JPS6050133A - Corrosion resistant zirconium alloy - Google Patents

Corrosion resistant zirconium alloy

Info

Publication number
JPS6050133A
JPS6050133A JP58157601A JP15760183A JPS6050133A JP S6050133 A JPS6050133 A JP S6050133A JP 58157601 A JP58157601 A JP 58157601A JP 15760183 A JP15760183 A JP 15760183A JP S6050133 A JPS6050133 A JP S6050133A
Authority
JP
Japan
Prior art keywords
alloy
zirconium alloy
alpha
temp
compressive stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58157601A
Other languages
Japanese (ja)
Other versions
JPH079054B2 (en
Inventor
Emiko Higashinakagaha
東中川 恵美子
Kanemitsu Sato
佐藤 金光
Junko Kawashima
川島 純子
Yoshinori Kuwae
桑江 良昇
Tadashi Sakuyama
作山 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58157601A priority Critical patent/JPH079054B2/en
Publication of JPS6050133A publication Critical patent/JPS6050133A/en
Publication of JPH079054B2 publication Critical patent/JPH079054B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain a Zr alloy having superior nodular corrosion resistance and mechanical characteristics and causing hardly bending and warping by leaving compressive stress on the surface of a Zr alloy having an alpha-phase crystal structure. CONSTITUTION:A Zr alloy is melted, forged, not extruded, and subjected to repeated cold working and annealing, and the final annealing is carried out at a prescribed temp. for a prescribed time to obtain a Zr alloy contg. no residual strain and having an alpha-phase crystal structure. After the final annealing, the Zr alloy is passed through a heat treatment stage to leave residual stress on the surface. In the stage, the surface part of the alloy is rapidly heated to a temp. in the alpha-phase region by high frequency heating, and it is rapidly cooled after holding at the temp. for several sec. Thus, the desired Zr alloy as a structural material is obtd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、原子炉の炉心部材あるいは化学装置の構造材
など耐食性を要求される構造材として用いられる耐食ジ
ルコニウム合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a corrosion-resistant zirconium alloy used as a structural material that requires corrosion resistance, such as a core member of a nuclear reactor or a structural material of a chemical device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般にジルカロイ−2、ジルカロイ−4fx、どのジル
コニウム合金は、熱中性子吸収断面積が小さいこと、原
子炉内環境に対する耐食性に優れていること、構造材料
として機械的性質を充分に備えていることなどの理由か
ら原子炉の炉心部材として多く用いられている。
In general, zirconium alloys such as Zircaloy-2 and Zircaloy-4fx have a small thermal neutron absorption cross section, excellent corrosion resistance in the reactor environment, and have sufficient mechanical properties as a structural material. For this reason, it is often used as a core member of nuclear reactors.

例えば、軽水炉の燃料集合体の場合、第1図に示すよう
な構造となっている。この燃料集合体は上部タイプレー
ト1と、下部タイグレート2との間に核燃料ペレット′
f!:被覆管3内に装填した複数本の核燃料棒4が取付
けられている。
For example, a fuel assembly for a light water reactor has a structure as shown in FIG. This fuel assembly consists of nuclear fuel pellets' between an upper tie plate 1 and a lower tie plate 2.
f! : A plurality of nuclear fuel rods 4 loaded inside the cladding tube 3 are attached.

これら核燃料棒4は、適宜の間隔で水平に配置されたス
ペーサー5に挿着支持されて整列し、横方向への移動が
抑制されていると共に、核燃料棒4間に冷却材の流路を
形成するようになっている。これら全体はチャンネルボ
ックス6内に収納されて一体となっている。この燃料集
合体は、−基の原子炉に数百本装荷されている。
These nuclear fuel rods 4 are inserted and supported by spacers 5 arranged horizontally at appropriate intervals, and are aligned so that movement in the lateral direction is suppressed and a coolant flow path is formed between the nuclear fuel rods 4. It is supposed to be done. All of these are housed in a channel box 6 and are integrated. Several hundred of these fuel assemblies are loaded into the nuclear reactor.

