JP2020139711A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2020139711A
JP2020139711A JP2019037142A JP2019037142A JP2020139711A JP 2020139711 A JP2020139711 A JP 2020139711A JP 2019037142 A JP2019037142 A JP 2019037142A JP 2019037142 A JP2019037142 A JP 2019037142A JP 2020139711 A JP2020139711 A JP 2020139711A
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
circulation pump
conditioning system
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019037142A
Other languages
Japanese (ja)
Other versions
JP7205889B2 (en
Inventor
貴弘 藤川
Takahiro Fujikawa
貴弘 藤川
正明 佐野
Masaaki Sano
正明 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiken Co Ltd
Original Assignee
Seiken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiken Co Ltd filed Critical Seiken Co Ltd
Priority to JP2019037142A priority Critical patent/JP7205889B2/en
Publication of JP2020139711A publication Critical patent/JP2020139711A/en
Application granted granted Critical
Publication of JP7205889B2 publication Critical patent/JP7205889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

To provide an air conditioning system which enables improvement of energy efficiency by inverter control.SOLUTION: An air conditioning system 10 according to the invention includes: a duct 11 for taking outdoor air into the system and supplying the air to an indoor space 60; a pre-cooling heat exchanger 20 disposed at the upstream side of the duct; a cooling heat exchanger 30 which is disposed at the downstream side of the pre-cooling heat exchanger and cools airflow to a predetermined absolute humidity; and a reheat heat exchanger 40 disposed at the downstream side of the cooling heat exchanger. The pre-cooling heat exchanger and the reheat heat exchanger are connected by a circulation pipe 50 in which a heat medium is circulated in a circulation pump 51. The circulation pump is inverter-controlled.SELECTED DRAWING: Figure 1

Description

本発明は、外気の温度、湿度を調節して室内に送給する空調システムに関するものであり、より具体的には、外気の熱エネルギーを吸熱し、除湿後の空気の再熱に利用することができる空調システムに関するものである。 The present invention relates to an air conditioning system that regulates the temperature and humidity of the outside air and supplies it indoors. More specifically, it absorbs the heat energy of the outside air and uses it for reheating the air after dehumidification. It is about an air conditioning system that can be used.

医薬品や食品の製造工場、動物実験施設、植物栽培工場などでは、室内の温度、湿度の調整が求められる。この種の空調システムでは、目標となる湿度の空気を室内に導入するために、たとえば夏季など、外気の温度、湿度が高い場合には、外気を対応する絶対湿度まで冷却し、再加熱を行なうことで、所望の温度、湿度の空気を室内に供給するようにしている。 In pharmaceutical and food manufacturing factories, animal experiment facilities, plant cultivation factories, etc., it is required to adjust the indoor temperature and humidity. In this type of air conditioning system, in order to introduce air of the target humidity into the room, when the temperature and humidity of the outside air are high, for example, in summer, the outside air is cooled to the corresponding absolute humidity and reheated. By doing so, air of a desired temperature and humidity is supplied to the room.

冷却と再加熱の際に必要になるエネルギーを有効利用するために、たとえば特許文献1では、外気を絶対湿度まで冷却する前に、一旦予冷を行なうようにしている。このとき、予冷に用いられる熱交換用のコイルと、再加熱の熱交換用のコイルを熱媒体が流通する循環パイプで連繋し、循環パイプ内の熱媒体を循環ポンプで循環させることにより、予冷時に外気の熱エネルギーを吸収し、得られた熱エネルギーを再加熱に利用している。 In order to effectively utilize the energy required for cooling and reheating, for example, in Patent Document 1, precooling is performed once before cooling the outside air to absolute humidity. At this time, the heat exchange coil used for precooling and the heat exchange coil for reheating are connected by a circulation pipe through which the heat medium flows, and the heat medium in the circulation pipe is circulated by the circulation pump to precool. Sometimes it absorbs the heat energy of the outside air and uses the obtained heat energy for reheating.

特開平07−233968号公報Japanese Unexamined Patent Publication No. 07-233968

しかしながら、循環ポンプの出力は一定であるから、熱エネルギーの吸収、再加熱利用は成り行きの制御となり無駄が多く、エネルギー消費の抑制を図ることができなかった。 However, since the output of the circulation pump is constant, the absorption and reheating of heat energy are controlled as a matter of course and wasteful, and energy consumption cannot be suppressed.

本発明の目的は、インバーター制御によりエネルギー効率を高めることのできる空調システムを提供することである。 An object of the present invention is to provide an air conditioning system capable of increasing energy efficiency by inverter control.

