コストの上昇という問題が生じ、■
の方法では、還元性ガスを全く漏らさない試料の回転機
構を必要とするため金属粉作製のコストが上昇する。本
発明の目的は、加熱還元法による糠結の少い高保磁力の
金属粉を容易に作製することにある。
Of these, the '11 method involves a process of immersing the raw material in a solution containing Ag+ ions and then drying it, resulting in the problem of increased production costs.
The method requires a sample rotation mechanism that does not leak any reducing gas, which increases the cost of producing metal powder. An object of the present invention is to easily produce metal powder with high coercive force and less caking by a thermal reduction method.

本発明者等は、加熱還元法により金属粉末を作製する際
に、原料の金属塩粉末、金属酸化物粉末あるいは金属酸
水酸化物粉末中に、該金属よりも比熱の大きな物質を用
いて作成した粉体、粒体、板、あるいは線のうちの一種
以上を混在させることにより、該粉体、粒体、板、ある
いは線を混在させない場合に〈らべ加熱還元時の金属粉
末の局所的な温度上昇による嘘結を防止し、高保磁力の
金属粉が得られることを見出したものである。実施例以
下、本発明を実施例を参照して詳細に説明する。
When producing metal powder by a thermal reduction method, the present inventors used a substance with a higher specific heat than the metal in the raw material metal salt powder, metal oxide powder, or metal acid hydroxide powder. By mixing one or more of the powders, granules, plates, or wires, if the powders, granules, plates, or wires are not mixed, It has been discovered that metal powder with high coercive force can be obtained by preventing false condensation due to temperature rise. EXAMPLES Hereinafter, the present invention will be explained in detail with reference to examples.

実施例 1 直径1側、長さ5肋の石英線200本を略均一に含有す
るQ−Fe00日粉75gを第1図に示す如く、中心部
付近に325メッシュのステンレス製金1を取付けた内
径80肋、長さlmの炉心管に菱入し、該炉心管に10
クノminの水素ガスを流しつつ270℃に加熱した。
Example 1 As shown in Figure 1, 75 g of Q-Fe 00-day powder containing 200 quartz wires of 5 lengths approximately uniformly on the diameter 1 side was attached with a 325 mesh stainless steel gold 1 near the center as shown in Fig. 1. A rhombus is inserted into a core tube with an inner diameter of 80 ribs and a length of lm.
It was heated to 270° C. while flowing Kunomin hydrogen gas.

得られたFe粉の保磁力は123比たであった。なお、
Fe粉から石英線を取り除くのは磁気的分別法を用いた
。実施例 2 50メッシュの耐火レンガ粉を略均一に含有する針状Q
−Fe00日粉7舷を、実施例1の石英線含有Q−Fe
00日粉2の代りに菱入し、これを実施例1の条件下で
加熱還元した。
The coercive force of the obtained Fe powder was 123%. In addition,
A magnetic separation method was used to remove the quartz wire from the Fe powder. Example 2 Acicular Q containing 50 mesh refractory brick powder almost uniformly
-Fe00 days
In place of 00-day flour 2, the powder was heated and reduced under the conditions of Example 1.

得られたFe粉の保磁力は122のeであった。なお、
Fe粉から耐火レンガ粉を取り除くのは実施例1と同じ
方法に俊つた。比較例 Q一Fe00日粉7斑を実施例1の石英線含有Q−Fe
00日粉2の代りに袋入し、これを実施例1の条件下で
加熱還元した。
The coercive force of the obtained Fe powder was 122 e. In addition,
The same method as in Example 1 was used to remove the refractory brick powder from the Fe powder. Comparative Example Q-Fe00 day powder 7 spots were replaced with the quartz wire-containing Q-Fe of Example 1.
It was placed in a bag in place of Day 00 Flour 2, and heated and reduced under the conditions of Example 1.