前記スペーサー5は第2図に示すように、外枠7で囲ま
れた四角平面の中に、縦横に配置した複数本のパー8と
、複数本のディバイダー9が、水平面で交差して格子状
に形成されている。
As shown in FIG. 2, the spacer 5 has a grid-like structure in which a plurality of pars 8 and a plurality of dividers 9 are arranged vertically and horizontally in a rectangular plane surrounded by an outer frame 7 and intersect with each other in a horizontal plane. is formed.

またパー8とディバイダー9の端部は外枠7に溶接され
、更にパー8とパー8およびディバイダー9とディバイ
ダー9との交差点も溶接により固定されている。パー8
とパー8の交差点にハ、夫々四角枠状にランタンスプリ
ング10が支持されている。このようにして、複数個の
小仕切りが形成され、この小仕切りの中に第1図に示す
燃料棒4が挿着されるようになっている。
Further, the ends of the pars 8 and the dividers 9 are welded to the outer frame 7, and the intersections between the pars 8 and the dividers 9 are also fixed by welding. par 8
A lantern spring 10 is supported in the shape of a rectangular frame at the intersection of C and par 8, respectively. In this way, a plurality of small partitions are formed, into which the fuel rods 4 shown in FIG. 1 are inserted.

これら燃料集合体を形成する炉心部材のうち、例えば、
チャンネルボックス6や燃料被覆管3、あるいはランタ
ンスプリングツO’fr:除<ス被−サー5の構成部材
などの炉心部材は、一般にジルカロイ−2やゾルカロイ
−4などのジルコニウム合金か用いられている。
Among the core members forming these fuel assemblies, for example,
Core members such as the channel box 6, fuel cladding tube 3, and components of the lantern springs 5 are generally made of zirconium alloys such as Zircaloy-2 and Zorcaloy-4. .

しかしなから、これらジルコニウム合金で形成された炉
心部材は、その使用時間の経過とともに、いわゆるノジ
ュラーコ四−ジョンと呼ばれる腐食反応による白色腐食
生成物が、その表面に斑点状に生成してくることがある
。これはジルコニウム合金が高温水と反応し、この表面
に酸化膜が形成された状態で、生成された水素が合金基
材と表面の酸化膜との間に蓄積して腐食生成物を形成す
るものである。この腐食生成物は、経時的に表面に集積
し、ついには表面から剥離して、合金部材の強度低下を
招くおそれがある。また生成された水素が合金内部に侵
入するとジルコニウムの水素化物が形成され、これが表
面と垂直方向に形成されると、連続した水素化物による
、いわゆる水素脆性の問題があった0 このような問題を解決するため、ジルコニウム合金を溶
解、鍛造、熱間押出、冷間加工、焼鈍など一連の工程全
経て、最終の焼鈍工程において、β焼入する方法(特開
昭55−100947)およびジルコニウム合金部材の
表面を急熱溶融後、急冷する方法(特開昭55−504
53)などが提案されている。これらの方法は、何れも
ジルコニウム合金部材の少なくとも表面部の結晶構造を
焼入により、針状結晶粒のβ相(体心立方格子)に変え
ることにより耐ノジユラーコロ−ジョン性を向上させる
ものである。
However, as the core members made of these zirconium alloys are used over time, white corrosion products due to a corrosion reaction called so-called nodular collisions tend to form on their surfaces in spots. be. This occurs when the zirconium alloy reacts with high-temperature water, forming an oxide film on its surface, and the generated hydrogen accumulates between the alloy base material and the oxide film on the surface, forming corrosion products. It is. This corrosion product accumulates on the surface over time and eventually peels off from the surface, which may lead to a decrease in the strength of the alloy member. In addition, when the generated hydrogen penetrates into the alloy, zirconium hydrides are formed, and when these are formed perpendicular to the surface, there is a problem of so-called hydrogen embrittlement due to continuous hydrides. In order to solve the problem, we have developed a method (Japanese Patent Application Laid-Open No. 100947/1983) in which zirconium alloy is subjected to a series of processes such as melting, forging, hot extrusion, cold working, and annealing, and then β-quenched in the final annealing process (Japanese Patent Application Laid-open No. 55-100947) and a zirconium alloy member. Method of rapid cooling after rapidly melting the surface of
53) etc. have been proposed. All of these methods improve nodular corrosion resistance by changing the crystal structure of at least the surface of the zirconium alloy member into a β phase (body-centered cubic lattice) of needle-shaped crystal grains through quenching. .

