JPS6050213A - Burner air controller for diesel exhaust emission control device - Google Patents

Burner air controller for diesel exhaust emission control device

Info

Publication number
JPS6050213A
JPS6050213A JP58158243A JP15824383A JPS6050213A JP S6050213 A JPS6050213 A JP S6050213A JP 58158243 A JP58158243 A JP 58158243A JP 15824383 A JP15824383 A JP 15824383A JP S6050213 A JPS6050213 A JP S6050213A
Authority
JP
Japan
Prior art keywords
pressure
air
valve
control valve
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58158243A
Other languages
Japanese (ja)
Other versions
JPH0550570B2 (en
Inventor
Satoshi Kume
粂 智
Michiyasu Yoshida
吉田 道保
Yoshihiro Konno
紺野 義博
Takeo Kume
久米 建夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP58158243A priority Critical patent/JPS6050213A/en
Publication of JPS6050213A publication Critical patent/JPS6050213A/en
Publication of JPH0550570B2 publication Critical patent/JPH0550570B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/227Control of additional air supply only, e.g. using by-passes or variable air pump drives using pneumatically operated valves, e.g. membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To make a rate of weight flow of secondary air so as to keep it constant in an accurate manner, by installing an escape valve and a flow control valve being controlled according to downstream pressure of the flow control valve and atmospheric pressure, in an air flow passage ranging from an air pump to a regenerating burner. CONSTITUTION:An air flow passage 12 makes the air discharged out of an air pump 1 flow in a regenerating burner 4 of a Diesel particulate filter 5. An escape valve 23 makes a part of inflow air into a flow control valve 24 discharged into the atmosphere so as to cause pressure inside the air flow passage at the inflow side of the flow control valve 24 to become constant in terms of gauge pressure. As for the flow control valve 24, since pressure at the downstream side is led into a diaphragm chamber 34 via a pipe 35 and atmospheric pressure is also led into a diaphragm chamber 36, it increases or decreases its opening area according to variation in the downstream pressure, while compensation in time of variation in the atmospheric pressure takes place.

Description

【発明の詳細な説明】 この発明は、ディーゼル排出ガス中に含まれるパティキ
ュレートをフィルタにより捕集するタイプの浄化装置に
おいて、捕集されたパティキュレートをバーナにより再
燃焼させてフィルタの再生を図る際のバーナエア制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a purification device of a type in which particulates contained in diesel exhaust gas are collected by a filter, and the filter is regenerated by re-burning the collected particulates by a burner. The present invention relates to a burner air control device.

ディーゼルエンジンから排出されるパティキュレートは
、公害防市のために通常はセラミック製のディーゼルパ
ティキュレートフィルタてより排気中より取り除かれ、
所定時にフィルタ自体の再生を兼ねて再燃焼され、無公
害物質として排出される。このパティキュレートの再燃
焼には、適度の燃焼温度および適度の酸素量すなわち所
定の空気過剰率を保つエアが必要であり、加熱温度が低
いとパティキュレートは除去されず、逆に過度に加熱す
るとフィルタ自体が溶損を生じると℃・う不都合がある
Particulates emitted from diesel engines are usually removed from the exhaust by a ceramic diesel particulate filter for pollution prevention purposes.
At a predetermined time, the filter is re-burned and discharged as a non-polluting substance. This re-burning of particulates requires air that maintains an appropriate combustion temperature and appropriate amount of oxygen, i.e., a predetermined excess air ratio.If the heating temperature is low, the particulates will not be removed, and if heated too much, on the other hand, If the filter itself is damaged by melting, there will be problems with temperature and corrosion.

