JPS6050331A - Air conditioning device - Google Patents

Air conditioning device

Info

Publication number
JPS6050331A
JPS6050331A JP58159996A JP15999683A JPS6050331A JP S6050331 A JPS6050331 A JP S6050331A JP 58159996 A JP58159996 A JP 58159996A JP 15999683 A JP15999683 A JP 15999683A JP S6050331 A JPS6050331 A JP S6050331A
Authority
JP
Japan
Prior art keywords
air
temperature
heat
room
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58159996A
Other languages
Japanese (ja)
Other versions
JPH0155388B2 (en
Inventor
Yozo Ito
陽三 伊藤
Masahiro Kagami
各務 正洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58159996A priority Critical patent/JPS6050331A/en
Publication of JPS6050331A publication Critical patent/JPS6050331A/en
Publication of JPH0155388B2 publication Critical patent/JPH0155388B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To eliminate uncomfortable feeding for an operator which is caused by blowing of cold air or so-called draft during a heating process and to enable an operation to be perfomed which corresponds to a capacity of supplying calorific value in a system of heating source by a method wherein an amount of air is adjutsted in repsonse to a temperature sensed by a blown air temperature sensor and an indoor temperature sensor. CONSTITUTION:Air sunctioned by an air conditioning device M6 is heated by a heat exchanger means M1, then supplied to the room to be air conditioned with its blown volume being adjusted by the air volume adjusting means M2. A calculation control means M5 performs an operation such that a temperature of blown air after it is passed throught a heat exchanger means M1 and before it is discharged into the room to be air conditioned is sensed by a blow air temperature sensing means M3, a temperature of the blown air in the room to be air conditioned is sensed by a indoor temperature sensing means M4, the calculation for the air is made in response to both temperatures, the air volume ajusting means M2 is driven so as to adjust the volume of air which is heat exchanged into the room to be air conditioned.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は空気調和装置、特に暖房用空気調和装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an air conditioner, particularly to a heating air conditioner.

[従来技術] 空気調和装置を用いて家庭用冷暖房、工場等作業場での
冷暖房あるいは自動車、電車等の乗り物の冷暖房が行t
アわれでさた。これら空気調和装置にJ、る被空気調和
室内の温度制御として)) I l)制御あるいはON
 −o F F制ti11が行なわれできた。
[Prior art] Air conditioners are used to heat and cool homes, factories and other workplaces, and vehicles such as cars and trains.
I was devastated. These air conditioners are used to control the temperature in the air-conditioned room)) I l) Control or ON
-o FF F system ti11 was successfully implemented.

ここ−(” [〕I D制御とは次のような操作を言う
Here-(" [] ID control refers to the following operations.

被空気調和室内の目標とづる温度をSVとし、実際の被
空気調和室内の温度をTVとづるどイの1、Hqεはε
−3v−Tv′T:表わされる。イしてこの偏差εに基
づき、次式(1)にJ:りその操作量−MVをめること
ができる。
The target temperature in the air-conditioned room is SV, the actual temperature in the air-conditioned room is TV, and Hqε is ε.
-3v-Tv'T: Represented. Then, based on this deviation ε, J: Risa's manipulated variable - MV can be inserted into the following equation (1).

・・・(1) 1−記操作吊M vに基づき、例えば空気調和装置のi
X m m #、たは発熱用を操作づることににり被空
気調和3ア内の温度を目的の温度Svに向っ゛C変化さ
μ、制all !lることができるものである。
...(1) Based on the operating suspension Mv in 1-, for example, the i of the air conditioner
By operating the X m m # or heat generator, the temperature inside the air conditioner 3A is changed toward the target temperature Sv, and all are controlled! It is something that can be done.

ところが、このようなP I D制御を用い(特にl!
2i 11を11なった場合、低温である被空気調和室
内の温度を上げるため空気調和装置初111Jにおいて
操作量として空気調和装置からのll!房用空気の吹き
出し指を増加さUた場合、あるいは空気mは 定ぐ勢;
ヰ吻熱量を増加させIc場合においても、熱量の供給が
能力不足であったり、又、被空気i1.+1和室内の温
度が低いため、冷風吹き出しになり、人間に対して不快
感を与えることが多かった。
However, using such PID control (especially l!
When 2i 11 becomes 11, ll! from the air conditioner is used as the manipulated variable at the first 111J of the air conditioner to raise the temperature in the air conditioned room, which is at a low temperature. If you increase the amount of air blowing out for the chamber, or the air volume will be at a constant rate;
Even in the case of increasing the amount of heat Ic, the supply of heat may be insufficient, or the amount of air i1. +1 Because the temperature inside the Japanese-style room was low, cold air was blown out, often causing discomfort to people.

また、被空気調和室内の温度の高低、つまり負荷の変動
に対し、ぞの熱償供給能力を考慮し!、:制御は行なわ
れておらず熱源の効率に8影響を及ぼしていた。
Also, take into consideration the heat compensation supply capacity for fluctuations in the temperature in the air-conditioned room, or in other words, the load! ,: No control was performed, which affected the efficiency of the heat source.

[発明の目的] 本発明の目的とづるところは、空気調和装置による暖房
処理においての冷風吹き出しいわゆるドラフトによる作
梨者への不快感を引1ノ、Jl、:熱源系の熱聞供給能
力に適応した操作を可能とりる空気調和装置を提供覆る
ことにある。
[Objective of the Invention] The object of the present invention is to reduce the discomfort caused to the operator by the cold air blowing so-called draft during heating processing by an air conditioner. The purpose is to provide an air conditioning system that allows for adaptive operation.

し発明の構成] 本発明の要旨りるところは、 吸入された空気と接触しへ交換を行なう熱交換手段と、 被空気調和室内への上記熱交換された空気の送風ωを調
節づる風」調節手段と、 上記熱交換された空気の温度を検出づる送風温度検出手
段と、 前記被空気調和室内の温度を検出づる室内温度検出手段
と、 前記送風温度検出手段と」配室内温度検出手段とから検
出された温度に基づき、 前記被空気調和案内の温度が所定温度未満の場合、前記
熱交換された空気の温度がイの設定温度になるよう、前
記風量調節手段を駆動して送風量を調節し、一方、前記
被空気調和案内の温1東が所定温度以上の場合、被空気
調和案内の温度がその設定温度になるよう、前記風量調
節手段を駆動して送風n1を調節ブる演算制御手段と、
を備えたことを特徴とする空気調和装置にある。
[Structure of the Invention] The gist of the present invention is to provide a heat exchange means for contacting and exchanging air with the inhaled air, and a wind for adjusting the blowing ω of the heat-exchanged air into the room to be air-conditioned. an adjusting means; a blowing temperature detecting means for detecting the temperature of the heat-exchanged air; an indoor temperature detecting means for detecting the temperature inside the air-conditioned room; the blowing temperature detecting means; If the temperature of the air-conditioning guide is lower than a predetermined temperature based on the temperature detected from A, the air volume adjusting means is driven to adjust the air volume so that the temperature of the heat-exchanged air reaches the set temperature of A. On the other hand, when the temperature 1 east of the air conditioning guide is equal to or higher than a predetermined temperature, the air volume adjusting means is driven to adjust the air blower n1 so that the temperature of the air conditioning guide becomes the set temperature. control means;
An air conditioner characterized by being equipped with.

次に木兄lIJの罪木的栴成を第1図に示づ。Next, Fig. 1 shows the construction of Kinki IIJ.

ここでMlは熱交換手段、M2はJ!lff1調節手段
、Ivl 3 jJ送風温度検出手段、M4は室内温度
検出手段、M5は演算制御手段を表わしている。
Here Ml is the heat exchange means, M2 is J! lff1 adjustment means, Ivl 3 jJ air temperature detection means, M4 indoor temperature detection means, and M5 arithmetic control means.