しかしながら、これら焼入による方法は、耐ノジユラー
コロ−ジョン性を向上させる反面1炉心部材としての機
械的特性が劣化する上、肉厚が1咽程度以下の薄板で長
尺であるため、焼入時に曲りやねじれを生ずる問題があ
り、満足すべきものではなかった。
However, although these hardening methods improve the nodular corrosion resistance, they deteriorate the mechanical properties of the single core member, and since the wall thickness is a thin plate with a wall thickness of about 1 mm or less and is long, during hardening, There was a problem of bending and twisting, and the result was not satisfactory.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる従来の問題点に艦みなされたもので、
優れた耐ノジーラーフロージョン性を有すると共に、機
械的特性にも優れ、しかも曲りやねじれか少なく、原子
炉の炉心部材や化学装置の構造材として好適な耐食ジル
コニウム合金を提供するものである。
The present invention has been made in view of these conventional problems.
The present invention provides a corrosion-resistant zirconium alloy that has excellent nozzle flow resistance, excellent mechanical properties, and little bending or twisting, and is suitable as a structural material for nuclear reactor core members and chemical equipment. .

〔発明の概要〕[Summary of the invention]

本発明はジルコニウム合金の結晶構造がα相で形成され
、表面に圧縮応力が残留していることにより耐ノジュラ
ーコロ−ジョン性と機械的特性を向上させることを特徴
とするものである。
The present invention is characterized in that the crystal structure of the zirconium alloy is formed in the alpha phase, and compressive stress remains on the surface, thereby improving nodular corrosion resistance and mechanical properties.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において用いるジルコニウム合金としては、例え
ば重量比でスズ1.2〜1.7%、鉄0.07〜0.2
0%、りOムo、05〜0.15%、ニッケル0.03
〜0.08%、残部ジルコニウムよりなるジルカロイ−
2と呼称されているもの、スズ1.2〜1.7%、鉄0
.18〜0.24チ、クロム0.07〜0.13%、残
部ジルコニウムよりなるジルカロイ−4と呼称されてい
るもの、あるいはジルコニウム−2,5%ニオブ系、ジ
ルコニウム−lチニオブ系、まなはオーゼナイトなどの
ジルコニウム合金に適用することができる。
The zirconium alloy used in the present invention includes, for example, tin 1.2 to 1.7% and iron 0.07 to 0.2% by weight.
0%, 05-0.15%, nickel 0.03
Zircaloy consisting of ~0.08%, balance zirconium
2, 1.2-1.7% tin, 0 iron
.. Zircaloy-4, which consists of 18-0.24% chromium, 0.07-0.13% chromium, and the balance zirconium, or zirconium-2.5% niobium-based, zirconium-ltiniobic-based, or ozenite It can be applied to zirconium alloys such as.

次に本発明ジルコニウム合金の製造方法を説明する。Next, a method for manufacturing the zirconium alloy of the present invention will be explained.

ジルコニウム合金を溶解、鍛造、熱間W出した後、冷間
加工と焼鈍とを複数回繰り返して行う・最終焼鈍の温度
は通常580℃近傍で約2時聞手加熱して行うか、この
ようにして得られたジルコニウム合金は残留歪がなく、
また結晶構造はα相(六方晶形)である。
After the zirconium alloy is melted, forged, and heated, cold working and annealing are repeated several times.The final annealing temperature is usually around 580°C and heated for about 2 hours, or as described above. The obtained zirconium alloy has no residual strain,
Moreover, the crystal structure is α phase (hexagonal crystal structure).