ところで、フィルタの加熱源としてバーナが使用される
ことが多く、その中で高圧少流骨の1次エアにより燃料
を霧化し、低圧大流量の2次エアてよりパティキュレー
トの燃焼を行なう霧吹式バーナが最も改良された技術で
ある。このバーナに供給される1次エアはほぼ燃料流量
と比例し、この燃料流惜を一定とするため、通常は一部
エア骨は一定に保たれる。これに対し、2次エアは低圧
だが大流量を必要とされると共に、パティキーレートの
燃焼に必要となる所定′@量流敏値だけのエアが供給さ
れるように制御する必要がある。、二の2次エアは、通
常、容積型エアポンプを用いて供給するが、このエアポ
ンプは向伝教のみを一定にすれば体積流計が一定となる
が、大気圧、犬9温度の変化に応じて重量流量の変化を
受け易い。このため、容積型エアポンプの利、唾である
大吐出脣の確保という廓を利用する一方、重4.−j#
量の変化を修正する必要がある。たとえばλ・1図に示
すように、大気圧は高度の上昇と共に低下し、これに応
じてエアポンプの前後の差圧、即ち大気圧と空気流路内
圧との差圧△Pも同様に変化する。なおりは排気路(f
ill圧J11を示す。剖・2図は容積型エアポンプの
体積流量/吐出圧特性の一例であり、aJ:出@1の流
肝をしぼることにより吐出圧が増加することが分かる。
Incidentally, a burner is often used as a heating source for filters, and in this burner, fuel is atomized using high-pressure, low-flow primary air, and particulates are combusted using low-pressure, high-flow secondary air. Burners are the most improved technology. The primary air supplied to the burner is approximately proportional to the fuel flow rate, and in order to keep the fuel flow constant, a portion of the air flow is normally kept constant. On the other hand, secondary air is required to have a low pressure but a large flow rate, and must be controlled so that only a predetermined amount of air necessary for combustion of the particulate rate is supplied. , 2. Secondary air is normally supplied using a positive displacement air pump, but with this air pump, if only the flow rate is kept constant, the volumetric flowmeter will be constant, but the volume flow meter will be constant depending on changes in atmospheric pressure and temperature. It is susceptible to changes in weight flow rate. For this reason, while taking advantage of the advantage of a positive displacement air pump, which is the ability to secure a large discharge area, the 4. −j#
Changes in volume need to be corrected. For example, as shown in Figure λ・1, the atmospheric pressure decreases as altitude increases, and the differential pressure before and after the air pump, that is, the differential pressure △P between the atmospheric pressure and the air flow path internal pressure, changes accordingly. . The problem is the exhaust path (f
The ill pressure J11 is shown. Fig. 2 shows an example of the volumetric flow rate/discharge pressure characteristics of a positive displacement air pump, and it can be seen that the discharge pressure increases by squeezing the flow rate of aJ: output @1.

更に、剖・3図には容積型エアポンプが実線で示した低
1112にある場合と破線で示した高地にある場合との
重量流、t/吐出圧特性の一例を示しており同一重量流
量を得る場合、高地では吐出圧を下げる即ち低地よりエ
ア供給路のしぼりを拡げて吐出圧を下げる必要があるこ
とが示されている。同じく米4図に示すように、吐出圧
は一定でもポンプ自体のばらつきや犬気濡度等の変化に
より重量流量が変動することが示されている。
Furthermore, Fig. 3 shows an example of the weight flow and t/discharge pressure characteristics when the positive displacement air pump is at a low altitude, indicated by the solid line, and at a high altitude, indicated by the broken line. It has been shown that in order to achieve this, it is necessary to lower the discharge pressure at high altitudes, that is, to lower the discharge pressure by widening the restriction of the air supply path than at low altitudes. Similarly, as shown in Figure 4, even if the discharge pressure is constant, the weight flow rate fluctuates due to variations in the pump itself and changes in the wetness of the air.