上記のJ、うな構成から成る空気調和装[M6に吸収さ
れた空気は熱交PA手段M1により加熱され、次いでM
ffi調節手調節手段上2被空気+++++和室内ヘイ
の送風量が調節されて供給される。演粋制rj11手段
M5は熱交換手段M1を通過した後、被空気調和室内へ
排出される前の空気の送風温良を送Fiil渇度検出手
段M3により検出し、また被空気調和室内の温度を室内
温度検出手段M4により検出し、イの両者の温度に基づ
き、演算処理しffl串調ハ11手段M2を駆動し、被
空気調和室内への熱交換された空気の送風量を調節づる
The above J, an air conditioner consisting of a U-na configuration [the air absorbed in M6 is heated by the heat exchanger PA means M1, and then the M
ffi Adjustment Hand Adjustment Means Upper 2 Air +++++ The amount of air blown into the Japanese-style room is adjusted and supplied. The cooling system rj11 means M5 detects the temperature of the air after passing through the heat exchange means M1 and before being discharged into the air-conditioned room by means of the air-filter thirst detection means M3, and also detects the temperature inside the air-conditioned room. The room temperature is detected by the room temperature detection means M4, and based on the temperatures of (a) and (a), arithmetic processing is performed to drive the ffl skewer adjustment means (c) (c) 11 means M2 to adjust the amount of heat-exchanged air blown into the room to be air-conditioned.

上記送mrnの調節は、被空気調和案内の温度が、所定
温度未満の場合、熱交換された空気の温度がぞの設定温
度になるにう送風量をWIiiij L/、−1)、被
空気調和案内の温度が所定温度以−1−の場合、被空気
調和案内の温度がその設定温度になるj;う送IR1量
を調節覆る制御がなされる。
The above-mentioned adjustment of the air supply mrn is performed by adjusting the amount of air to be blown so that the temperature of the heat-exchanged air reaches the set temperature when the temperature of the air conditioned guide is lower than a predetermined temperature. When the temperature of the air conditioning guide is less than or equal to the predetermined temperature, the temperature of the air conditioning guide becomes the set temperature; control is performed to adjust the amount of IR1.

次に本発明の実施例を図面にM−JいT FJl明りる
Next, embodiments of the present invention are illustrated in the drawings.

第2図は本発明の一実施例の概略構成図を示づ。FIG. 2 shows a schematic configuration diagram of an embodiment of the present invention.

空気調和装置1は、その空気流通路2内に、空気吸込側
から空気浄化用フィルタ3、熱交換器5.13口0調f
ib装同7及び吹さ出し孔9が配設されている。空気吸
込は外気でもよく、又空気調和している4q内の空気で
しJ:い。
The air conditioner 1 has an air purifying filter 3 and a heat exchanger 5, 13 and 0 adjustment f in the air flow passage 2 from the air suction side.
An ib mounting 7 and a blowout hole 9 are provided. Air intake can be outside air or air inside the air-conditioned 4Q.

」記熱交換器5には蓄熱槽13に蓄熱されている渇水が
ボン1′15により供給される。この渇水は熱交換器5
の温水出口側に設番フられた二方弁17によりでの流m
が調節されている。温水循環制御用としては二方弁17
以外にニードル弁を用いてt)J:い。また風量調節装
置7は、その翼角が可変の可変翼角フン・ン7a及びそ
れを回転さ1!るモータ711どから構成されている。
The dry water stored in the heat storage tank 13 is supplied to the heat storage exchanger 5 through a cylinder 1'15. This drought is caused by heat exchanger 5
A two-way valve 17 installed on the hot water outlet side of the
is being adjusted. Two-way valve 17 for hot water circulation control
In addition, use a needle valve t)J: Yes. Further, the air volume adjustment device 7 has a variable blade angle 7a whose blade angle is variable and a variable blade angle 7a that can be rotated 1! It is composed of a motor 711 and the like.

また19は演算制御回路であり、熱交換!!A5を通過
しできた温水の温度を検出ηる水温セン4ノ21及び風
■調節装置7から吹き出される熱交換された空気の調度
を測定づる風温セン4ノ23及び室温センサ25からの
検出信号を入力し、蓄熱槽13から熱交換器5へ供給さ
れる)晶水流mを調節づる二方弁17の量弁…調節駅間
27及び送I!l吊を調節づる風Φ調節装置7の可変翼
角ファン7aの翼角を調節する四角調節装置2つに駆動
信号を出力している。上記のような風■調節装置7以外
にファン7aの翼角を固定し、翼角調節装置29を用い
ず■−タ7bの回転速度調節装置を段り−U ’b、風
量調節装置賀とすることができる。
Also, 19 is an arithmetic control circuit that exchanges heat! ! Water temperature sensor 4-21 detects the temperature of the hot water that has passed through A5, and air temperature sensor 4-23 and room temperature sensor 25 measure the temperature of the heat-exchanged air blown out from the air conditioning device 7. The amount valve of the two-way valve 17 that inputs the detection signal and adjusts the crystal water flow m (supplied from the heat storage tank 13 to the heat exchanger 5)...the control station interval 27 and the transmission I! A drive signal is output to two square adjustment devices that adjust the blade angle of the variable blade angle fan 7a of the wind Φ adjustment device 7 that adjusts the suspension. In addition to the above-mentioned wind adjustment device 7, the blade angle of the fan 7a is fixed, and the rotational speed adjustment device of the fan 7b is set to the stage-U'b, the air volume adjustment device KA and the blade angle adjustment device 29 are not used. can do.

以上述べた各装置の内、熱交換器55が熱交挽丁段に該
当し、III聞調節装置7が用量調節手段に該当し、m
温センサ23が送風温度検出f段に該当し、室温センサ
25が室内温度検出手段に該当し、演算制御回路19が
演算制御手段に該当刃る。
Among the devices described above, the heat exchanger 55 corresponds to a heat exchanger grinding stage, the III volume adjustment device 7 corresponds to a dose adjustment means, and the m
The temperature sensor 23 corresponds to the air temperature detection stage f, the room temperature sensor 25 corresponds to the room temperature detection means, and the arithmetic control circuit 19 corresponds to the arithmetic control means.

又、二方弁17と開弁量調節装FT 27との絹Iノ合
「が流量調節手段に該当し、演算制御回路に該当づる演
算制御回路19は流部制御f段も兼ねζいる。演算制御
回路19とは別111・ロ、流量制υ11手段としての
制御回路を設けてもJ:い。
Further, the combination of the two-way valve 17 and the valve opening amount adjusting device FT 27 corresponds to the flow rate adjusting means, and the arithmetic control circuit 19, which corresponds to the arithmetic control circuit, also serves as the flow section control f stage. It is also possible to provide a control circuit separate from the arithmetic control circuit 19 as a means for controlling the flow rate υ11.

演算制御回路19(j第3図に示!lJ、うにマイクロ
コンピュータにより構成されている。この)11幹制御
回路19はCPU31.演算処即に必要な制御プログラ
ムや各データが格納されている固定メI:すCあるR 
OM 32、一時記憶用のメモリであるRAM33.M
源を図7にした後も記憶を保持ηるよう1h別にバラブ
リにて電源がバックアップされたメモリであるバックア
ップRΔM34、入出カポ−]〜35、出力ボート36
.37及び各素工を接続づるパスライン38を備えてい
る。
The arithmetic control circuit 19 (shown in FIG. 3) is composed of a microcomputer. Fixed memory that stores control programs and various data immediately necessary for arithmetic processing: SuC and R
OM 32, RAM 33 which is a memory for temporary storage. M
Backup RΔM 34, input/output capo] ~ 35, output port 36, which is a memory whose power is backed up by disaggregation every hour so that the memory is retained even after the source is changed to Fig. 7.
.. 37 and a pass line 38 connecting each of the raw materials.