ここまでは従来の方法と同一であるが、本発明において
は、最終焼鈍後に、次の熱処理工程を付加することによ
り、表面に圧縮応力全残留させたものである。
Up to this point, the method is the same as the conventional method, but in the present invention, the following heat treatment step is added after the final annealing, so that all the compressive stress remains on the surface.

最終焼鈍したジルコニウム合金全11例えば高周波加熱
により、表面部全α領域の780〜860℃まで急加熱
して、数秒間保持した後、急冷することにより、結晶構
造はα相のままで細かい球状の結晶粒のままで且つ表面
に圧縮応力全残留させることができる。
All 11 final annealed zirconium alloys are heated rapidly to 780 to 860°C in the entire alpha region of the surface using, for example, high-frequency heating, held for a few seconds, and then rapidly cooled to form fine spherical particles while keeping the crystal structure in the alpha phase. It is possible to leave the crystal grains as they are and to have all the compressive stress remain on the surface.

このように急加熱、急冷を行うと、内部に大きな温度差
を生じ、表面部は内部の高温部を包んで冷却するため自
由に収縮できない。この結果、表面部は内部の高温部の
ために張力全骨けながら冷却する。冷却初期においては
、温度は比較的高いから降伏点が低く、表面部は多少永
久変形を起す。しかも中心部まで室温になった時には、
表面部は中心部に比べて変形外だけ伸び過ぎていること
になり、これが内部からの収縮力を受け、最終的には、
表面部は中心部によって圧縮された状態となる。即ち表
面部には圧縮応力が残留し、中心Nは引張応力が働いて
、つり合った状態となる。
When rapid heating and cooling are performed in this manner, a large temperature difference occurs inside the product, and the surface portion cannot contract freely because it envelops and cools the high-temperature portion inside. As a result, the surface part cools while taking up all the tension due to the internal high temperature part. In the early stage of cooling, the temperature is relatively high, so the yield point is low, and the surface portion undergoes some permanent deformation. Moreover, when the center reaches room temperature,
The surface area is overextended only outside the deformation area compared to the center area, and this is subjected to contraction force from within, and ultimately,
The surface portion is compressed by the center portion. That is, compressive stress remains on the surface, and tensile stress acts on the center N, resulting in a balanced state.

このように表面部に圧縮応力が残留した状態で、結晶構
造がα相のままでも、耐ノジユラーコロ−ジョン性が向
上する理由については詳らかではないが、圧縮応力が加
った状態では、結晶格子が密につまっているため、表面
から内部へ酸素が拡散しにくくなるためであると考えら
れる。このように酸素の拡散が阻止されると酸化膜が形
成されにくくなり、酸化膜と合金表面との間の水素の蓄
積か防止され、耐ノジユラーコロ−ジョン性が向上する
ものである。
Although it is not clear why the nodular corrosion resistance improves even when the crystal structure remains in the α phase when compressive stress remains on the surface, the crystal lattice This is thought to be because oxygen is difficult to diffuse from the surface to the inside because the particles are packed tightly together. When oxygen diffusion is inhibited in this way, an oxide film is less likely to be formed, hydrogen is prevented from accumulating between the oxide film and the alloy surface, and the nodular corrosion resistance is improved.

なおα領域での加熱温度は780〜860℃とし、ここ
に短時間保持した後、急冷すると、表面に8〜46 k
g / tea2 の圧縮応力が残留し、特に残留・圧
縮応力が20kgZ■2以上で、効果的な耐ノジユラー
コロ−ジョン性が得られる。
The heating temperature in the α region is 780 to 860 degrees Celsius, and after being held there for a short time, when it is rapidly cooled, a temperature of 8 to 46 k is applied to the surface.
A compressive stress of g/tea2 remains, and in particular, when the residual compressive stress is 20 kgZ2 or more, effective nodular corrosion resistance can be obtained.

