JPS60500058A - Preservation method of living organic tissue by freezing - Google Patents

Preservation method of living organic tissue by freezing

Info

Publication number
JPS60500058A
JPS60500058A JP84500357A JP50035784A JPS60500058A JP S60500058 A JPS60500058 A JP S60500058A JP 84500357 A JP84500357 A JP 84500357A JP 50035784 A JP50035784 A JP 50035784A JP S60500058 A JPS60500058 A JP S60500058A
Authority
JP
Japan
Prior art keywords
tissue
approximately
kilopascals
freezing
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP84500357A
Other languages
Japanese (ja)
Inventor
マツケンナ,ジヨアン ジエイ.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/448,467 external-priority patent/US4423600A/en
Application filed by Individual filed Critical Individual
Publication of JPS60500058A publication Critical patent/JPS60500058A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発明の背景 1、発明の分野 本発明は果物、野菜、動物体ならびに有機組織全般の冷凍保存に係る。特に、細 胞構造が再組成により初めの条件に完全に復帰できるようこれを保存又は保持し た状態での貯蔵や輸送、長期保存その他完全又は部分的な生物学的活動の中絶が 望まれる各種の用途を目的とした細胞状構成体の冷凍に係る。[Detailed description of the invention] Background of the invention 1. Field of invention The present invention relates to cryopreservation of fruits, vegetables, animal bodies, and organic tissues in general. In particular, fine Preserve or maintain the cell structure so that it can be completely restored to its original conditions by recomposition. Storage, transportation, long-term storage, or other conditions that may completely or partially abort biological activity. It concerns the freezing of cellular constructs for various desired uses.

2、先行技術の説明 食用の果物及び野菜の貯蔵ならびに輸送から外科的組織治療の促準又は医療や科 学的観察のだめの生物学的活動の中絶にいたるまで、新鮮々植物及び動物生体の 細胞の冷凍には広範囲の有用性が認められる。残念ながら、大半の細胞構造体の 場合、氷晶の形成に帰因する細胞壁ネットワークの損傷に耐えることができない ものであり、氷晶の増大する容積と鋭いへりにより細胞壁に穴があけられ細胞が 破裂する。その結果組織膨圧の損失と天然汁液の損失の両方がともなう。果物及 び野菜の場合、品物は解氷後食べられるけれど、もはや美味しくもなく又魅力的 でもない。動物組織系統においては、猛烈な新陳代謝の分裂が起こりしばしば死 をもたらす。更に、冷凍中において捕そくガスにより形成された気泡又は枠子が 解氷中に解放されて血液流に入り込む。猛烈な痛みと免疫性の分裂が発生し、心 臓や脳髄における塞栓で死を招くことが有る。2. Description of prior art From storing and transporting edible fruits and vegetables to facilitating surgical tissue treatment or medical and medical sciences. The study of fresh plants and animal organisms, up to the point where biological activities are no longer possible for scientific observation. Freezing cells has a wide range of utility. Unfortunately, most cellular structures If the cell wall network cannot withstand damage due to the formation of ice crystals The increasing volume and sharp edges of the ice crystals create a hole in the cell wall, causing the cell to collapse. Burst. This results in both a loss of tissue turgor pressure and a loss of natural fluid. fruits and In the case of fresh vegetables, the product can be eaten after thawing, but it is no longer tasty or attractive. not. In animal tissue systems, intense metabolic disruption occurs and often leads to death. bring about. Furthermore, air bubbles or frames formed by trapped gas during freezing It is released during deicing and enters the bloodstream. Severe pain and immune division occur, causing heart damage. Embolism in the viscera or brain spinal cord can lead to death.