入出カポ−I〜35にはバッファ回路39.40.41
、マルチプレクサ42及びA/D変換器43を介して水
温セン1ノ21、風温センサ23及び室温センサ25の
検出信号が入力され、また出カポ−1−36,37を介
し−C駆動回路44.45へ駆動信号が出ノ〕され、更
に駆動回路44.45が駆fIJ信号を受Gノ聞弁m調
節装置27及び四角調節装置29に駆動電流を出力して
いる。なお46はCI〕1ノ31をはじめ1又0M32
、RAM33等へ所定の間隔ぐ制t111タイミングと
なるクロック信号を送るクロッ゛り回路を表わしている
Buffer circuits 39, 40, 41 are provided for input/output capo-I to 35.
, the detection signals of the water temperature sensor 1-21, the air temperature sensor 23, and the room temperature sensor 25 are inputted via the multiplexer 42 and the A/D converter 43, and are also inputted to the -C drive circuit 44 via the output capacitors 1-36 and 37. A drive signal is outputted to .45, and drive circuits 44 and 45 receive the drive fIJ signal and output a drive current to the G/valve m adjustment device 27 and the square adjustment device 29. Note that 46 is CI] 1 no 31, 1 or 0 M32
, a clock circuit that sends a clock signal to the RAM 33, etc. at predetermined intervals and at timing t111.

次に上述した実施例に適用される演算制御回路19にに
る一制御例について説明する。
Next, an example of control performed by the arithmetic control circuit 19 applied to the embodiment described above will be explained.

第4図は−での制御例の70−チト一トを示す。FIG. 4 shows an example of control at 70 points.

ここにおいて110は初期設定のステップを表わ覆。こ
こでは演算制御回路19が演紳に用いる各種データ、フ
ラグ、カウンタ等の初1’lJ化+(F %う。120
は前回の制御モード(よ1Cあると設定づるステップを
表わす。例えば前回のR,II御し一ドが1であること
を示すフラグを立てることにより設定される。130は
室温セン1〕25からの検出信号に基づき制御モードを
決定するステップを表わす。140は制御し一ドが1に
設定されたか否かを判定づるステップを表わJ。150
は制御モード1の制御を行なうための演粋!ll!!埋
をtTなうステップを表わす。160は制御モードが2
に設定されたか否かを判定づるステップを表わり。17
0は制御七−ド2の制御を行なうための油ε1処理を(
jなうステップを表わづ。180 LJ、 ni’l罪
し一ド3の制御を行なうための演瞳処理を行なうステッ
プを表わづ。190は水温セン1)21からの検出信号
に基づき水温をメモリ中にl−wとしく読み込むステッ
プを表わ1゜200は温水循11111制till用二
方弁17のPID制御を行なう!こめのCド10処即を
表わづ。210は」−記名該当ステップにて演n算出さ
れた制御用データに基づき出ツノ処哩を行なうステップ
を表わり。
Here, 110 represents an initial setting step. Here, the arithmetic control circuit 19 converts various data, flags, counters, etc. used for operation into 1'lJ + (F % U. 120
represents the step that is set when the previous control mode (1C is present.For example, it is set by setting a flag indicating that the previous R, II control mode is 1.130 is the room temperature sensor 1) from 25. 140 represents a step of determining the control mode based on the detection signal of 1. 140 represents a step of determining whether the control mode is set to 1 or not. 150
is the essence of controlling in control mode 1! ll! ! tT represents a step. 160 has control mode 2
Indicates the step of determining whether or not the setting is set. 17
0 is the oil ε1 treatment for controlling control 7-de 2 (
jRepresents the next step. 180 LJ, ni'l represents the step of performing pupil calculation processing for controlling 1/3. 190 represents a step of reading the water temperature into the memory as l-w based on the detection signal from the water temperature sensor 1) 21; 1°200 performs PID control of the two-way valve 17 for hot water circulation 11111 and till! It expresses the 10th part of C of Kome. 210 represents a step in which the output is processed based on the control data calculated in the step corresponding to the registration step.

第5図は上記ステップ130にお1プる制御モードを決
定づる処理の詳細を表わす。
FIG. 5 shows details of the process for determining the control mode in step 130 above.

ここにおいて310は被空気調和室内瀉度を室温ヒンサ
25から検出された信号に基づきメモリ中に−1−1′
どしテ読み込むステップを表わづ。320【よ前回のモ
ードが1?l−あるか否かを判定づるステーツブを表わ
す。つまり前記第4図のステップ210の処理の後、再
度ステップ130の処理に戻り、ループを形成覆るが、
このステップ130に戻る直前の処理のモードが1であ
るか否かを判定りる。330は室内湿度Jrが所定温度
1゛1以上か占かを判定づるステップを表わづ。340
は制御し一ドを1に設定力るスラップを表わJ0350
は制御セードを2に設定力るステップを表わす。
Here, 310 stores the temperature of the air-conditioned room by -1-1' in the memory based on the signal detected from the room temperature sensor 25.
It shows the step of loading. 320 [Is the previous mode 1? l - Represents a state that determines whether or not there is. That is, after the process of step 210 in FIG. 4, the process returns to step 130 again to form a loop.
It is determined whether the mode of the process immediately before returning to step 130 is 1. 330 represents a step of determining whether the indoor humidity Jr is higher than a predetermined temperature of 1.1 or not. 340
represents the slap that is controlled and set to 1.J0350
represents the step of setting the control shade to 2.

360は前回のモードが2であるか否かを判定するステ
ップを表わt、370は室内湿度「rが所定温FfI’
l−u以上か否かを判定するステップを表わづ。3βO
′は制御11モードを3に設定力るステップを表わi’
、390は室内副〔−rが所定)I! If T’i、
L以上か否かを判定づるステップを表わづ。400は制
御モードを2に設定するステップを表わづ。
360 represents the step of determining whether the previous mode is 2, t, 370 represents the indoor humidity "r" is the predetermined temperature FfI'
It represents the step of determining whether the value is greater than or equal to lu. 3βO
' represents the step of setting control 11 mode to 3 i'
, 390 is the indoor sub [-r is predetermined] I! If T'i,
This represents the step of determining whether the value is greater than or equal to L. 400 represents a step of setting the control mode to 2.

410は制御+ ’[−ドを1に設定づるステップを表
わす、、420は学内温度Trが所定温度Ts以トか否
かを判定づるステップを表わり。430は制御モードを
2に設定Jるステラ1を表わづ。440は制御モードを
3に設定づるスーアツプを表わづ。
410 represents the step of setting the control +'[- to 1, and 420 represents the step of determining whether the campus temperature Tr is lower than the predetermined temperature Ts. 430 represents Stella 1 whose control mode is set to 2. 440 represents the startup when the control mode is set to 3.

上記した各所定giは1− u > T s > 1−
L > 1−LLの関係がある。
Each predetermined gi mentioned above is 1- u > T s > 1-
There is a relationship of L > 1-LL.

王、とT LLと2つの所定温度が設iJ Tあるのは
、制御モード聞のハンチングを防止づるIζめのヒステ
リシスとして設けてあり、−rL は制御111 Tニ
ードが1から2へ移行するとき、TLL lま制御モー
ドが2から1へ移行Jるとさの所定湿態である。
Two predetermined temperatures, T and T, are provided as a hysteresis to prevent hunting during the control mode, and -rL is set when the control 111 T needle changes from 1 to 2. , TLL I is in a predetermined wet state when the control mode shifts from 2 to 1.

前1g 各I U Get例エバ、Tu=20℃、T 
s −== 19℃、TL −15℃、’T’LL =
 13℃に設定される。
Previous 1g each I U Get example Eva, Tu=20℃, T
s -== 19℃, TL -15℃, 'T'LL =
The temperature is set at 13°C.