本発明に係る空調システムは、
外気を取り入れて室内に供給するダクトと、
前記ダクトの上流側に配置される予冷熱交換器と、
前記予冷熱交換器の下流側に配置され、所定の絶対湿度まで空気流を冷却する冷却熱交換器と、
前記冷却熱交換器の下流側に配置される再熱熱交換器と、
を具え、
前記予冷熱交換器と前記再熱熱交換器を、熱媒体を循環ポンプにより循環させる循環パイプにより接続してなる、
空調システムであって、
前記循環ポンプはインバーター制御される。
The air conditioning system according to the present invention
A duct that takes in outside air and supplies it indoors,
A precooling heat exchanger arranged on the upstream side of the duct,
A cooling heat exchanger located downstream of the precooling heat exchanger and cooling the air flow to a predetermined absolute humidity,
A reheat heat exchanger arranged on the downstream side of the cooling heat exchanger,
With
The precooling heat exchanger and the reheating heat exchanger are connected by a circulation pipe that circulates a heat medium by a circulation pump.
It ’s an air conditioning system,
The circulation pump is controlled by an inverter.

前記再熱熱交換器の下流側に第3温度センサーを具え、
前記循環ポンプは、前記第3温度センサーの温度検出値に基づいてインバーター制御することができる。
A third temperature sensor is provided on the downstream side of the reheat heat exchanger.
The circulation pump can be inverter-controlled based on the temperature detection value of the third temperature sensor.

前記室内には、湿度センサーを具え、
前記循環ポンプは、前記湿度センサーの湿度検出値に基づいてインバーター制御することができる。
A humidity sensor is installed in the room.
The circulation pump can be inverter-controlled based on the humidity detection value of the humidity sensor.

前記予冷熱交換器と前記再熱熱交換器は、前記循環ポンプと並列に配備された温熱源に切り替えて接続可能である。 The precooling heat exchanger and the reheating heat exchanger can be switched and connected to a heat source arranged in parallel with the circulation pump.

前記予冷熱交換器の上流側に外気温を測定する第1温度センサーを具え、
前記第1温度センサーの温度検出値に基づいて、前記循環ポンプ又は前記温熱源は、前記予冷熱交換器と前記再熱熱交換器に切り替えて接続することができる。
A first temperature sensor for measuring the outside air temperature is provided on the upstream side of the precooling heat exchanger.
Based on the temperature detection value of the first temperature sensor, the circulation pump or the heat source can be switched and connected to the precooling heat exchanger and the reheating heat exchanger.

本発明の空調システムによれば、予冷熱交換器と再熱熱交換器を熱的に接続する循環パイプは、熱媒体を送給する循環ポンプをインバーター制御している。これにより、熱損失が少ない効果的な条件で予冷熱交換器と再熱熱交換器の熱交換を行なうことができ、再熱時の温度調整等を行なうことができるから、エネルギー効率を可及的に高めることができる。 According to the air conditioning system of the present invention, the circulation pipe that thermally connects the precooling heat exchanger and the reheat heat exchanger controls the circulation pump that feeds the heat medium by the inverter. As a result, heat exchange between the precooling heat exchanger and the reheat heat exchanger can be performed under effective conditions with little heat loss, and the temperature can be adjusted at the time of reheating, so that energy efficiency can be achieved. Can be enhanced.

図1は、本発明の第1実施形態に係る空調システムの概略フローシートである。FIG. 1 is a schematic flow sheet of an air conditioning system according to the first embodiment of the present invention. 図2は、空気線図である。FIG. 2 is a psychrometric chart. 図3は、室内温度と循環ポンプの周波数との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the room temperature and the frequency of the circulation pump. 図4は、本発明の第2実施形形態に係る空調システムの概略フローシートである。FIG. 4 is a schematic flow sheet of the air conditioning system according to the second embodiment of the present invention. 図5は、冷熱源の弁開度と露点温度との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the valve opening degree of the cold heat source and the dew point temperature. 図6は、ダクト下流の温度と循環ポンプの周波数との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the temperature downstream of the duct and the frequency of the circulation pump. 図7は、ダクト下流の温度と二方弁の弁開度との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the temperature downstream of the duct and the valve opening degree of the two-way valve.

以下、図面を参照しながら本発明の空調システム10について説明する。 Hereinafter, the air conditioning system 10 of the present invention will be described with reference to the drawings.