この場合780℃未満の加熱では、充分な圧縮応力が残
留せず、また860℃全越えると、β領域となり、急冷
すると焼入が行なわれて、表面層がβ相(体心立方格子
)になる上、曲りやねじれが大きく、シかも機械的特性
が劣化するからである〇 また本発明ジルコニウム合金の表面に、圧縮応力が残留
しているので、例えば引張強さが約45 kli’ /
 111112 のジルコニウム合金からなる被覆管に
、上記方法により圧縮応力を20 kg / tea”
残留させると、55 klil / mm2 の外部応
力まで破断せずに耐えられることになる。
In this case, heating below 780°C will not leave sufficient compressive stress, and heating above 860°C will result in a β region, and rapid cooling will cause quenching and the surface layer will change to β phase (body-centered cubic lattice). Furthermore, the bending and twisting may be large and the mechanical properties may deteriorate. Also, since compressive stress remains on the surface of the zirconium alloy of the present invention, for example, the tensile strength is about 45 kli' /
A compressive stress of 20 kg/tea was applied to a cladding tube made of 111112 zirconium alloy by the above method.
If left to remain, it will be able to withstand up to an external stress of 55 klil/mm2 without breaking.

更に本発明合金は圧縮応力が残留していることにより耐
力が大きくなると共に、伸びが小さくなり、特に沸騰高
温水中に長時間曝らされる原子炉炉心部材や、化学装置
の構造材において、強度、クリープ特性など、機械的特
性の改善効果が大きい。
Furthermore, due to residual compressive stress, the alloy of the present invention has a high yield strength and low elongation, which is particularly important for nuclear reactor core components exposed to boiling, high-temperature water for long periods of time, and structural materials for chemical equipment. , has a large effect on improving mechanical properties such as creep properties.

〔発明の実施例〕[Embodiments of the invention]

ジルカロイ−4を用い、通常の溶解、鍛造を行って、ビ
レッhTh形成した後、熱間押出し全行い、次いで冷間
圧延と真空焼鈍を4回繰り返して、板材を形成した〇 次にこの板材をサイリスタ式の高周波加熱炉を用いて、
その表面層800℃に急速加熱した。
Using Zircaloy-4, normal melting and forging were performed to form a billet hTh, followed by full hot extrusion, and then cold rolling and vacuum annealing were repeated four times to form a plate material.Next, this plate material was Using a thyristor-type high-frequency heating furnace,
The surface layer was rapidly heated to 800°C.

この場合、炉内滞留時間(保持時間)は約5秒であった
。この後、直ちに水冷して急速冷却を行った。次に、表
面の酸化膜全研磨除去して仕上げた。
In this case, the residence time in the furnace (holding time) was about 5 seconds. Thereafter, the mixture was immediately cooled with water for rapid cooling. Next, the oxide film on the surface was completely removed by polishing.

このようにして得られた板材を、500℃、105気圧
の高温高圧水蒸気中に放置して、加速腐食試験に行って
耐食性’を調べた。この結果は第3図のグラフに曲線a
で示すように腐食による増量は48時間経過後も僅かで
あった。
The thus obtained plate material was left in high-temperature, high-pressure steam at 500° C. and 105 atm, and subjected to an accelerated corrosion test to examine its corrosion resistance. This result is shown in the graph of Figure 3 by curve a.
As shown in , the weight increase due to corrosion was slight even after 48 hours had elapsed.

また機械的特性音調べるため、耐力と伸びを調べたとこ
ろ、耐力は42.8 kg/ mm2、伸びは32.9
チで、優れたクリープ特性を有することが確認された。
In addition, in order to investigate the mechanical characteristic sound, we investigated the yield strength and elongation, and found that the yield strength was 42.8 kg/mm2, and the elongation was 32.9.
It was confirmed that the material had excellent creep properties.

更に本発明板材の表面応力状態全見るため、X線により
残留圧縮応力を測定したところ、28 kg/ mm2
 であった。なおこの場合のX線測定はCrKα(クロ
ムケアルファー)線を用い(2022)面からの回折線
2用いて行った。
Furthermore, in order to see the entire surface stress state of the plate material of the present invention, the residual compressive stress was measured using X-rays, and it was found to be 28 kg/mm2.
Met. Note that the X-ray measurement in this case was performed using CrKα (chromium Kα) rays and diffraction line 2 from the (2022) plane.