この問題を解決する従来の方法は一般的に氷晶形成をともなう膨張のだめの余地 を得るべく有機質細胞の部分的脱水を含むものである。代春的な方法はラム(L amb )の米国特許第3.21.9,463号(1965年11月26日)に 記載されている。ラムの方法は高レベルの真空(絶対圧4.6 mm Hg i で)を要する2段階の方法である。解氷後材料を再組成するために煮こぼれした 水分を取替えねばならぬ。Traditional methods of solving this problem typically allow for expansion with ice crystal formation. It involves partial dehydration of organic cells to obtain Yoharu's method is Ram (L amb) U.S. Patent No. 3.21.9,463 (November 26, 1965) Are listed. Ram's method uses a high level vacuum (absolute pressure 4.6 mm Hg i It is a two-step method that requires After thawing, the ingredients were boiled down to reconstitute them. Water must be replaced.

複雑なもしくはちょう密な細胞構造体の場合、このようにして均一な分布を得る のは困難である。更に、微妙な細胞構造の組織はしばしば脱水及び再組成時細胞 壁を貫通する大量の物質をともなう応力に耐えることができない。In the case of complex or dense cellular structures, a uniform distribution is obtained in this way. is difficult. Additionally, tissues with delicate cellular structures often lose their cellular structure upon dehydration and reorganization. Unable to withstand the stress associated with large amounts of material penetrating the wall.

発明の要約 細胞状組成物の細胞間分泌液からの溶解ガスの少くとも一部分の除去により、細 胞構造に対する実質的な損傷なしにもしくは塞栓形成をともなうことなしに組成 体の冷凍及び再組成が可能になる点が判明している。Summary of the invention The removal of at least a portion of the dissolved gases from the intercellular secretions of the cellular composition composition without substantial damage to cell structures or embolization It has been found that freezing and recomposing the body is possible.

従って、本発明により広範囲にわたる有機組織の完全なる生命中絶を達成し解氷 後完全な生活力に復帰てきるような方法が得られる。Therefore, the present invention achieves complete termination of life in a wide range of organic tissues and thaws the ice. After that, you can find a way to return to full life.

好適実施例の説明 本発明の方法によれば、細胞状組成体の形態をした有機質物質が漸進的減圧を受 け氷点又は氷点下の温度に冷却される。減圧は細胞間の分必流動体に溶けたガス の濃度をかなり低下させ、他方蒸発による分泌液自身の実質的損失を避けるよう な程度に行われる。「ガス」又は「ガス状物質」なる用語は本文では通常の大気 条件による温度及び圧力の下でガス状態にある物質を表わすものである。DESCRIPTION OF THE PREFERRED EMBODIMENT According to the method of the present invention, organic material in the form of cellular compositions is subjected to progressively reduced pressure. Cooled to freezing point or below freezing point. Reduced pressure is necessary to separate the gases dissolved in the fluid between the cells. considerably lowering the concentration of the fluid while avoiding substantial loss of the secreted fluid itself through evaporation. It is carried out to a certain extent. The term ``gas'' or ``gaseous substance'' is used in the text to refer to normal atmospheric Denotes a substance that is in a gaseous state under certain conditions of temperature and pressure.

溶解ガス含有量の低下により、細胞間の流動分泌液が凍った時発生する比容積の 増大が同様に低下する。The reduction in dissolved gas content reduces the specific volume that occurs when fluid secretions between cells freeze. The increase decreases as well.

本発明は、この冷凍容積の低下が然らされば氷晶形成をともなう細胞壁の損傷を 十分に防止するものであるという発見にもとづいている。The present invention shows that if this reduction in frozen volume is allowed to occur, cell wall damage accompanied by ice crystal formation can be prevented. It is based on the finding that it is sufficiently preventive.