<第1実施形態>
本発明の空調システム10は、図1に示すように、空調管理される空間60(適宜「室内」とも称する)に対し、外気を供給するシステムである。空調管理される空間60は、たとえば医薬品や食品の製造工場、動物実験施設、植物栽培工場などを挙げることができる。
<First Embodiment>
As shown in FIG. 1, the air conditioning system 10 of the present invention is a system that supplies outside air to a space 60 (also referred to as “indoor” as appropriate) controlled by air conditioning. Examples of the air-conditioned space 60 include a pharmaceutical and food manufacturing factory, an animal experiment facility, and a plant cultivation factory.

第1実施形態の空調システム10では、夏季などの温度、湿度が空間60よりも高い場合に、外気を一旦予冷した後、絶対湿度まで冷却することで湿度調整を行ない、湿度調整された空気を再加熱して室内60に供給する。 In the air-conditioning system 10 of the first embodiment, when the temperature and humidity are higher than the space 60, such as in summer, the outside air is once pre-cooled and then cooled to absolute humidity to adjust the humidity, and the humidity-adjusted air is released. It is reheated and supplied to the room 60.

具体的構成として、空調システム10は、外気に連通する空気取入口12を上流側に具え、下流側の空気吹出口13が室内60に連通したダクト11に、上流側から順に予冷熱交換器20、冷却熱交換器30及び再熱熱交換器40を配置して構成される。ダクト11には図示しないファンやフィルターを具え、ファンの作動によりフィルター濾過された外気がダクト11内に導入される。 As a specific configuration, the air conditioning system 10 is provided with an air intake 12 communicating with the outside air on the upstream side, and a precooling heat exchanger 20 is provided in the duct 11 in which the air outlet 13 on the downstream side communicates with the room 60 in order from the upstream side. , The cooling heat exchanger 30 and the reheat heat exchanger 40 are arranged and configured. The duct 11 is provided with a fan or a filter (not shown), and the outside air filtered by the filter is introduced into the duct 11 by the operation of the fan.

たとえば、予冷熱交換器20は予冷コイル21、冷却熱交換器30は外気処理エアコン31、再熱熱交換器40は再熱コイル41からそれぞれ構成することができる。 For example, the precooling heat exchanger 20 can be composed of a precooling coil 21, the cooling heat exchanger 30 can be composed of an outside air processing air conditioner 31, and the reheating heat exchanger 40 can be composed of a reheating coil 41.

予冷コイル21と再熱コイル41は、循環パイプ50により連結された閉回路を形成している。循環パイプ50には、閉回路内には水や不凍液などの熱媒体が収容され、循環ポンプ51により閉回路内で熱媒体を循環させるようにしている。循環ポンプ51は、後述する湿度インジケーターHICからの信号に基づきインバーター制御される。 The precooling coil 21 and the reheating coil 41 form a closed circuit connected by a circulation pipe 50. A heat medium such as water or antifreeze is housed in the closed circuit of the circulation pipe 50, and the heat medium is circulated in the closed circuit by the circulation pump 51. The circulation pump 51 is inverter-controlled based on a signal from the humidity indicator HIC, which will be described later.

また、空調管理される室内60にはエアコン61を具え、室内60の温度を所定の温度に調整する。 Further, the room 60 controlled by air conditioning is provided with an air conditioner 61, and the temperature of the room 60 is adjusted to a predetermined temperature.

上記空調システム10において、予冷コイル21の上流側には外気温を測定する第1温度センサーT1、室内60には湿度センサーH、外気処理エアコン31の下流側に第2温度センサーT2を配置している。第1温度センサーT1の値は、循環ポンプ51の発停制御に用いられ、また、湿度センサーHの値に基づいて、湿度インジケーターHICは、循環ポンプ51の出力をインバーター制御するようにしている。第2温度センサーT2の値は、外気処理エアコン31の出力調整に用いられる。 In the air conditioning system 10, a first temperature sensor T1 for measuring the outside air temperature is arranged on the upstream side of the precooling coil 21, a humidity sensor H is arranged in the room 60, and a second temperature sensor T2 is arranged on the downstream side of the outside air processing air conditioner 31. There is. The value of the first temperature sensor T1 is used for starting / stopping control of the circulation pump 51, and the humidity indicator HIC controls the output of the circulation pump 51 by an inverter based on the value of the humidity sensor H. The value of the second temperature sensor T2 is used for adjusting the output of the outside air processing air conditioner 31.