次に本発明と比較するために、最終焼鈍後、何ら熱処理
を行わない従来のジルコニウム合金板材についても同様
に加速腐食試験全行った。
Next, in order to compare with the present invention, all accelerated corrosion tests were similarly conducted on a conventional zirconium alloy plate material that was not subjected to any heat treatment after final annealing.

この結果、腐食による増量は第3図のグラフに曲線すで
示すように急激な増加カーブを画いた。また同様に機械
的特性音調べたところ耐力は42.7kl?/陥2、伸
びは32,9チであり、本発明の実施例と同等であった
。またX線による圧縮応力の測定では残留が認められな
かった。
As a result, the weight increase due to corrosion drew a sharp increasing curve as shown in the graph of FIG. Also, when I checked the mechanical characteristic sound, the yield strength was 42.7 kl? / Depth 2, elongation was 32.9 inches, which was equivalent to the example of the present invention. Further, no residual was found in the measurement of compressive stress using X-rays.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明に係る耐食ジルコニウム合金
によれば、表面に圧縮応力を残留させることにより、耐
ノジユラーコロ−ジョン性と、機械的特性の向上が図れ
ると共に、従来のβ領域からの焼入によるβ相の形成に
比べて低温度からの急冷であるため、曲りやねじれの発
生が少なく寸法精度にも修れているなど顕著な効果金屑
するものである。
As explained above, according to the corrosion-resistant zirconium alloy according to the present invention, by leaving compressive stress on the surface, it is possible to improve nodular corrosion resistance and mechanical properties, and it is possible to improve the nodular corrosion resistance and mechanical properties. Compared to the formation of the β phase, the rapid cooling from a low temperature produces remarkable effects such as less bending and twisting and improved dimensional accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料集合体の一部全切欠して示す縦断面図、第
2図はスペーサーの要部を示す平面材と従来の板材との
腐食増量の時間変化を示すグラフである。 1・・・上部タイプレート、2・・・下部タイプレート
、3・・・被覆管、4・・・核燃料棒、5・・・スペー
サー、6・・・チャンネルボックス、7・・・外枠、g
・・・パー、9・・・ディバイダー、10・・・ランタ
ンスプリング。 出願人代理人 弁理士 鈴 江 武 彦@1図 第2図 第3図
FIG. 1 is a vertical cross-sectional view showing a fuel assembly partially cut away, and FIG. 2 is a graph showing changes over time in corrosion weight increase between a flat material showing the main part of a spacer and a conventional plate material. DESCRIPTION OF SYMBOLS 1... Upper tie plate, 2... Lower tie plate, 3... Cladding tube, 4... Nuclear fuel rod, 5... Spacer, 6... Channel box, 7... Outer frame, g
... Par, 9... Divider, 10... Lantern Spring. Applicant's agent Patent attorney Takehiko Suzue @Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1) ジルコニウム合金の結晶構造がα相で形成され
、表面に圧縮応力が残留していることを特徴とする耐食
ジルコニウム合金。
(1) A corrosion-resistant zirconium alloy characterized in that the crystal structure of the zirconium alloy is formed in the α phase and compressive stress remains on the surface.
(2)残留圧縮応力が2 Q kg / mm2以上で
あることを特徴とする特許請求の範囲第1項記載の耐食
ジルコニウム合金。
(2) The corrosion-resistant zirconium alloy according to claim 1, which has a residual compressive stress of 2 Q kg/mm2 or more.
JP58157601A 1983-08-29 1983-08-29 Zirconium alloy reactor core member Expired - Lifetime JPH079054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58157601A JPH079054B2 (en) 1983-08-29 1983-08-29 Zirconium alloy reactor core member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58157601A JPH079054B2 (en) 1983-08-29 1983-08-29 Zirconium alloy reactor core member

Publications (2)