次に、このような容積型エアポンプを2次エアポンプと
しで用いた従来のバーナエア制御装置の一例を矛5図を
参照して説明する。ディーゼルエンジン1はターボチャ
ージャ2を備え、その排気路3の下流illにバーナ4
とフィルタ5とを備え、その下流側の図示しないマフラ
を介し排気を放出する。排気路3の途中には、始端部に
切換弁6をを備えたバイパス7が接続され、その終端部
はフィルタ5の下流側に接続されている。バーナ4はイ
グニションコイル8を用いた発火装置を有し、1次エア
ポンプ9かものエアで燃料ポンプ10かもの燃料を霧化
させ、2次エアポンプ11からのエアで高温ガスの空気
過剰率を所定値に保つよう構成され、j閂剰酸素でパテ
ィキーレートを燃焼させる。
Next, an example of a conventional burner air control device using such a positive displacement air pump as a secondary air pump will be described with reference to FIG. The diesel engine 1 is equipped with a turbocharger 2, and a burner 4 is installed downstream of the exhaust path 3.
and a filter 5, and exhaust gas is discharged through a muffler (not shown) on the downstream side thereof. A bypass 7 having a switching valve 6 at its starting end is connected in the middle of the exhaust path 3, and its terminal end is connected to the downstream side of the filter 5. The burner 4 has an ignition device using an ignition coil 8, and uses air from a primary air pump 9 to atomize fuel from a fuel pump 10, and uses air from a secondary air pump 11 to set a predetermined excess air ratio of high-temperature gas. It is configured to maintain a constant value and burns the particulate with excess oxygen.

2次エアの供給路12は流量制御弁13により流路面積
を増減、され、この弁を開閉作動させる真空室は真空ポ
ンプ14と真空調整弁15およびソレノイド弁16 を
介し速結される。なお、符号19は燃料調整弁、符号2
oは圧力調整弁、符号21.22はエアクリーナをそれ
ぞれ示している。
The flow area of the secondary air supply path 12 is increased or decreased by a flow rate control valve 13, and a vacuum chamber for opening and closing this valve is quickly connected to a vacuum pump 14 via a vacuum adjustment valve 15 and a solenoid valve 16. In addition, code 19 is a fuel adjustment valve, code 2
o represents a pressure regulating valve, and numerals 21 and 22 represent an air cleaner, respectively.

このようなエンジン1のフィルタ5がパティキュレート
を過度に付着した場合、コントローラ17は、たとえば
フィルタ5上流側排気路圧が設定値を上回ったことを検
出することにより、再燃焼を開始させる。この場合、高
地で大気圧が低いと大気圧センサ18の入力信号により
、コントローラ17はソレノイド弁16に出力し、2次
エアの流路面積を基準値より一定叶増大させるよう制御
する。これにより空気密度の低下による重量流−楢の低
下を体積流量増により防ぐことができる。しかし、単に
大気圧変化を一定負圧を受けるダイアフラム式の流量制
御弁]3で制御するこの方式では、2次エアポンプ11
自体のばらつきも加わり2次エアの流5− ![度が悪いという欠点がある。また、フィルタ5を再
生している間は、エンジン1からの排出ガスがバーナ4
における燃焼条件に悪影響を力えないように、切換弁6
を作動させて排出ガスをバイパス7に通すようにしてい
るが、エンジンの高負荷運転時には排出ガス圧力が高ま
って、これがフィルタ5およびバーナ4に背圧として作
用するので、これにより2次エアの流量が変化してしま
う。
When the filter 5 of the engine 1 has excessive particulate matter attached to it, the controller 17 starts re-combustion, for example, by detecting that the exhaust passage pressure on the upstream side of the filter 5 has exceeded a set value. In this case, if the atmospheric pressure is low at a high altitude, the controller 17 outputs an output to the solenoid valve 16 based on an input signal from the atmospheric pressure sensor 18, and controls the flow area of the secondary air to be increased by a certain amount from the reference value. As a result, a decrease in weight flow rate due to a decrease in air density can be prevented by increasing the volumetric flow rate. However, in this method, where changes in atmospheric pressure are simply controlled by a diaphragm-type flow control valve that receives constant negative pressure, the secondary air pump 11
In addition to the variations in the secondary air flow 5-! [It has the disadvantage of being poor quality. Also, while the filter 5 is being regenerated, the exhaust gas from the engine 1 is flowing into the burner 4.
In order not to adversely affect the combustion conditions in the
is activated to pass the exhaust gas through the bypass 7. However, when the engine is operated under high load, the exhaust gas pressure increases and this acts as back pressure on the filter 5 and burner 4, which reduces the amount of secondary air. The flow rate will change.