次に第6図に制御モード1の演算処理の内容を表わづ。Next, FIG. 6 shows the contents of the arithmetic processing in control mode 1.

ごこにおいで510は風温センυ23からの検出信号に
基づき送風温度をTfとして読み込むステラlを表わ′
TJ’、520は本空気調和装置1が始!JJ 臼ff
tか否かをノラグヂエツクにより判定するスンプlを表
わづ。530は風用調節装冒7の可変製角71ン7aの
翼角Mをw4節し、風量Qを最メ11ffiの100%
に設定、するステップを表わ1.、つまり送風量を最大
に設定づる。540は送風温度1[が所定温度T+o以
上か否かを判定するステップを表わづ。550は現在の
風IQに所定量aを加えて新たにQどし゛C設定するス
テップを表わづ。560は現在のJ!1ffiQから所
定1bを引き、でのIff+を新たにQとして設定づる
ステップを表わjJ o 570 GJ粋出の結果Ji
量Qが100%以上の蛤になっているか否かを判定づる
ステップな表わIl、、580はjlA ffi、 Q
を100%に設定するステラJを表わづ′。590は風
mQが一イの下限値Qo以」か百かを判定覆るステップ
を表わづ。Qoは一般に10・〜15%程度であるが0
%つまり送NA停止ぐあってもよい。600はQk:Q
oの値を設定するステップを表わす。
Here, 510 represents a Stella l that reads the air temperature as Tf based on the detection signal from the air temperature sensor υ23.
TJ', 520 starts with this air conditioner 1! JJ morsu ff
t or not, which is determined by a noragzic. 530 sets the blade angle M of the variable angle 71-7a of the wind adjustment equipment 7 to w4, and the air volume Q is set to 100% of the maximum 11ffi.
1. , in other words, set the air flow to the maximum. 540 represents a step of determining whether or not the air blowing temperature 1[ is equal to or higher than a predetermined temperature T+o. 550 represents a step of adding a predetermined amount a to the current wind IQ to newly set the wind IQ. 560 is the current J! This represents the step of subtracting a predetermined value 1b from 1ffiQ and setting If+ at as new Q.
The step of determining whether or not the amount Q is 100% or more is the expression Il,, 580 is jlAffi, Q
Displays Stella J, which sets the value to 100%. 590 represents the step of determining whether the wind mQ is greater than or equal to the lower limit value Qo of 1 or 100. Qo is generally about 10-15%, but 0
%, that is, the NA transmission may be stopped. 600 is Qk:Q
This represents the step of setting the value of o.

次に第7図に前記第4図のステップ170の制御モード
2の演算処理の内容を表わり。ここにおいて610はJ
!I吊QのPID演籠全表わ1゜P ID演算は前記従
来技術のInに述ベノ〔式(1)を用いて!affiQ
の値を棹出づる処理をRう。
Next, FIG. 7 shows the content of the arithmetic processing in control mode 2 in step 170 of FIG. 4. Here 610 is J
! The complete PID calculation for I-hanging Q is 1°P ID calculation as described above in the prior art [using equation (1)]. affiQ
R is the process of finding the value of .

この場合、室内湿度Trが目標温度王0より低い場合、
風船を増大させ、Trが目標温度Toより高い場合、風
量を減少させるようにQ h< vJ算される。Toは
例えば18℃に設定される。620は風ff1Qが下限
11Qo以上か否かを判定づるスラップを表わ−t、6
30はJillQを下限値Goに設定づるステップを表
わす。
In this case, if the indoor humidity Tr is lower than the target temperature 0,
When the balloon is increased and Tr is higher than the target temperature To, Q h < vJ is calculated to decrease the air volume. For example, To is set to 18°C. 620 represents the slap that determines whether the wind ff1Q is greater than or equal to the lower limit 11Qo -t, 6
30 represents the step of setting JillQ to the lower limit Go.

次に第8図に前記第4図のステップ180の制御モード
3の演算処理の内容を表わす。ここにおいて710は風
壁Qにその下限値Qoを設定づるスラ゛ツブを表わず。
Next, FIG. 8 shows the content of the arithmetic processing in control mode 3 in step 180 of FIG. 4. Here, 710 does not represent a slab that sets the lower limit value Qo for the wind wall Q.

720は温水循環制御ll ITJ 、’−11j弁1
7を全閉とづるステップを表わり。
720 is hot water circulation control ll ITJ, '-11j valve 1
7 represents the step of fully closed.

まず本実施例の空気調和装置1の運転が開始されると第
4図に承りステップ110が実行され初期設定がなされ
る。次いでステップ120にて前回の制御モードを1と
設定づる。次いでステップ130が実(jさIIる。こ
こで第5図に移り、まずステップ310に(室内温痘T
rtfi読み込まれる。
First, when the operation of the air conditioner 1 of this embodiment is started, step 110 is executed as shown in FIG. 4, and initial settings are made. Next, in step 120, the previous control mode is set to 1. Next, step 130 is executed. Now, moving to FIG.
rtfi is loaded.

次いでステップ320にて前回の制御モードが1か否か
が判定されるが、最初の処理においては前記第4図のス
テップ120にて、前回のIす御モードは1と設定され
ているので、ここではI YESJど判定される。次い
でステップ330が実行され、L記スデップ310で読
み込まれた室内温度Trが所定4 K l−L 以上か
否かが判定される。ここで「rがTL 未満でありrN
OJと判定されると次い(−ステップ37IOにて制御
l−[−ドが1に設定されステップ130の処理を終え
る。
Next, in step 320, it is determined whether the previous control mode is 1 or not, but in the first process, the previous I control mode was set to 1 in step 120 of FIG. Here, the judgment is I or YESJ. Next, step 330 is executed, and it is determined whether the room temperature Tr read in the L step 310 is equal to or higher than a predetermined value of 4Kl-L. Here, ``r is less than TL and rN
If OJ is determined, the control l-[-do is set to 1 at -step 37IO, and the process of step 130 ends.

次いで第4図に戻り、ステップ140にて制御モードが
1か否かが判定される。1記ステップ130のステ゛ツ
ブ340にて制御モードは1に設定されているの(・l
’ Y E S Jと判定され、次にステップ150が
実1jされIII陣モード1の全枠処理がt′iなわれ
る。
Next, returning to FIG. 4, it is determined in step 140 whether the control mode is 1 or not. The control mode is set to 1 in step 340 of step 130 (.l).
' Y E S J is determined, and then step 150 is executed 1j and all frames of III group mode 1 are processed t'i.

この処理は前記第6図の内容が実行される。まずステッ
プ510にて送風温度1”[が読み込まれる。次いでス
テップ520にて、本空気調和装置1の運転が開始され
たばかりか否かが判定される。
This process is executed as shown in FIG. 6 above. First, in step 510, the air blowing temperature 1'' is read. Next, in step 520, it is determined whether or not the operation of the air conditioner 1 has just started.

開始されたばかりであるのでrYFsJと判定され、次
いでステップ530にて風量Qに100%の値が設定さ
れる。つまり風m調節装置7のファン7aの翼角が翼角
調節装置29により最大限の風量となるよう調節される
。次いぐステップ540にて送J!l温度Tfが所定渇
痩T+ o以上か否かが判定される。熱交換器5から出
てきた空気がj。
Since it has just started, it is determined that rYFsJ, and then in step 530 the air volume Q is set to a value of 100%. In other words, the blade angle of the fan 7a of the wind m adjustment device 7 is adjusted by the blade angle adjustment device 29 so that the maximum air volume can be obtained. Next, in step 540, send J! It is determined whether the temperature Tf is equal to or higher than a predetermined temperature T+o. The air coming out of heat exchanger 5 is j.