然して、第1実施形態の空調システム10は、第1温度センサーT1により測定された温度が、所定の温度よりも高い状況において、循環ポンプ51と外気処理エアコン31を作動させつつ、外気をダクト11内に導入することで湿度調整された空気流を室内60に供給し、エアコン61の作動により室内60の温度を一定に保持する。なお、第1温度センサーT1の値が所定の温度よりも低い場合には、循環ポンプ51による再熱は行なうことができないから循環ポンプ51は停止させる。 However, in the air conditioning system 10 of the first embodiment, in a situation where the temperature measured by the first temperature sensor T1 is higher than a predetermined temperature, the circulation pump 51 and the outside air processing air conditioner 31 are operated while the outside air is ducted 11 By introducing it into the room, a humidity-controlled air flow is supplied to the room 60, and the temperature of the room 60 is kept constant by the operation of the air conditioner 61. If the value of the first temperature sensor T1 is lower than the predetermined temperature, the circulation pump 51 cannot be reheated, so the circulation pump 51 is stopped.

図2は空気線図であり、図2中の点A乃至点Dは、図1の空調システム10における点A乃至点Dの各位置における空気流の状態を示している。図1及び図2に示すように、外気(点A:絶対湿度H1、温度t1)は、まず、予冷コイル21を通過することにより予冷され、点Aよりも低い温度の空気流(点B)になる。このとき、外気から奪われた熱エネルギーが予冷コイル21から熱媒体の移動により、再熱コイル41に蓄積される。なお、図2では、点Bは相対湿度100%の飽和線上にあるが、予冷コイル21の冷却能力により、左右にずれても構わない。 FIG. 2 is a psychrometric chart, and points A to D in FIG. 2 indicate states of air flow at each position of points A to D in the air conditioning system 10 of FIG. As shown in FIGS. 1 and 2, the outside air (point A: absolute humidity H1, temperature t1) is first precooled by passing through the precooling coil 21, and the air flow (point B) having a temperature lower than that of point A. become. At this time, the heat energy taken from the outside air is accumulated in the reheating coil 41 by the movement of the heat medium from the precooling coil 21. Although the point B is on the saturation line of 100% relative humidity in FIG. 2, it may be shifted to the left or right depending on the cooling capacity of the precooling coil 21.

予冷コイル21を通過した空気流(点B:絶対湿度H1)は、外気処理エアコン31に入り、さらに冷却を受けて、相対湿度100%となる飽和線に沿って点B(温度t2、絶対湿度H1)から、目標となる室温に対する相対湿度に相当する絶対湿度H2、温度t3(点C)に調整される。これにより、外気処理エアコン31から放出される空気流は、絶対湿度がH2に調整された空気流となる。 The air flow (point B: absolute humidity H1) that has passed through the precooling coil 21 enters the outside air processing air conditioner 31, is further cooled, and points B (temperature t2, absolute humidity) along the saturation line where the relative humidity becomes 100%. From H1), the absolute humidity H2 and the temperature t3 (point C) corresponding to the relative humidity with respect to the target room temperature are adjusted. As a result, the air flow discharged from the outside air processing air conditioner 31 becomes an air flow whose absolute humidity is adjusted to H2.

続いて、外気処理エアコン31から放出された空気流は、再熱コイル41に送られて再加熱される。具体的には、予冷コイル21にて外気から奪った熱エネルギーにより再熱コイル41は空気流を昇温させて(点D:温度t4、絶対湿度H2)、室内60に送給する。 Subsequently, the air flow discharged from the outside air processing air conditioner 31 is sent to the reheating coil 41 to be reheated. Specifically, the reheating coil 41 raises the temperature of the air flow by the heat energy taken from the outside air by the precooling coil 21 (point D: temperature t4, absolute humidity H2) and supplies it to the room 60.

室内60では、所定の設定温度となるようにエアコン61を作動させることで、絶対湿度H2の空気流が温度調整されて、所望の設定温度、湿度に維持される。熱損失がない場合には、予冷の熱エネルギーと再熱の熱エネルギーは同じであり、予冷温度分(t1−t2)だけ再熱により温度上昇(t4−t3)する。 In the room 60, by operating the air conditioner 61 so as to have a predetermined set temperature, the air flow of the absolute humidity H2 is temperature-adjusted and maintained at a desired set temperature and humidity. When there is no heat loss, the heat energy of precooling and the heat energy of reheating are the same, and the temperature rises (t4-t3) by reheating by the precooling temperature (t1-t2).