Publication Number Publication Date
JPS6050133A true JPS6050133A (en) 1985-03-19
JPH079054B2 JPH079054B2 (en) 1995-02-01

Family

ID=15653281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58157601A Expired - Lifetime JPH079054B2 (en) 1983-08-29 1983-08-29 Zirconium alloy reactor core member

Country Status (1)

Country Link
JP (1) JPH079054B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024945A (en) * 1988-06-10 1990-01-09 Hitachi Ltd Austenitic steel exposed to high temperature and high pressure water under neutron irradiation
US4990078A (en) * 1989-08-09 1991-02-05 Sumimoto Heavy Industries, Ltd. Structure of lip drive portion of T-die
JPH07251268A (en) * 1994-12-09 1995-10-03 Honda Motor Co Ltd Automatic welding equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141899A (en) * 1977-05-18 1978-12-11 Toshiba Corp Nuclear fuel element
JPS5442599A (en) * 1977-08-12 1979-04-04 Kraftwerk Union Ag Method of protecting clad pipe for nuclear reactor fuel rod
JPS5487637A (en) * 1977-12-26 1979-07-12 Hitachi Ltd Pressure pipe made of zirconium alloy
JPS5533034A (en) * 1978-08-28 1980-03-08 Nec Corp Liquid-phase epitaxial growing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141899A (en) * 1977-05-18 1978-12-11 Toshiba Corp Nuclear fuel element
JPS5442599A (en) * 1977-08-12 1979-04-04 Kraftwerk Union Ag Method of protecting clad pipe for nuclear reactor fuel rod
JPS5487637A (en) * 1977-12-26 1979-07-12 Hitachi Ltd Pressure pipe made of zirconium alloy
JPS5533034A (en) * 1978-08-28 1980-03-08 Nec Corp Liquid-phase epitaxial growing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024945A (en) * 1988-06-10 1990-01-09 Hitachi Ltd Austenitic steel exposed to high temperature and high pressure water under neutron irradiation
US4990078A (en) * 1989-08-09 1991-02-05 Sumimoto Heavy Industries, Ltd. Structure of lip drive portion of T-die
JPH07251268A (en) * 1994-12-09 1995-10-03 Honda Motor Co Ltd Automatic welding equipment

Also Published As

Publication number Publication date
JPH079054B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
US4718949A (en) Method of producing a cladding tube for reactor fuel
US5026516A (en) Corrosion resistant cladding for nuclear fuel rods
US4986957A (en) Corrosion resistant zirconium alloys containing copper, nickel and iron
US5073336A (en) Corrosion resistant zirconium alloys containing copper, nickel and iron
US5475723A (en) Nuclear fuel cladding with hydrogen absorbing inner liner
US4360389A (en) Zirconium alloy heat treatment process
US5188676A (en) Method for annealing zircaloy to improve nodular corrosion resistance
JPH07224373A (en) Method of improving corrosion resistance of barrier coating made of zirconium or zirconium alloy
JPS6234095A (en) Nuclear fuel coated tube
JPH01119650A (en) Manufacture of channel box for nuclear reactor fuel assembly
JPS6050133A (en) Corrosion resistant zirconium alloy
CA1080513A (en) Zirconium alloy heat treatment process and product
US10221475B2 (en) Zirconium alloys with improved corrosion/creep resistance
US3884728A (en) Thermo-mechanical treatment of zirconium alloys
JPS6123264B2 (en)
JPH0379430B2 (en)
US4169743A (en) Zirconium-base alloy nuclear fuel container and method
JPS62182258A (en) Manufacture of high-ductility and highly corrosion-resistant zirconium-base alloy member and the member
JPS6036984A (en) Nuclear reactor fuel coated pipe and manufacture thereof
JPH0519670B2 (en)
JPH0421746B2 (en)
CA1079093A (en) Zirconium-base alloy nuclear fuel container and method
JPS62297449A (en) Production of zirconium alloy member
JPS59232259A (en) Zirconium-base alloy member having excellent resistance to nodular corrosion and its production
JPS6075567A (en) Manufacture of nuclear fuel rod end plug