だ充分昇温していず、TfがT+ o未満である場合に
はrNOJと判定され、次いCスフツブ560が実行さ
れて風ff1Qがb分だIJ小さく設定される。次いで
ステップ590にて」−記ス1ツブ560にて設定され
たQの値が下限値Qo以りか否かが判定され、以上であ
ればrYEsJと判定されてQはそのまま、又、未満で
あれば[NO」と判定されてQにQoが設定され、ステ
ップ150の処理を終了づる。次いで第4図に戻り、ス
ラグ/190にC水温1− wが読み込まれ、ステップ
200にてイの水’A T wに基づき二方弁17の開
弁量のP I D R1111j演粋がなされる。この
P I D 1all III演弁も従来技術に述べた
式(1)と同じ式を用いて開弁mが制御される。熱交換
器5から朗出し−Cくる水の!!、I II、が目標温
度より低い場合は弁17の開I−,1面拍を増大し、水
の温度が「1標渇度J、り高い場合は弁17の開口面積
を減少するようP■D制御を行なっている。
If the temperature has not risen sufficiently and Tf is less than T+o, it is determined that rNOJ has occurred, and then the C step 560 is executed and the wind ff1Q is set to be smaller by IJ by b. Next, in step 590, it is determined whether the value of Q set in step 560 is greater than or equal to the lower limit value Qo. If the answer is NO, Qo is set in Q, and the process of step 150 is ended. Next, returning to FIG. 4, the water temperature C 1-w is read into slug/190, and in step 200, the opening amount of the two-way valve 17 is calculated based on the water 'A Tw. Ru. In this PID 1all III valve operation, the valve opening m is controlled using the same equation as the equation (1) described in the prior art. Recitation from heat exchanger 5 - C flowing water! ! , I II, is lower than the target temperature, the opening area of the valve 17 is increased, and when the water temperature is higher than the target temperature, the opening area of the valve 17 is decreased. ■D control is being performed.

次にステップ210にて、前記決定された制御モードに
基づき風量Qの値に応じて岡角調節装齢29を駆動し、
そのFliIm調節装置7による風量を調節し、更に、
上記ステップ200でめられた0、−h弁コアの制御■
に応じて開弁ff1g11節装置27を駆動して二方弁
17の開弁量を制御する処理が11なわれる。この後、
更にスジツブ130に戻ることになる。
Next, in step 210, the Oka angle adjustment age 29 is driven according to the value of the air volume Q based on the determined control mode,
The air volume is adjusted by the FliIm adjustment device 7, and further,
Control of the 0, -h valve core determined in step 200 above ■
A process 11 is performed in which the valve opening ff1g11 control device 27 is driven to control the opening amount of the two-way valve 17 in response to this. After this,
Furthermore, we will return to the strip 130.

次に再度スフツブ130の処理がなされた場合、未だ室
内温度1−1゛が所定温度TL未満であれば、ステップ
130の処理で再度1iIIJ御モードは1に設定され
る。次にステップ150の制御(−ド1の演算処理がな
されると、その中のステップ!360にてF*mQが更
にbだ【)少なくなった値が風量Qとして設定され更に
、水温−走化のためのニブラ弁17のPIDIIJII
I演算が(jなわれることになる。
Next, when the step 130 is processed again, if the indoor temperature 1-1'' is still below the predetermined temperature TL, the 1iIIJ control mode is set to 1 again in step 130. Next, when the control in step 150 (-1) is carried out, in step !360, the value in which F*mQ is further reduced by b is set as the air volume Q, and furthermore, the water temperature - PIDIIJII of nibbler valve 17 for
The I operation will be (j).

Tr<T、である限り、上記の処理を繰り返すことによ
り、次第に風ff1Qが低下していく。これは第9図の
時点tmQからtm+ までの状態に該当づる。
As long as Tr<T, the wind ff1Q gradually decreases by repeating the above process. This corresponds to the state from time tmQ to tm+ in FIG.

ここで第9図の−M−1−のグラフはnl)間におりる
mmQの変化量を表わし、二番目は時間による送lit
温度Tfの変化を表わし、二番目は時間ににる室内21
度Trの変化を表わし、四番「1は06間による水温T
wの変化を表わづグラフである。
Here, the graph -M-1- in Fig. 9 represents the amount of change in mmQ between
The second one represents the change in temperature Tf, and the second one is 21 in the room over time.
It represents the change in temperature Tr, and the fourth number 1 is the water temperature T between 06 and 06.
This is a graph showing changes in w.

時点t1までは風IJIQは階段状に低下していさ、送
風温If 1− fは次第に増大し、更に室温口゛ら次
第に増大し、また水温Twは初期のilj低Fしただけ
であとは所定mar2oで一定化していることがわかる
。JilffiQは処理毎にbだけ減少していく状態が
継続した後、風量Qが下限tri Q o未満の1白に
4Tつだ場合、第(5図の制彷n−(−ド1の演算処理
中のステップ590にて「NO」と判定され、次いでス
テップ600が実行され、IIIflQに下限値Q o
が設定されることになる。
Until time t1, the wind IJIQ decreases in a stepwise manner, the air blowing temperature If 1-f gradually increases, and then the room temperature also gradually increases, and the water temperature Tw is only at an initial low F and then remains at a predetermined level. It can be seen that it is constant at mar2o. After JilffiQ continues to decrease by b for each process, if the air volume Q is 4T in 1 below the lower limit triQo, then ``NO'' is determined in step 590 in the middle, and step 600 is then executed to set the lower limit value Q o to IIIflQ.
will be set.

この後、同様な処理が繰り返されても風ff1Qは下限
値Qor一定状態に設定されることになる。
Thereafter, even if the same process is repeated, the wind ff1Q will be set to the lower limit value Qor constant state.

これは第9図のグラフでは時点1mlからtm2の間に
該当り−る。この間0はQoで一定であり更にT[は漸
増し、王1・についても漸増している。1−Wは]−2
0で一定である。
In the graph of FIG. 9, this corresponds to the period from time 1 ml to tm2. During this period, 0 is Qo and is constant, and T[ is gradually increasing, and 1· is also gradually increasing. 1-W is ]-2
It is constant at 0.

このような処理の後、送用調度1− fか所定め下10
以上になった場合、制御モード1の演韓処理を行なうス
テップ150内のステップ540に−CI−Y [S 
Jと判定される。次いでステップ550が実行され、Q
に所定値aが加えられたlflを更に風量Qとして設定
づる処理が行なわれる。このことにより、第9図に示す
如く−1[が−r+ o以上と4tつた時点tm2以後
においては風量Qは次第に増IJII L/−rいるこ
とがわかる。また、送111瀉IJtlfは(、lば所
定値T、Q’ c一定レベルを維持している。
After such processing, the sending preparation 1-f is determined under 10
In the above case, -CI-Y [S
It is judged as J. Step 550 is then executed and Q
Further, a process is performed in which lfl, which is obtained by adding a predetermined value a to , is set as the air volume Q. From this, as shown in FIG. 9, it can be seen that the air volume Q gradually increases by IJII L/-r after the time tm2 when -1[ reaches -r+o or more by 4t. Further, the transmission 111 level IJtlf (, l, predetermined values T, Q'c) is maintained at a constant level.

また室内温度7rは次第に増加している。水温下Wにつ
いてはやはり一定レベルに維持されている。
Moreover, the indoor temperature 7r is gradually increasing. The water temperature W is still maintained at a constant level.

ただしCの間、風fftQが増大していることにJ:す
、二方弁17の開弁聞を、より大きい方向に制御してい
ることになる。
However, since the wind fftQ is increasing during the period C, the opening distance of the two-way valve 17 is controlled to be larger.