勿論、このバイパス7に別のマフラを取り付けて系を独
立させれば、このようなことはないが、マフラが余計に
必要になる。
Of course, if another muffler is attached to the bypass 7 to make the system independent, this problem will not occur, but an additional muffler will be required.

この発明の目的は、したがってディーゼルパティキュレ
ートフィルタを備えたディーゼル排出ガス浄化装置にお
いて、フィルタ再生用バーナに供給される2次エアの重
量流量を精度良く一定に保つことのできる改良されたバ
ーナエア制御装置を提供することにある。
Therefore, an object of the present invention is to provide an improved burner air control device that can accurately maintain a constant weight flow rate of secondary air supplied to a filter regeneration burner in a diesel exhaust gas purification device equipped with a diesel particulate filter. Our goal is to provide the following.

この発明によるバーナエア制御装置は、容積型エアポン
プから吐出された空気をディーゼルパティキュレートフ
ィルタの再生用バーナに導く空気 6 − 流路に逃がし弁および流量制御弁を備えており、エアポ
ンプにばらつきがあってもバーナエア型理。
The burner air control device according to the present invention is equipped with a relief valve and a flow rate control valve in the air flow path for guiding the air discharged from the positive displacement air pump to the regeneration burner of the diesel particulate filter. Also burner air mold technology.

流量が一定にtrるように逃がし弁により流■・制御弁
の上流圧をゲージ圧一定に制御するとともに、流量制御
弁の下流圧に応じて流量制御弁の弁開口面積を増減、す
なわち下流圧が大気圧よりも上昇したときには弁開口面
積を増加させて大口のエアを供給して重量流計か一定に
なるように1Iill征1オる。
The relief valve controls the upstream pressure of the flow control valve to a constant gauge pressure so that the flow rate remains constant, and the opening area of the flow control valve is increased or decreased according to the downstream pressure of the flow control valve, that is, the downstream pressure When the pressure rises above atmospheric pressure, the valve opening area is increased and a large amount of air is supplied to keep the weight flow meter constant.

この発明においては、流量制御弁の上流圧をゲージ圧一
定VC保つので、エアポンプの流計のばらつきを吸収で
きるとともに、流it jai制御弁の下流圧に応じて
流量制御弁のリフト量を制御するので、バーナの背圧に
よる流量変動を補正することができる。この発明におい
ては、大気圧が変動した場合の重量流量補正ができない
が、背圧と大気圧とはある程度の相関関係があるので、
背圧による補正を大気圧による補正に取って代えること
ができる。というよりむしろ、この発明はバーナ背圧が
大幅に変動するシステムへの適用に最適である。
In this invention, since the upstream pressure of the flow control valve is maintained at a constant gauge pressure VC, variations in the flow meter of the air pump can be absorbed, and the lift amount of the flow control valve is controlled according to the downstream pressure of the flow control valve. Therefore, flow rate fluctuations due to burner back pressure can be corrected. In this invention, it is not possible to correct the weight flow rate when atmospheric pressure fluctuates, but since there is a certain correlation between back pressure and atmospheric pressure,
Correction by back pressure can be replaced by correction by atmospheric pressure. Rather, the invention is well suited for application in systems where burner backpressure varies widely.