上記構成の空調システム10において、循環ポンプ51は、図3に示すグラフのように室内60の湿度に基づいて、周波数調整しつつインバーター制御される。具体的には、室内60の湿度センサーHにより測定される湿度が上昇(ΔSP2)すると、湿度インジケーターHICは、循環ポンプ51の動作周波数を上げて、循環ポンプ51の出力を増大させる。これにより、予冷コイル21において空気流から奪われる熱エネルギーが大きくなり、また、再熱コイル41により空気流に返還される熱エネルギーも大きくなり、室内60に供給される空気流の温度が上昇し、室内60の温度も上昇する。これにより、室内60の相対湿度は低下するが、エアコン61は室内60の温度を一定に調整するよう作動するから、最終的には、室内60の温度、湿度は一定に保たれる。 In the air conditioning system 10 having the above configuration, the circulation pump 51 is inverter-controlled while adjusting the frequency based on the humidity of the room 60 as shown in the graph shown in FIG. Specifically, when the humidity measured by the humidity sensor H in the room 60 rises (ΔSP2), the humidity indicator HIC raises the operating frequency of the circulation pump 51 to increase the output of the circulation pump 51. As a result, the heat energy taken from the air flow in the precooling coil 21 increases, and the heat energy returned to the air flow by the reheating coil 41 also increases, so that the temperature of the air flow supplied to the room 60 rises. , The temperature of the room 60 also rises. As a result, the relative humidity of the room 60 decreases, but the air conditioner 61 operates to adjust the temperature of the room 60 to be constant, so that the temperature and humidity of the room 60 are finally kept constant.

なお、湿度インジケーターHICは、動作最低周波数をたとえば15ヘルツとし、湿度上昇(ΔSP2)が小さいときには、循環ポンプ51を停止させることでエネルギー消費の低減を図ることができる。 The humidity indicator HIC has a minimum operating frequency of, for example, 15 hertz, and when the humidity rise (ΔSP2) is small, the circulation pump 51 can be stopped to reduce energy consumption.

本実施形態によれば、循環ポンプ51をインバーター制御することにより、予冷コイル21と再熱コイル41における熱エネルギーの移動を制御し、再熱量を調整できるから、エネルギー効率を可及的に高めることができる。 According to the present embodiment, by controlling the circulation pump 51 with an inverter, the transfer of heat energy in the precooling coil 21 and the reheating coil 41 can be controlled and the amount of reheat can be adjusted, so that the energy efficiency can be improved as much as possible. Can be done.

<第2実施形態>
第2実施形態では、図4に示すように、予冷コイル21と再熱コイル41を第1実施形態と同様にインバーター制御の循環ポンプ51で接続すると共に、予冷コイル21と再熱コイル41は、循環ポンプ51と並列にボイラーやヒートポンプチラーの如き温熱源56を別熱源として接続している。温熱源56と予冷コイル21の間、温熱源56と再熱コイル41の間にはそれぞれバルブ57,58を配置し、温熱源56からの熱媒体の流通を許可又は阻止できるようにしている。また、循環パイプ50には、二方弁53を配置し、流通する熱媒体の量を調整可能としている。冷却熱交換器30は、水道などの冷熱源33を採用することができ、冷熱源33と冷却コイル32を接続するパイプ35には流量調節のためのバルブ34が設けられている。空調の制御対象となる室内60は、図1と同様であるため図示等を省略する。また、第1実施形態と同じ符号は同じ又は同等の部材を意味し、適宜説明を省略する。
<Second Embodiment>
In the second embodiment, as shown in FIG. 4, the precooling coil 21 and the reheating coil 41 are connected by an inverter-controlled circulation pump 51 as in the first embodiment, and the precooling coil 21 and the reheating coil 41 are connected. A heat source 56 such as a boiler or a heat pump chiller is connected in parallel with the circulation pump 51 as a separate heat source. Valves 57 and 58 are arranged between the heat source 56 and the precooling coil 21 and between the heat source 56 and the reheat coil 41, respectively, so that the flow of the heat medium from the heat source 56 can be permitted or blocked. Further, a two-way valve 53 is arranged in the circulation pipe 50 so that the amount of heat medium to be distributed can be adjusted. The cooling heat exchanger 30 can employ a cold heat source 33 such as water supply, and a valve 34 for adjusting the flow rate is provided in the pipe 35 connecting the cold heat source 33 and the cooling coil 32. Since the room 60 to be controlled by air conditioning is the same as in FIG. 1, illustrations and the like are omitted. Further, the same reference numerals as those of the first embodiment mean the same or equivalent members, and the description thereof will be omitted as appropriate.