減圧は分泌液蒸発を避ける割合で行われる。この減動できる。一般に、毎分約0 .01 kl?/cr++2(1,0キロパスカル)から0.1 kg/cm2 (10,0キロパスカル)(毎分7.lmmHgから7.7.3 mm H5) の範囲内の減圧率がもつとも有利である。好適な減圧率は、毎分約0.031< 97cm2 (3,0キロパスカル)から0.07 kg/cm2(7,0キロ パスカル) (23,0mm Hgから55.6111111 Hg )最適に は約0.05 kL’an2(5,0キロパスカル)から0.06に’j/am 2(6,0キロパスカル)の範囲(38,3mm Hgから46.Orrrm  Hg ) ノもノテ6 ル。The vacuum is applied at a rate that avoids evaporation of secretions. This can be reduced. Generally, about 0 per minute .. 01 kl? /cr++2 (1.0 kilopascals) to 0.1 kg/cm2 (10,0 kilopascals) (7.1 mmHg to 7.7.3 mm H5 per minute) It is also advantageous to have a pressure reduction rate within the range of . A suitable decompression rate is approximately 0.031< 97 cm2 (3,0 kilopascals) to 0.07 kg/cm2 (7,0 kilopascals) Pascal) (23,0mm Hg to 55.6111111 Hg) Optimally is approximately 0.05 kL’an2 (5,0 kilopascals) to 0.06’j/am 2 (6,0 kilopascals) range (38,3mm Hg to 46.Orrrm Hg) Nomo Note 6 Le.

減圧中1十分々量の細胞分泌液の蒸発を引き起こすことなく十分な量の溶解ガス 含有分を溶液から脱出させ細胞壁を貫通せしめる温度にまで圧力を下げる。実際 の減圧レベルは重要ではなく、当該有機組織のタイプや溶解ガス含有分、細胞壁 構造及び細胞分泌液の特性いかんにより広範囲にわたり変化できる。好適には、 溶解ガス含有量の少くとも約半分が解放される。大抵の有機物質の場合、大気圧 以下約0.9 kg/crn2(90キロパスカル)から0.6kg/crI] 2(60キロパスカル)(70から300ffIl′llHg絶対圧)の範囲の レベルへの減圧により最良の結果が得られる。この範囲内では大気圧未満の約0 .8 kg7’crr+2(80キロパスカル)から0.65 kg/crn2 (65キロパスカル)の範囲(150mmHgから260nvnHg絶対圧)が 好ましい。Sufficient amount of dissolved gas without causing evaporation of cell secretions during decompression The pressure is reduced to a temperature that causes the contents to escape from the solution and penetrate the cell wall. actual The level of vacuum is not critical and depends on the type of organic tissue, dissolved gas content, and cell It can vary widely depending on the structure and properties of the cell secretions. Preferably, At least about half of the dissolved gas content is released. For most organic materials, atmospheric pressure Approximately 0.9 kg/crn2 (90 kilopascals) to 0.6 kg/crI] 2 (60 kilopascals) (70 to 300ffIl'llHg absolute pressure). Best results are obtained by reducing pressure to level. Within this range, approximately 0 below atmospheric pressure .. 8 kg7’crr+2 (80 kilopascals) to 0.65 kg/crn2 (65 kilopascals) range (150mmHg to 260nvnHg absolute pressure) preferable.

最適の減圧レベルは単に有機物のタイプにより変わるだけでなく有機物の生長す る高度や気候により変わる。特に、標高の高い所や比較的寒冷もしくは温暖な環 境で生長する野菜や果物などの植物の場合然りである。標高の高い所で生長する 植物に発生する比較的もろい細胞壁により細胞構造は一段と破裂をこうむり易く 、ガス及び蒸気の拡散を通し易くなる。このような場合、細胞の脱水を避は同時 に細胞構造を完全にしておくため特別の注意を払わねばならない。これは、減圧 程度と減圧発生割合を低下することによシ達成ができる。同様な調整が、寒冷又 は温暖な気候に生長する植物の場合細胞分泌液に含まれる溶解ガス量の変動によ りしばしば必要である。The optimal vacuum level depends not only on the type of organic matter, but also on the growth of the organic matter. Varies depending on altitude and climate. Especially at high altitudes or in relatively cold or warm climates. The same is true for plants such as vegetables and fruits that grow in borders. grows at high altitudes The relatively fragile cell walls that occur in plants make the cell structure more susceptible to rupture. , facilitates the diffusion of gases and vapors. In such cases, it is necessary to avoid cell dehydration at the same time. Special care must be taken to keep the cell structure intact. This is a decompression This can be achieved by reducing the degree and rate of depressurization. Similar adjustments can be made to In plants growing in warm climates, this is due to fluctuations in the amount of dissolved gases contained in cell secretions. is often necessary.