この後、空温−「rの増加により室温1−rが所定温度
TL 以」二になった場合、第4図にステップ130の
室内温度に基づく第5図の制til+モード決定処理の
ステップ320にて前回の制御[−ドが1であったので
rYEsJと判定され、次いでステップ330にてT 
rが1L以上か丙かが判定される。Trが1−L以上と
なったのでl−Y E S Jと判定され、次いでステ
ップ350が実行され、制御モードが2に設定される。
After that, if the room temperature 1-r becomes equal to or higher than the predetermined temperature TL due to an increase in air temperature -r, step 320 of the control+mode determination process in FIG. 5 based on the indoor temperature of step 130 in FIG. At step 330, since the previous control [-] was 1, it was determined that rYEsJ, and then at step 330, T
It is determined whether r is 1L or more or C. Since Tr has become 1-L or more, it is determined that 1-Y E S J, and then step 350 is executed and the control mode is set to 2.

そのため第4図に(1ヅいてステップ゛1/IOにてr
NOJと判定され、更にステップ160に−U rY[
sJと判定され(スラップ170の制御モード2の演尊
処理に移る。
Therefore, in Figure 4 (1゛ and step ゛1/IO, r
It is determined as NOJ, and further, in step 160 -U rY[
It is determined that it is sJ (the process moves to the performance processing in control mode 2 of the slap 170).

ステップ170の演律処理に移ると、まず第7図のステ
ップ610にてQのPID演紳演算なわれる。このPj
D演粋全枠出式(1)の如く目F温良1’ Oど前述の
渇1良との差にJ:り制御mが決定され、この場合の制
御間は8a量Qの調節となる。
Moving on to the performance processing at step 170, first, at step 610 in FIG. 7, a PID performance calculation for Q is performed. This Pj
As shown in formula (1), the control m is determined based on the difference between the above-mentioned temperature and temperature, and the control interval in this case is the adjustment of the amount Q of 8a. .

木処J平においてはT oより実際の室内温度Trが高
(Jれば、風量Qは低下する方向に制御される。
At Kidokoro Jhei, if the actual indoor temperature Tr is higher than To (J), the air volume Q is controlled to decrease.

また逆にTrのhが低(〕れば風1flQは増大する方
向に1I71I il+される。
Conversely, if h of Tr is low (), the wind 1flQ is increased in the direction of 1I71Iil+.

次い(−スラップ620に移り、QがQoL以上あれば
、そのままスフ゛ツブ170の処理を終了する。ちしQ
 /J’ Q o未満であればQに対し、Qoの値が設
定され、ステップ170の処理を終了する。
Next, proceed to (-slap 620, and if Q is equal to or greater than QoL, the processing of the block 170 ends.
/J'Q If the value is less than o, the value of Qo is set for Q, and the process of step 170 is ended.

−そしてステップ210にて算出されたQに応じてM川
が調節される。
- Then, in step 210, the M river is adjusted according to the calculated Q.

この後、再度ステップ130に処理が戻ってくると、て
゛の中のステップ320にて前回の制御モードは2であ
っl〔ので、rNOJと判定され、次いてスラップ36
0にて前回の制御モードが2であるのU″1”YESJ
ど判定され、ステップ370が実行される。ここでは室
内温1aTrが所定温度゛口11メ」か否かが判定され
、1−L以上でなりれば1− N OJと判定され、次
いでステップ390に−CT rが1−uL以上か否か
が判定される。ここで「1゛が王LL以上であればrY
EsIと判定され、次いでステップ400が実行され、
制ill Tl−−ドが更に2に設定され、ステップ1
30の処理を終了する。
After this, when the process returns to step 130 again, the previous control mode is 2 in step 320, so it is determined to be rNOJ, and then the slap 36
If the previous control mode is 2 at 0, U"1" YESJ
A determination is made as to whether or not the process is performed, and step 370 is executed. Here, it is determined whether the room temperature 1aTr is a predetermined temperature "11", and if it is 1-L or more, it is determined as 1-N OJ, and then in step 390 it is determined whether or not -CTr is 1-uL or more. It is determined whether Here, ``If 1゛ is greater than or equal to King LL, then rY
EsI is determined, and then step 400 is executed,
The limit ill Tl-- code is further set to 2 and step 1
30 ends.

この後、同様にステップ160にτrYEsJと判定さ
れ、ステップ170の制御モード2の全枠処理が実行さ
れる。以後Trがl−L以上に’rLるかまたはTLL
未満どならない限り、制御モード2が継続されることに
なる。
Thereafter, in step 160, it is similarly determined that τrYEsJ, and in step 170, all frame processing in control mode 2 is executed. After that, Tr becomes 'rL or TLL more than l-L.
Control mode 2 will continue unless something else happens.

この間、第9図においてはtm3からtmaに該当する
。QはT rをTaj、で」:昇さμるため一旦低■し
ていくが、TrはほぼToとなればはぼQ(,1−走化
する。この間1−[はQの低下により i’;l 、J
−昇するが、Qの一定化によりほぼ水平に推移づる。
During this period, in FIG. 9, the period corresponds to tm3 to tma. Q is Tr, Taj, '': As μ rises, it temporarily decreases, but when Tr reaches almost To, it begins Q(,1- chemotaxis. During this time, 1-[ is due to the decrease in Q. i';l, J
- increases, but as Q becomes constant, it remains almost flat.

この間Twは同様に一定である。During this time, Tw is also constant.

通常この制御モード2の状態にて、被空気調和室11内
は快適な状態に保持されることになる。
Normally, in this control mode 2, the inside of the air-conditioned room 11 is maintained in a comfortable state.

しかし、ここで被空気調和室11内に(急mな光熱が何
らかの原因で発生した’JJ台、室内温度−1「は所定
温度1−uを越える場合がある。この場合においては、
第5図のステップ360にて前回の制御[−ドが2であ
ったので[YEsJと判定され、次いCステッj370
にτTrはT 1以上となったのでrYEsJと判定さ
れ、次いでステップ380にて制御モードに3が設定さ
れる。
However, here, in the air-conditioned room 11 (when sudden light heat is generated for some reason, the room temperature -1 may exceed the predetermined temperature 1-u. In this case,
At step 360 in FIG. 5, since the previous control [-] code was 2, it was determined as [YESJ, and then C step j370
Since τTr is equal to or greater than T1, it is determined that rYEsJ, and then in step 380, the control mode is set to 3.

このことにJ、す、第4図のフローチ+7−トにお(〕
るススワップ140び160にてrN、OJと判定され
、次いでステップ180が実行されて制御し一ト3の演
峰処理が行なわれる。この演n処理は第8図に示づ如く
、風ff1Qに下限値Qoを設定づるステップ710の
処理が行なわれ、次いで温水循環制御用二方弁17を全
閉にづるステップ720の処理が行なわれることになる
。そして、第4図に示−づごどく、ステップ210が実
行され、制御出力処理が行なわれる。
In response to this, J.
rN and OJ are determined in the swaps 140 and 160, and then step 180 is executed and controlled, and the result processing of step 3 is performed. As shown in FIG. 8, this calculation process includes step 710 in which a lower limit value Qo is set for the wind ff1Q, and then step 720 in which the hot water circulation control two-way valve 17 is fully closed. It will be. Then, as shown in FIG. 4, step 210 is executed and control output processing is performed.