以下、この発明の一実施例を牙6図を参照して説明する
。バーナ燃焼システムの基本構成は、矛5図に示す従来
例と同様であるが、バーナ4へ2次エアを供給するため
の制御系が従来と異なっている。エアクリーナ22から
2次エアポンプ11を経てバーナ4に至る空気流路12
には、上流側からl1liWに逃がし弁23および流量
制御弁24が設けられている。逃がし弁23のダイヤフ
ラム25によって仕切られた下の部屋26は、導管27
のような」二流圧取込手段によって逃がし弁23上流側
の空気流路12に接続され、」−の部屋28は大気に開
放されている。上の部屋28には、ダイヤフラム25に
接続された弁体29を常時弁開口30を閉じる向きに押
圧するための圧縮コイルスプリング31が設けられてい
る。スプリング31の強さは、一定のゲージ圧例えば4
0 mmHgの吐出圧が帷持されるような強さに定めら
れており、空気流路12内の空気の一部は、逃がし路3
2を通じて大気て放出される。一方、との逃がし弁23
の下流側の流量制御弁24は、そのダイヤフラム33に
よって仕切られた上の部屋34が、導管35のような下
流圧取込手段によりその下流側の空気流路12に通じて
おり、下の部屋36は大気に通じている。上の部屋34
には、ダイヤフラム33に接続された弁体37 を常時
弁開口38を開く向きに押圧するための圧縮コイルスプ
リング39が設けられている。
Hereinafter, one embodiment of the present invention will be described with reference to Fig. 6. The basic configuration of the burner combustion system is the same as the conventional example shown in FIG. 5, but the control system for supplying secondary air to the burner 4 is different from the conventional example. Air flow path 12 from air cleaner 22 to burner 4 via secondary air pump 11
A relief valve 23 and a flow control valve 24 are provided from the upstream side to l1liW. The lower chamber 26 separated by the diaphragm 25 of the relief valve 23 is connected to the conduit 27
The relief valve 23 is connected to the air passage 12 upstream of the relief valve 23 by a two-stream pressure intake means such as ``,'' and the chamber 28 is open to the atmosphere. A compression coil spring 31 is provided in the upper chamber 28 for constantly pressing the valve body 29 connected to the diaphragm 25 in a direction to close the valve opening 30. The strength of the spring 31 is set to a certain gauge pressure, for example 4
The pressure is determined to be such that a discharge pressure of 0 mmHg is maintained, and a part of the air in the air flow path 12 flows through the relief path 3.
It is released into the atmosphere through 2. On the other hand, the relief valve 23 with
The downstream flow rate control valve 24 has an upper chamber 34 partitioned by a diaphragm 33 that communicates with the downstream air passage 12 through a downstream pressure intake means such as a conduit 35, and a lower chamber 34 that is separated by a diaphragm 33. 36 leads to the atmosphere. Upper room 34
A compression coil spring 39 is provided for constantly pressing the valve body 37 connected to the diaphragm 33 in a direction to open the valve opening 38.

次にこのエア制御装置の作動について説、明する。Next, the operation of this air control device will be explained.

逃がし弁23の下の部屋26VCは、この逃がし弁23
の上流圧が加えられ、上の部屋28は大気に開放されて
いるので、逃がし弁23の上流圧が設定されたゲージ圧
よりも高くなると上流圧室26がダイヤフラム25を押
し上げるので、弁体29が」二昇して上流側の空気の一
部が大気に放出され、上流圧が低下する。逆に上流圧が
設定ゲージ圧よりも低くなると大気圧*28がダイヤフ
ラム25を押し下げるので、弁体29が下降して空気の
放出を抑制し、上流圧が上昇する。このようにして流量
制御弁24の上流圧がゲージ圧一定に保た′れる。この
ように上流圧がゲージ圧一定に保たれると、エアポンプ
11の性能にばらつきがあってもこれを吸収し、バーナ
4に供給する2次エアの重量流量制御を一定に保つこと
ができる。一方、流量側(御弁24の下流圧が大気 9
− 圧よりも高くなると、上の部屋34がダイヤフラム33
 を押し下げて弁体37が弁開口38を開くので、2次
エアの重量流量が増加する。前記したように、マフラが
一つの場合、バーナ運転中にエンジンが高負荷になると
、バイパス7を通る排出ガスが背圧となって流量制御弁
24の下流圧を押し上げるので、このような事態が往々
にして生じる。
The chamber 26VC below the relief valve 23 is connected to the relief valve 23.
Since the upper chamber 28 is open to the atmosphere, when the upstream pressure of the relief valve 23 becomes higher than the set gauge pressure, the upstream pressure chamber 26 pushes up the diaphragm 25, so that the valve body 29 rises, part of the air on the upstream side is released into the atmosphere, and the upstream pressure decreases. Conversely, when the upstream pressure becomes lower than the set gauge pressure, the atmospheric pressure *28 pushes down the diaphragm 25, so the valve body 29 descends to suppress the release of air, and the upstream pressure increases. In this way, the upstream pressure of the flow control valve 24 is kept constant at the gauge pressure. When the upstream pressure is kept constant at the gauge pressure in this way, even if there is variation in the performance of the air pump 11, it is possible to absorb this and keep the weight flow rate control of the secondary air supplied to the burner 4 constant. On the other hand, the flow rate side (the downstream pressure of the control valve 24 is atmospheric)
- When the pressure is higher than the upper chamber 34, the diaphragm 33
Since the valve body 37 opens the valve opening 38 by pushing down, the weight flow rate of the secondary air increases. As mentioned above, when there is only one muffler, when the engine is under high load while the burner is operating, the exhaust gas passing through the bypass 7 becomes back pressure and pushes up the downstream pressure of the flow control valve 24, so this situation will not occur. It often occurs.