第2実施形態の空調システム10は、図4に示すように、外気温度を測定する第1温度センサーT1、再熱コイル41の下流側に露点温度を測定する露点温度センサーDP1と第3温度センサーT3を具える。そして、温度インジケーターTIC1は、第1温度センサーT1の温度を参照してリレーRを介して循環ポンプ51の発停制御と、バルブ57,58の開閉、温熱源56の発停を制御し、また、二方弁53を制御するための信号を温度インジケーターTIC3に送信する。温度インジケーターTIC3は、第3温度センサーT3の温度を参照し、循環ポンプ51による制御の場合、循環ポンプ51をインバーター制御し、温熱源56と二方弁53による制御の場合には、後述するとおり、その弁開度の調整を行なう。また、露点温度センサーDP1は、露点温度インジケーターDICに接続され、露点温度インジケーターDICは、測定された露点温度に基づいて、バルブ57,58の開度を調整する。 As shown in FIG. 4, the air conditioning system 10 of the second embodiment has a first temperature sensor T1 for measuring the outside air temperature, a dew point temperature sensor DP1 for measuring the dew point temperature on the downstream side of the reheating coil 41, and a third temperature sensor. Equipped with T3. Then, the temperature indicator TIC1 controls the start / stop of the circulation pump 51, the opening / closing of the valves 57 and 58, and the start / stop of the heat source 56 via the relay R with reference to the temperature of the first temperature sensor T1. , A signal for controlling the two-way valve 53 is transmitted to the temperature indicator TIC3. The temperature indicator TIC3 refers to the temperature of the third temperature sensor T3, and in the case of control by the circulation pump 51, the circulation pump 51 is controlled by the inverter, and in the case of control by the heat source 56 and the two-way valve 53, as described later. , Adjust the valve opening. Further, the dew point temperature sensor DP1 is connected to the dew point temperature indicator DIC, and the dew point temperature indicator DIC adjusts the opening degrees of the valves 57 and 58 based on the measured dew point temperature.

然して、外気温T1が設定温度SP1(SP1は、循環ポンプ51の容量に応じてT2よりもx℃高く設定することができる)よりも高い場合には、二方弁53を全開にする。また、バルブ57,58を閉じて温熱源56が作用しない状況下で、循環ポンプ51と冷熱源33を動作させる。これにより、第1実施形態と同様に、予冷コイル21にて空気が予冷或いは昇温され、下流側の冷却コイル32は冷熱源33により冷却されて空気流の絶対湿度が調整される。なお、冷熱源33のバルブ34は、図5に示すように、露点温度が高くなるにつれて開度が大きくなるように調整することで、絶対湿度調整を行なうことができる。 However, when the outside air temperature T1 is higher than the set temperature SP1 (SP1 can be set x ° C. higher than T2 depending on the capacity of the circulation pump 51), the two-way valve 53 is fully opened. Further, the circulation pump 51 and the cold heat source 33 are operated under the condition that the valves 57 and 58 are closed and the heat source 56 does not act. As a result, as in the first embodiment, the air is precooled or heated by the precooling coil 21, and the cooling coil 32 on the downstream side is cooled by the cooling heat source 33 to adjust the absolute humidity of the air flow. As shown in FIG. 5, the valve 34 of the cold heat source 33 can be adjusted in absolute humidity by adjusting the opening degree to increase as the dew point temperature increases.

本実施形態においても、再熱コイル41により室内60に供給される空気の温度T3が目標温度であるSP3となるように循環ポンプ51をインバーター制御する。インバーター制御は、図6に示すように、温度T3が目標温度SP3に近づくと、最低周波数Nヘルツで循環ポンプ51を作動させ、さらに温度T3がたとえばS℃超えると停止させる動作を繰り返すよう制御すればよい。このように、循環ポンプ51をインバーター制御することにより、予冷コイル21と再熱コイル41における熱エネルギーの移動を制御し、再熱量を調整できるから、エネルギー効率を可及的に高めることができる。 Also in this embodiment, the circulation pump 51 is inverter-controlled so that the temperature T3 of the air supplied to the room 60 by the reheating coil 41 becomes the target temperature SP3. As shown in FIG. 6, the inverter control is controlled so as to repeat the operation of operating the circulation pump 51 at the lowest frequency N hertz when the temperature T3 approaches the target temperature SP3 and further stopping the circulation pump 51 when the temperature T3 exceeds, for example, S ° C. Just do it. By controlling the circulation pump 51 with an inverter in this way, the movement of heat energy in the precooling coil 21 and the reheating coil 41 can be controlled and the amount of reheating can be adjusted, so that the energy efficiency can be improved as much as possible.

夏季以外のように、外気温T1が設定温度SP1(温度T2+x℃)よりも低い場合には、循環ポンプ51による再熱は行なうことができないから、循環ポンプ51を停止させ、温熱源56に切り替える。なお、外気温T1は温度T2よりも高ければ、熱交換は可能ではあるが、循環ポンプ51によるエネルギー消費を勘案し、外気温T1が温度T2よりもx℃以上高くなければ循環ポンプ51を停止させている。 When the outside air temperature T1 is lower than the set temperature SP1 (temperature T2 + x ° C.) as in the summer, the circulation pump 51 cannot be reheated, so the circulation pump 51 is stopped and switched to the heat source 56. .. If the outside air temperature T1 is higher than the temperature T2, heat exchange is possible, but in consideration of the energy consumption by the circulation pump 51, if the outside air temperature T1 is not higher than the temperature T2 by x ° C. or more, the circulation pump 51 is stopped. I'm letting you.