この後、再痕スデツブ130が実行された場合、で−の
ス7ツ゛ゾ360においては前回の制御l′Fニードが
既に3に設定されているのでrNOJと判定さ1し、次
いでステップ420にてlrが所定温度TS以上か否か
が判定される。7’rはTS以上であるのでrYEsJ
と判定され、次いでスラップ440が実行され、制御モ
ードは同様に3に設定され続けることになる。以後1r
がTS未満とならない限り制御モード3の状態が継続す
る。 ゛この間の処理は第9図に示す時点11n5以後
の状態を表わしている。この間QはQOに固定され、T
fは一旦上昇覆るが、次第に減少し、TI・も一旦上昇
づるが1次第に減少していく。
After this, when the re-marking step 130 is executed, the previous control l'F need has already been set to 3 in the step 7 reset 360, so it is determined to be rNOJ, and then the process proceeds to step 420. It is determined whether lr is equal to or higher than a predetermined temperature TS. 7'r is greater than or equal to TS, so rYEsJ
It is determined that Slap 440 is then executed, and the control mode continues to be set to 3 in the same way. 1r thereafter
The state of control mode 3 continues unless TS becomes less than TS. ``The processing during this period represents the state after time 11n5 shown in FIG. 9. During this period, Q is fixed at QO, and T
f rises once but then gradually decreases, and TI・also rises once but gradually decreases by 1.

この後tm6にて1−rがT3未ψ1となった場合、第
5図のステップ420の処理にてr N 01と判定さ
れ、次いでステップ/1.30が実行されて制御E−ド
に2が設定される。このことに1、り第4図のフローチ
v−1〜のステップ160にUrY’ESjど判定され
、次いでステップ170が実行されて制御モード2の演
算処(lが行なわれる。つJ、すQのl) I I)演
算に戻ることになる。第9図の時点tm6以後はイの状
態を示し−Cいる。
After this, when 1-r becomes T3 less than ψ1 at tm6, it is determined that r N 01 in the process of step 420 in FIG. is set. As a result, UrY'ESj is determined in step 160 of flow v-1 in FIG. l) I I) Return to calculation. After time tm6 in FIG. 9, the state A is shown and -C is present.

更に第9図にては示さないが、制御t−12に戻った後
、更に室温Trが所定温磨TLL未満となれば、第5図
のステップ390にてl’ N OJと判定され、次い
でスフツブ410が実行されて制御モードは1に設定さ
れる。つまり送風温度T[が−電化されるJ:うにJ!
1fflQが制御されることになる。
Furthermore, although not shown in FIG. 9, after returning to control t-12, if the room temperature Tr becomes less than the predetermined temperature TLL, it is determined as l' N OJ in step 390 of FIG. 5, and then Step 410 is executed and the control mode is set to 1. In other words, the air blowing temperature T[ is - electrified J: Sea urchin J!
1fflQ will be controlled.

以−L述べた如く、第9図におりる時点tllIQから
tm3の間は、室温T1゛がかなり低温であるが故に、
制御モード1の制御を行なって空気調和装置の熱注洪給
能)〕に適応させた制御を行なうとともに、冷風吹き出
しくピラフ1−)を防ぎ、作業者の不快感を防ぐことが
Cきる。また時点tm3からt+Hにかりて制御llモ
ード2の制御ul+を行なうことにより適切な目標温度
−「0に室内温度を制0I17Iることができる。また
時点Lm5からtmbの間を制御モード3の制御処理を
行なうことにより、送I’llを最低限に絞り1.1−
ネルギを節約できる。また第10図に承り如く制御モー
ドが1.2.3と上昇している+1;’1点におい°て
は、その制御モードの境界を室温T1′につい(゛「L
 及び’7− uと1)、更に逆に制御モードが3.2
.1ど下11’F、する場合にはその制御モードの境界
を゛「S及び−ILLとし、制御モード変化におけるヒ
ステリシスを設けることに上り制御11111:” −
ド間のハンチング等を防止できるものである。
As mentioned above, between the time tllIQ and tm3 shown in Fig. 9, the room temperature T1゛ is quite low.
By performing control in control mode 1, it is possible to perform control adapted to the heat injection function of the air conditioner, and to prevent pilaf 1-) from blowing out cold air, thereby preventing worker discomfort. In addition, by performing control ul+ of control mode 2 from time tm3 to t+H, it is possible to control the indoor temperature to an appropriate target temperature - 0.Also, from time Lm5 to tmb, control of control mode 3 By performing the processing, the transmission I'll can be reduced to the minimum 1.1-
You can save energy. In addition, as shown in Figure 10, at the +1;'1 point where the control mode increases to 1.2.3, the boundary of the control mode is set at the room temperature T1'('L
and '7-u and 1), and conversely, the control mode is 3.2
.. 1 down 11'F, the boundary of the control mode is set to "S and -ILL, and hysteresis is provided in the control mode change. Upward control 11111:" -
This can prevent hunting between the cards.

[発明の効果] 以上詳述した如く、本発明の空気調和装置によれば、 吸入され7j空気と接触し熱交換を行4Tう熱交換手段
と、 被空気調和室内への上記熱交換された空気の送風量を調
節覆るIIl量調節手段と、 上記熱交換された空気の温度を検出Aる送ff!l !
[Effects of the Invention] As detailed above, according to the air conditioner of the present invention, the heat exchange means contacts the inhaled air and exchanges heat for 4T, and the heat exchange means into the air-conditioned room. A volume adjusting means for adjusting the amount of air blown, and a flow ff! that detects the temperature of the heat-exchanged air. l!
.

度検出手段と、 前記被空気調和室内の渇疫を検出づる室内(温度検出手
段と、 前記送用渇度検出手段と」−記室内渇+r1検出手段と
から検出された温度に基づき、 前記被空気調和室内の温1良が所定渇瓜本渦の場合、前
記熱交換された空気の温度がイの設定温度になるよう、
前記風量調節1段を駆動しく送風量を調節し、一方、前
記被空気調和室内の1m 1G、が所定温麿以上の場合
、被空気調和室内の(晶1aがその設定温度になるよう
、前記I!Im調節手°段を駆動して送風量を調節覆る
演尊制御手段と、 を備λだことににす、l11iI7N初+uJに431
ノるドラフト防止及び熱量供給O1i力に適合した制御
が可能どなり、定帛時においては室温を段定温瓜3Ji
鈎に制御Cさ常に快適な暖房が可能となるものである。
temperature detection means, and a temperature detection means for detecting thirst in the air-conditioned room (temperature detection means; When the temperature in the air conditioning room is at a predetermined temperature, the temperature of the heat-exchanged air becomes the set temperature of A.
The air flow rate is adjusted by driving the air flow rate adjustment stage 1, and on the other hand, when the temperature of 1 m 1G in the air conditioned room is higher than the predetermined temperature, the It is assumed that it is equipped with a performance control means that drives the I!Im adjustment means to adjust the amount of air blowing, and 431 on the first + uJ of I11iI7N.
This makes it possible to prevent drafts and to control the amount of heat that is suitable for the supply of heat.
Control C on the hook enables comfortable heating at all times.