]・7図に示すこの発明の別の実姉例においては、逃が
し弁23の作動は、これに関連して設けられた真空調整
弁40によってより精密に制御される。逃がし弁23の
上の部屋28には、真空ポンプからの負圧が絞り41を
介して加えられ、下の部屋26には大気圧が加えられて
いる。一方の真空調整弁40のダイヤフラム42で仕切
られた左の部屋43には、導管44 を通じて流量制御
弁24の上流圧が加えられ、右の部屋45には大気圧が
加えられている。このダイヤフラム42の圧縮コイルス
プリング46を有する右の部屋45側の面には、逃がし
弁23の上の部屋28に通じる導管47の端部が対向し
ている。
In another embodiment of the present invention shown in FIG. 7, the operation of the relief valve 23 is more precisely controlled by a vacuum regulating valve 40 provided in connection therewith. Negative pressure from a vacuum pump is applied to the chamber 28 above the relief valve 23 via a restriction 41, and atmospheric pressure is applied to the chamber 26 below. A left chamber 43 partitioned by a diaphragm 42 of one of the vacuum regulating valves 40 is applied with upstream pressure of the flow control valve 24 through a conduit 44, and a right chamber 45 is applied with atmospheric pressure. The end of a conduit 47 leading to the chamber 28 above the relief valve 23 faces the surface of the diaphragm 42 facing the right chamber 45 and having the compression coil spring 46 .

流量制御弁24の上流圧が上昇すると、真空り周整 1
0− 弁40のダイヤフラム42が押し下げられて導管47の
端部を塞ぐ。これにより真空ポンプからの全角圧が逃が
し弁23の上の部屋28にかかるので、ダイヤフラム2
5が吸引されて弁体29が持ち上げられ、流路内の空気
の一部を大気中に放出し、流量制御弁24 の−上流圧
を低下させる。このようにして上流圧が低下すると、真
空調整弁40のダイヤフラム42が右の部屋45に設け
られたばね46の押圧力により押し戻され、導管47の
gfA部が開かれるので、右の部屋450大気圧の一部
が導管47を通って逃がし弁23 の上の部屋28に入
り、ダイヤフラム25がゲージ圧設定のためのば、ね3
Jの押圧力により押し下げられるので、弁体29が弁開
口3()を絞って流量制御弁24の上流圧をゲージ圧一
定に保つ。
When the upstream pressure of the flow control valve 24 increases, the vacuum circumference is adjusted.
0--Diaphragm 42 of valve 40 is depressed to block the end of conduit 47. As a result, the full angular pressure from the vacuum pump is applied to the chamber 28 above the relief valve 23, so the diaphragm 2
5 is sucked and the valve body 29 is lifted, releasing a part of the air in the flow path into the atmosphere, and lowering the pressure upstream of the flow control valve 24. When the upstream pressure decreases in this way, the diaphragm 42 of the vacuum regulating valve 40 is pushed back by the pressing force of the spring 46 provided in the right chamber 45, and the gfA section of the conduit 47 is opened, so that the pressure in the right chamber 450 is reduced. through conduit 47 into chamber 28 above relief valve 23, and diaphragm 25 is connected to spring 3 for setting the gauge pressure.
Since it is pushed down by the pressing force of J, the valve body 29 throttles the valve opening 3 () to keep the upstream pressure of the flow control valve 24 constant at the gauge pressure.