バルブ557,58を開いて温熱源56を作動させることで、再熱コイル41は強制的に昇温される。再熱量のコントロールは、図7に示すように、第3温度センサーT3の値を参照し、温度が上昇するにつれて二方弁53の弁開度が小さくなるように制御し、第3温度センサーT3の温度が一定になるように制御すればよい。これにより、夏季だけでなく、すべての季節に再熱コイル41による熱交換を行なうことができ、エネルギー効率を高めた空調システム10による湿度調整が可能になる。 By opening the valves 557 and 58 to operate the heat source 56, the temperature of the reheating coil 41 is forcibly raised. As shown in FIG. 7, the reheat amount is controlled by referring to the value of the third temperature sensor T3 and controlling so that the valve opening degree of the two-way valve 53 decreases as the temperature rises, and the third temperature sensor T3 The temperature may be controlled to be constant. As a result, heat exchange can be performed by the reheating coil 41 not only in summer but also in all seasons, and humidity can be adjusted by the air conditioning system 10 with improved energy efficiency.

上記実施例の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮する様に解すべきではない。又、本発明の各部構成は上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能であることは勿論である。 The description of the above examples is for explaining the present invention, and should not be understood so as to limit or reduce the scope of the invention described in the claims. Further, the configuration of each part of the present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made within the technical scope described in the claims.

10 空調システム
20 予冷熱交換器
21 予冷コイル
30 冷却熱交換器
31 外気処理エアコン
40 再熱熱交換器
41 再熱コイル
51 循環ポンプ
10 Air conditioning system 20 Precooling heat exchanger 21 Precooling coil 30 Cooling heat exchanger 31 Outside air processing air conditioner 40 Reheat heat exchanger 41 Reheating coil 51 Circulation pump

Claims (5)

外気を取り入れて室内に供給するダクトと、
前記ダクトの上流側に配置される予冷熱交換器と、
前記予冷熱交換器の下流側に配置され、所定の絶対湿度まで空気流を冷却する冷却熱交換器と、
前記冷却熱交換器の下流側に配置される再熱熱交換器と、
を具え、
前記予冷熱交換器と前記再熱熱交換器を、熱媒体を循環ポンプにより循環させる循環パイプにより接続してなる、
空調システムであって、
前記循環ポンプはインバーター制御される、
ことを特徴とする空調システム。
A duct that takes in outside air and supplies it indoors,
A precooling heat exchanger arranged on the upstream side of the duct,
A cooling heat exchanger located downstream of the precooling heat exchanger and cooling the air flow to a predetermined absolute humidity,
A reheat heat exchanger arranged on the downstream side of the cooling heat exchanger,
With
The precooling heat exchanger and the reheating heat exchanger are connected by a circulation pipe that circulates a heat medium by a circulation pump.
It ’s an air conditioning system,
The circulation pump is inverter controlled.
An air conditioning system that features that.
前記再熱熱交換器の下流側に第3温度センサーを具え、
前記循環ポンプは、前記第3温度センサーの温度検出値に基づいてインバーター制御される、
請求項1に記載の空調システム。
A third temperature sensor is provided on the downstream side of the reheat heat exchanger.
The circulation pump is inverter-controlled based on the temperature detection value of the third temperature sensor.
The air conditioning system according to claim 1.
前記室内には、湿度センサーを具え、
前記循環ポンプは、前記湿度センサーの湿度検出値に基づいてインバーター制御される、
請求項1又は請求項2に記載の空調システム。
A humidity sensor is installed in the room.
The circulation pump is inverter-controlled based on the humidity detection value of the humidity sensor.
The air conditioning system according to claim 1 or 2.
前記予冷熱交換器と前記再熱熱交換器は、前記循環ポンプと並列に配備された温熱源に切り替えて接続可能である、
請求項1乃至請求項3の何れかに記載の空調システム。
The precooling heat exchanger and the reheating heat exchanger can be switched and connected to a heat source arranged in parallel with the circulation pump.
The air conditioning system according to any one of claims 1 to 3.
前記予冷熱交換器の上流側に外気温を測定する第1温度センサーを具え、
前記第1温度センサーの温度検出値に基づいて、前記循環ポンプ又は前記温熱源は、前記予冷熱交換器と前記再熱熱交換器に切り替えて接続する、
請求項4に記載の空調システム。
A first temperature sensor for measuring the outside air temperature is provided on the upstream side of the precooling heat exchanger.
Based on the temperature detection value of the first temperature sensor, the circulation pump or the heat source is switched and connected to the precooling heat exchanger and the reheating heat exchanger.
The air conditioning system according to claim 4.
JP2019037142A 2019-03-01 2019-03-01 air conditioning system Active JP7205889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019037142A JP7205889B2 (en) 2019-03-01 2019-03-01 air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019037142A JP7205889B2 (en) 2019-03-01 2019-03-01 air conditioning system