特に暖房初期に、応答性のゆるやかな被空気調和室内の
温度よりも蓄熱槽等の熱源系を主体に制御したことにJ
:リシステム全体の暖房に対づる効率アップが図れるも
のである。
Especially in the early stages of heating, J
: It is possible to improve the heating efficiency of the entire system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のj1木的構成図、第2図は本発明の一
実施例を承り概略系統図、第3図はその渋柿制御回路の
ゾ[lツク図、第4図はその演紳制御回路に適用される
制御例のプログラムを示づフローチャート、第5図はイ
の制御モード決定部分のLYIll)1−1−ヂy −
l−、第6図は制御itモード1の演紳処理を示ゴ訂細
フローヂャートー1″″第7図は制御モード2の演紳処
理を示す詳細70−ヂv −1−1第8図は制御モード
3の部枠処理を示す詳細フローヂト一ト、第9図は本実
施例の処19! 1FiIJ(’rを示づグラフ、第1
0図はモート設定条イ1を示づグラフを表わづ。 1・・・空気調和装四 5・・・熱交換器 7・・・風量調節装置 11・・・被空気調和宰 17・・・:方弁 19・・・@算制御回路 21・・・水海センサ 23・・・風温センサ 25・・・室温センサ 27・・・開弁m調節装置 2つ・・・翼角調11il装置 代理人 ブを埋土 1立 勉 ばか1名 第3図 79 / 第6図 第7図 第8図
Fig. 1 is a j1-tree configuration diagram of the present invention, Fig. 2 is a schematic system diagram of an embodiment of the present invention, Fig. 3 is a zodiac diagram of the persimmon control circuit, and Fig. 4 is its implementation. FIG. 5 is a flowchart showing a control example program applied to the control circuit.
FIG. 6 is a detailed flowchart showing the operation process in control mode 1. FIG. 7 is a detailed flow chart showing the operation process in control mode 2. The figure shows a detailed flowchart showing the frame processing in control mode 3, and FIG. 9 shows the process 19! of this embodiment. 1FiIJ (Graph showing 'r, 1st
Figure 0 shows a graph showing mote setting item 1. 1...Air conditioner 45...Heat exchanger 7...Air volume adjustment device 11...Air conditioner 17...: Direction valve 19...@Calculation control circuit 21...Water Sea sensor 23...Wind temperature sensor 25...Room temperature sensor 27...Two valve opening m adjustment devices...Blade angle adjustment 11il device representative Burying earth 1 standing student 1 person Figure 3 79 / Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1 吸入された空気と接触し熱交換を行なう熱交換下段
と、 被空気調和室内への上記熱交換された空気の送用吊を調
節Jる風量調節手段と、 上記熱交換された空気の温度を検出する送m温度検出手
段と、 前記被空気調和室内の渇庶を検出力る室内温度検出手段
と、 前記送風温度検出手段と上記室内温度検出手段とから検
出された温度に基づき、 前記被空気調和室内の温度が所定温度未満の場合、前記
熱交換された空気の温度がその設定湯度に4「るよう、
前記mff1調節手段を駆動して送J!1mをalil
 f!+’T L、一方、前記被空気調和室内の温度が
所定温1f11ス」、の場合、被空気調和室内の温度が
子の設定渇庶になるよう、前記I!1fft調節手段を
駆動して送風M′@−調節づる8iJ粋制御手段ど、を
備えたことを特徴とする空気調和装置。 2 熱交換手段が、熱媒体のV4環にJ:り熱量の供給
を受けるとともに、熱交換手段を循環づる熱媒体の流m
を調節づる流■調節手段ど熱交換手段から排出される熱
媒体の湿度をイの設定温石にづるにう、F配流量調節手
段を制御りる流量制御手段とを備えた特許請求の範囲第
1項記載の空気調和側L 3 演算制御手段が、被空気調和室内の温度が所定温度
を越える温度である第2所定温度以りの場合、&iIm
調節手段を駆動して送風Jnをその下限値に調節し、熱
交換手段を循環する熱媒体の流量をm節する流mwJ節
手段を駆動して熱媒1本の流mを特徴とする特許請求の
範囲第1項又は第2 In記載の空気調和装置。
[Scope of Claims] 1. A lower heat exchange stage that contacts the drawn air and performs heat exchange; an air volume adjustment means that adjusts the flow of the heat-exchanged air into the air-conditioned room; a temperature detection means for detecting the temperature of the exchanged air; an indoor temperature detection means for detecting a drought in the air-conditioned room; Based on the temperature, if the temperature in the air-conditioned room is less than a predetermined temperature, the temperature of the heat exchanged air is 4" to the set hot water temperature,
Drive the mff1 adjusting means to send J! alil 1m
f! On the other hand, if the temperature in the air-conditioned room is the predetermined temperature 1f11, then the temperature in the air-conditioned room is adjusted to the specified temperature. 1. An air conditioner comprising: a control means for controlling air flow M'@-adjusting by driving a 1fft adjustment means. 2. The heat exchange means is supplied with heat from the V4 ring of the heat medium, and the flow of the heat medium circulating through the heat exchange means is
(1) A flow rate control means for controlling the F distribution flow rate adjustment means to adjust the humidity of the heat medium discharged from the heat exchange means (2) based on the setting temperature stone; When the air conditioning side L 3 arithmetic control means described in item 1 indicates that the temperature inside the air conditioning room is equal to or higher than the second predetermined temperature, which is a temperature exceeding the predetermined temperature, &iIm
A patent characterized in that the adjusting means is driven to adjust the air blowing Jn to its lower limit value, and the flow rate mw of the heat medium circulating through the heat exchange means is adjusted to mw, the flow rate mw of one heat medium is adjusted by driving the J node means. An air conditioner according to claim 1 or 2.
JP58159996A 1983-08-31 1983-08-31 Air conditioning device Granted JPS6050331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58159996A JPS6050331A (en) 1983-08-31 1983-08-31 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58159996A JPS6050331A (en) 1983-08-31 1983-08-31 Air conditioning device

Publications (2)

Publication Number Publication Date
JPS6050331A true JPS6050331A (en) 1985-03-20
JPH0155388B2 JPH0155388B2 (en) 1989-11-24

Family

ID=15705718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58159996A Granted JPS6050331A (en) 1983-08-31 1983-08-31 Air conditioning device

Country Status (1)

Country Link
JP (1) JPS6050331A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231344A (en) * 1985-04-04 1986-10-15 Matsushita Refrig Co Air conditioner with automatic air quantity controller
US5515022A (en) * 1991-05-13 1996-05-07 Tdk Corporation Multilayered inductor
JP2011007415A (en) * 2009-06-25 2011-01-13 Ntt Facilities Inc Air conditioner control method in information communication machine room

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190627U (en) * 1975-01-20 1976-07-20
JPS54131754U (en) * 1978-03-06 1979-09-12
JPS5640040A (en) * 1979-09-07 1981-04-16 Hitachi Ltd Controlling system for indoor fan used in air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190627U (en) * 1975-01-20 1976-07-20
JPS54131754U (en) * 1978-03-06 1979-09-12
JPS5640040A (en) * 1979-09-07 1981-04-16 Hitachi Ltd Controlling system for indoor fan used in air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231344A (en) * 1985-04-04 1986-10-15 Matsushita Refrig Co Air conditioner with automatic air quantity controller
US5515022A (en) * 1991-05-13 1996-05-07 Tdk Corporation Multilayered inductor
JP2011007415A (en) * 2009-06-25 2011-01-13 Ntt Facilities Inc Air conditioner control method in information communication machine room

Also Published As

Publication number Publication date
JPH0155388B2 (en) 1989-11-24

Similar Documents

Publication Publication Date Title
CN103075783B (en) Air-side free cooling system and data center
JPH10318593A (en) Control method for air-conditioning device and air-conditioning device
JP4579810B2 (en) Air conditioning control system
JP4864019B2 (en) How to control the comfort of your environment with an air conditioning system
JP4664190B2 (en) Air conditioning control system
JPS6050331A (en) Air conditioning device
JPH07113542A (en) Controlling method for air conditioner
JPS622225B2 (en)
JP2021014947A (en) Air conditioner and air conditioning system
KR102559168B1 (en) Air conditioner energy saving apparatus for ship
US8626345B2 (en) Method and system for optimal coordination control and soft repair of multiple rooftop heating and cooling units
JP5209430B2 (en) Air conditioning control system
JPH0346737B2 (en)
CN212195000U (en) Intelligent temperature control double-layer bus air conditioning system
JPH074724A (en) Energy-saving control method for air conditioning equipment
JPH04110552A (en) Air conditioner
JP2020139711A (en) Air conditioning system
JPH0719574A (en) Controlling equipment of quantity of airflow of air-conditioning system
JPS60248938A (en) Method of optimization of blow air temperature
JPH0763392A (en) Controller for air conditioner
KR102215182B1 (en) Air conditioning method
US20230417433A1 (en) System and method for operating climate control to reduce virus transmission
JP3124685B2 (en) Air conditioner using absorption refrigerator
JPS63131940A (en) Control of ventilating device
JPS6066038A (en) Blower