以上のように、この発明のバーナエア制御装置によれば
、流量器σ41弁の上流圧をゲージ圧一定に保つので、
エアポンプの流量がばらついてもバーナの安定的な燃焼
に必要な一定の空気重量流量が得られ、また流量制御弁
の制御をその下流圧により行なうので、エンジンの負荷
変動による背圧の変動にも良く追随することができる。
As described above, according to the burner air control device of the present invention, since the upstream pressure of the flow device σ41 valve is kept constant at the gauge pressure,
Even if the air pump flow rate varies, a constant air weight flow rate required for stable combustion in the burner can be obtained, and since the flow rate control valve is controlled by its downstream pressure, it is stable even when the back pressure fluctuates due to engine load fluctuations. can follow well.

さらにこのような背圧の変動があっても、その上流圧が
ゲージ圧一定に保たれているので、エアポンプにかかる
負荷が一定になり、ポンプの耐久性が向上する。
Furthermore, even if such back pressure fluctuates, the upstream pressure is kept constant at the gauge pressure, so the load on the air pump remains constant, improving the durability of the pump.

また、大気圧が変動してもポンプの吐出圧は當に一9ゲ
ージ圧に保たれるので、小容量の安価なポンプを使用す
ることができる。
Further, even if the atmospheric pressure fluctuates, the discharge pressure of the pump is maintained at 19 gauge pressure, so a small-capacity, inexpensive pump can be used.

【図面の簡単な説明】[Brief explanation of drawings]

則・1図は、高度変化と気圧との関係を示すグラフ、坩
・2図は、容積型ポンプの異なる駆動電圧における吐出
圧/体積流量特性を示すグラフ、刃・3図は、高地およ
び低地における吐出圧/重量流量特性を示すグラフ、牙
4図は、エアポンプ自体の流量のばらつきを説明するた
めの吐出圧/重量流量特性を示すグラフ、矛5図は、従
来のバーナエア制御装置の一例を示す制御回路図、矛6
図および2・7図は、この発明におけるバーナエア制御
装置の例を示す制御回路図である。 】・・・エンジン、3・・・排1t、4・・・バーナ、
5・・・フィルタ、6・・・切換弁、7・・・バイパス
、 11・・・2次エアポンプ、12・・・空気流路、
22・・・エアクリーナ、23・・・逃がし弁、24・
・・流量制御弁、40・・・真空調整弁 13−
Figure 1 is a graph showing the relationship between altitude changes and atmospheric pressure, Figure 2 is a graph showing the discharge pressure/volume flow characteristics of positive displacement pumps at different drive voltages, and Figure 3 is a graph showing the relationship between altitude changes and atmospheric pressure. Figure 4 shows a graph showing the discharge pressure/weight flow rate characteristics to explain the variation in the flow rate of the air pump itself. Figure 5 shows an example of a conventional burner air control device. Control circuit diagram shown, spear 6
Figures 2 and 7 are control circuit diagrams showing examples of the burner air control device according to the present invention. ]... Engine, 3... Exhaust 1t, 4... Burner,
5...Filter, 6...Switching valve, 7...Bypass, 11...Secondary air pump, 12...Air flow path,
22... Air cleaner, 23... Relief valve, 24...
...Flow control valve, 40...Vacuum adjustment valve 13-

Claims (1)