Publications (2)

Publication Number Publication Date
JP2020139711A true JP2020139711A (en) 2020-09-03
JP7205889B2 JP7205889B2 (en) 2023-01-17

Family

ID=72280179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019037142A Active JP7205889B2 (en) 2019-03-01 2019-03-01 air conditioning system

Country Status (1)

Country Link
JP (1) JP7205889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100027206A1 (en) * 2021-10-22 2023-04-22 Mitsubishi Electric Hydronics & It Cooling Systems S P A METHOD OF CONTROL OF THE TEMPERATURE AND HUMIDITY OF A FLOW OF CONDITIONED AND DEHUMIDIFIED AIR IN AN AIR CONDITIONING SYSTEM AND AIR CONDITIONING SYSTEM USING THE METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233968A (en) * 1994-02-22 1995-09-05 Sony Corp Air conditioner system
JPH10227483A (en) * 1997-02-17 1998-08-25 Kubota Kucho Kk Air conditioner
JP2010203731A (en) * 2009-03-05 2010-09-16 Toyota Motor Corp Method and system of controlling air-conditioning of paint booth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233968A (en) * 1994-02-22 1995-09-05 Sony Corp Air conditioner system
JPH10227483A (en) * 1997-02-17 1998-08-25 Kubota Kucho Kk Air conditioner
JP2010203731A (en) * 2009-03-05 2010-09-16 Toyota Motor Corp Method and system of controlling air-conditioning of paint booth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100027206A1 (en) * 2021-10-22 2023-04-22 Mitsubishi Electric Hydronics & It Cooling Systems S P A METHOD OF CONTROL OF THE TEMPERATURE AND HUMIDITY OF A FLOW OF CONDITIONED AND DEHUMIDIFIED AIR IN AN AIR CONDITIONING SYSTEM AND AIR CONDITIONING SYSTEM USING THE METHOD

Also Published As

Publication number Publication date
JP7205889B2 (en) 2023-01-17

Similar Documents

Publication Publication Date Title
JP4555097B2 (en) Clean room air conditioner
US6976524B2 (en) Apparatus for maximum work
JP3545315B2 (en) Air conditioner and humidity control method
US11320161B2 (en) Air conditioning with recovery wheel, dehumidification wheel, and cooling coil
KR101628152B1 (en) Dedicated Outdoor Air Handling Unit(DOAHU) with dehumidifier Heat Pipes for energy conservation and air conditioning system compound DOAHU and chilled beam units
JP2008070097A (en) Dehumidifying air conditioner
JP6514939B2 (en) air conditioner
JP2017150778A (en) Dehumidifying/reheating air-conditioning system utilizing ground thermal energy
JP4409973B2 (en) Air conditioner
JP7205889B2 (en) air conditioning system
CN111023414B (en) Air conditioning system and dehumidification control method
JP2021014947A (en) Air conditioner and air conditioning system
US20200011549A1 (en) Energy recovery ventilator with self-contained dehumidification system
JP7058250B2 (en) Air conditioner with dehumidifying function and its control method
KR102257544B1 (en) Energy enhanced air-conditioning system and control method thereof
JP2018040514A (en) Air conditioning system
JPH03164647A (en) Air conditioner
JP2651717B2 (en) Air cooling system
KR102111585B1 (en) Oac system using waste heat from cooling water
JP7360346B2 (en) air conditioning system
CN214701042U (en) Novel new fan structure
WO2023148854A1 (en) Heat-exchange-type ventilation device
JP6708708B2 (en) Constant humidity air conditioning system
CN115218310B (en) Temperature-humidity-division control multi-station air conditioning system based on single-machine double-evaporation heat pump unit
US20220228763A1 (en) Air conditioning with recovery wheel, dehumidification wheel, cooling coil, and secondary direct-expansion circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221222

R150 Certificate of patent or registration of utility model

Ref document number: 7205889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150