縛られたFe粉の保持力は98止たであった。実施例1
〜2と比較例との比較により、Feよりも比熱の大きな
物質を原料Q−Fe00日中に混在させて作製したFe
粉の保磁力は、原料中に上記物質を混在させずに作製し
たFe粉の保磁力にくらべて大きいことがわかる。
The holding power of the bound Fe powder was 98%. Example 1
By comparing ~2 with the comparative example, Fe produced by mixing a substance with a larger specific heat than Fe in the raw material Q-Fe00.
It can be seen that the coercive force of the powder is larger than that of Fe powder produced without mixing the above substances in the raw material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施を行なう際に用いた炉○管の概要
図である。 多’図
FIG. 1 is a schematic diagram of a furnace tube used in carrying out the present invention. multi-figure

Claims (1)

【特許請求の範囲】[Claims] 1 金属塩粉末、金属酸化物粉末、金属酸水酸化物粉末
のうちの一種を還元性ガス雰囲気中で加熱することによ
り金属粉末を製造する際に、該金属塩粉末、金属酸化物
粉末、あるいは金属酸水酸化物粉末中に、該金属よりも
比熱の大きな物質よりなる粉体、粒体、板あるいは線の
うちの一種以上を混在させることを特徴とする磁気記録
媒体用磁性材料の製造方法。
1. When manufacturing metal powder by heating one of metal salt powder, metal oxide powder, and metal acid hydroxide powder in a reducing gas atmosphere, the metal salt powder, metal oxide powder, or A method for producing a magnetic material for a magnetic recording medium, comprising mixing in a metal acid hydroxide powder one or more of powders, granules, plates, or wires made of a substance having a higher specific heat than the metal. .
JP52021510A 1977-03-02 1977-03-02 Method for manufacturing magnetic material for magnetic recording media Expired JPS605041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52021510A JPS605041B2 (en) 1977-03-02 1977-03-02 Method for manufacturing magnetic material for magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52021510A JPS605041B2 (en) 1977-03-02 1977-03-02 Method for manufacturing magnetic material for magnetic recording media

Publications (2)

Publication Number Publication Date
JPS53107700A JPS53107700A (en) 1978-09-19
JPS605041B2 true JPS605041B2 (en) 1985-02-08

Family

ID=12056961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52021510A Expired JPS605041B2 (en) 1977-03-02 1977-03-02 Method for manufacturing magnetic material for magnetic recording media

Country Status (1)

Country Link
JP (1) JPS605041B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512896Y2 (en) * 1986-07-16 1993-04-05

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512896Y2 (en) * 1986-07-16 1993-04-05

Also Published As

Publication number Publication date
JPS53107700A (en) 1978-09-19

Similar Documents

Publication Publication Date Title
JPH0154287B2 (en)
US4318735A (en) Process for preparing magnetic particles with metallic region therein, and magnetic particles prepared by the process
JPS605041B2 (en) Method for manufacturing magnetic material for magnetic recording media
JPS60255628A (en) Fine powder of ba ferrite plate particle for magnetic recording use and its preparation
JPS61136923A (en) Hexagonal ferrite magnetic body for magnetic recording and its manufacture
GB2058845A (en) Method of producing fine metal particles
GB1589355A (en) Acicular cobalt magnetic iron oxide and its manufacture
JPH0146561B2 (en)
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPS6122604A (en) Magnetic metal powder and manufacture thereof
JP2002050508A (en) Method of manufacturing magnetic powder
JPS6349722B2 (en)
US3956151A (en) Method for producing a ferromagnetic chromium oxide
JPS6018609B2 (en) Ferromagnetic powder and its manufacturing method
JPH02205601A (en) Ferromagnetic metal powder
JPS59199533A (en) Magnetic powder
EP0131223B1 (en) Process for producing cobalt-modified ferromagnetic iron oxide
JPS59191307A (en) Highly corrosion-resistant magnetic metal fine powder and manufacture thereof
JPS609321B2 (en) Magnetic recording medium and its manufacturing method
JPH0522653B2 (en)
JPS58161710A (en) Production of ferromagnetic powder
JPS59145706A (en) Production of magnetic metallic powder
JPH03116802A (en) Magnetic material and method of manufac- turing the same
JPS55158201A (en) Production of ferromagnetic powder
JPS61133608A (en) Metal magnetic powder and manufacture thereof