【特許請求の範囲】[Claims] 容積型エアポンプから吐出された空気をディーゼルパテ
ィキュレートフィルタの再生用バーナに導く空気流路に
上流から7+@に逃がし弁および原素制御弁を備えたデ
ィーゼル排出ガス浄化装置のバーナエア制御装置であっ
て、前記逃がし弁は、前記流量制御弁の上流圧を取り込
んでこれをゲージ圧一定に保つようにその圧力の一部を
放出させる手段を備え、前記流量制御弁は、その下流圧
が増加した″とぎにその弁開口面積を増加させるように
一方にその下流圧を取り込む手段と他方にこれに対抗し
て大気圧を取り込む手段とを備えたバーナエア制御装置
A burner air control device for a diesel exhaust gas purification device, which is equipped with a relief valve and an elementary control valve from upstream to 7+@ in an air flow path that guides air discharged from a positive displacement air pump to a regeneration burner of a diesel particulate filter. , the relief valve includes means for taking in the upstream pressure of the flow control valve and releasing a portion of the pressure so as to maintain it at a constant gauge pressure; A burner air control device comprising means for taking in downstream pressure on one side and means for taking in atmospheric pressure in opposition to the downstream pressure so as to increase the valve opening area.
JP58158243A 1983-08-30 1983-08-30 Burner air controller for diesel exhaust emission control device Granted JPS6050213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58158243A JPS6050213A (en) 1983-08-30 1983-08-30 Burner air controller for diesel exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58158243A JPS6050213A (en) 1983-08-30 1983-08-30 Burner air controller for diesel exhaust emission control device

Publications (2)

Publication Number Publication Date
JPS6050213A true JPS6050213A (en) 1985-03-19
JPH0550570B2 JPH0550570B2 (en) 1993-07-29

Family

ID=15667384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58158243A Granted JPS6050213A (en) 1983-08-30 1983-08-30 Burner air controller for diesel exhaust emission control device

Country Status (1)

Country Link
JP (1) JPS6050213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684073A (en) * 1994-05-13 1997-11-04 The Yokohama Rubber Co., Ltd. Pneumatic tire having improved abrasion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684073A (en) * 1994-05-13 1997-11-04 The Yokohama Rubber Co., Ltd. Pneumatic tire having improved abrasion resistance

Also Published As

Publication number Publication date
JPH0550570B2 (en) 1993-07-29

Similar Documents

Publication Publication Date Title
KR890001344B1 (en) Regenerating apparatus for diesel particulate filter
US3945205A (en) Secondary air control device
ES471533A1 (en) Valve control arrangements
US5138835A (en) Diesel engine with an exhaust-gas filter
US4235207A (en) Internal combustion engine
US4462379A (en) Exhaust gas recirculating apparatus of a diesel engine
JPS6050213A (en) Burner air controller for diesel exhaust emission control device
US4183212A (en) Secondary air control in vehicle exhaust purification system
US4146986A (en) Device for supplying secondary air for purifying exhaust gases discharged from internal combustion engine
JPH0550569B2 (en)
US4211074A (en) Secondary air supply system for the exhaust system of an internal combustion engine
JPS6193219A (en) Diesel particulate oxidizer system
JPS6050211A (en) Burner air controller for diesel exhaust emission control device
US4191143A (en) EGR/Ignition timing control system for an internal combustion engine
JPS6022013A (en) Burner air control of diesel particulate filter
JPS6161906A (en) Suction-exhaust pressure detecting device of diesel engine
CA1079142A (en) Time delay apparatus for an exhaust gas recirculation controller
JPH0343463B2 (en)
JPS6019909A (en) Control device for burner air for diesel particulate filter
JPS59226219A (en) Burner air controlling system of diesel particulate filter
JPS60243357A (en) Apparatus for controlling rate of exhaust-gas recirculation of engine
JPS59226218A (en) Burner air controlling system of diesel particulate filter system
JPH0541809B2 (en)
JPS6111413A (en) Regenerating device of diesel particulate filter
JPH0515892B2 (en)