特別に厚く又は強い細胞壁がある時には、細胞の減圧応答性を予備的減圧・再圧 縮サイクルにより細胞壁を柔軟にして向上させることができる。減圧と再圧縮の サイクル部分はより小さい圧力降下が使用されるが両方とも上記の割合で行われ る。一般に、効果的な調整は大気圧未満約0.2 kL’cm” (20キロパ スカル)から0.4 kg/crn2(40キロパスカル)の範囲内(450f fIITIHgから600 mHg絶対圧)の圧力に減圧することにより達成で きる。When cell walls are particularly thick or strong, preliminary decompression and recompression can be used to determine the decompression response of the cell. The shrinkage cycle can improve the flexibility of cell walls. Decompression and recompression Both parts of the cycle are performed at the above rates, although a smaller pressure drop is used. Ru. Generally, effective regulation is approximately 0.2 kL’cm” (20 kPa) below atmospheric pressure. Skull) to 0.4 kg/crn2 (40 kilopascals) (450 f This can be achieved by reducing the pressure from fIITIHg to 600 mHg (absolute pressure). Wear.

減圧は冷却工程の前か工程中のいづれかで行われる。Depressurization is performed either before or during the cooling step.

好適には、減圧と冷却は同時に行いガスの脱出を可能ならしめ、他方水分の損失 を避けるよう最適なコントロールを得る。同時に行う時には、−辺にほとばしる のを避けしかもガスが脱出できる前に氷晶の形成を避けるように冷却と減圧の相 対割合を決めねばならぬ。Preferably, the depressurization and cooling are carried out simultaneously to allow the escape of gas, while reducing the loss of moisture. Gain optimal control to avoid When doing it at the same time, it spills out on the − side. phase of cooling and depressurization to avoid the formation of ice crystals before the gas can escape. The ratio must be determined.

適当な割合は普通の実験により容易に決められる。冷凍体の解氷及び再組成後、 破裂した細胞構造を有する分は膨圧の欠除により容易に決められ、一方脱水を受 けた分は密度のいちじるしい変化と膨圧の部分的損失を示す。普通の冷却装置を 使用し上記の如き割合での減圧により細胞破裂及び脱水の両方が避けられ効果的 な結果が容易に得られる。Appropriate proportions are readily determined by routine experimentation. After thawing and recomposition of the frozen body, Those with ruptured cellular structures are easily determined by the lack of turgor pressure, while those that undergo dehydration The orders of magnitude indicate significant changes in density and partial loss of turgor pressure. ordinary cooling device Both cell rupture and dehydration can be avoided by reducing the pressure at the rate mentioned above. results can be easily obtained.

最終温度は細胞間分泌液が冷凍固体となる任意の温度である。これは溶質の性質 及び溶質濃度従って有機組織のタイプにより変わる。一般に、通常の水の氷点か ら約−10°Cの範囲の温度で十分である。The final temperature is any temperature at which the intercellular fluid becomes a frozen solid. This is the property of solute and solute concentration thus vary with the type of organic tissue. In general, the freezing point of normal water Temperatures in the range from about -10°C are sufficient.

冷却は任意の普通の技術により行うことができる。Cooling can be accomplished by any conventional technique.

冷却と減圧を同時に行う時には、既述の如く十分な結晶形成が発生できる前に溶 液からのガスの脱出を可能ならしめるよう冷却率を加減する必要がある。従って 、どっと急速な冷凍が好適に避けられる。When cooling and depressurizing are performed at the same time, as mentioned above, the dissolution occurs before sufficient crystal formation occurs. The cooling rate must be adjusted to allow gas to escape from the liquid. Therefore , rapid freezing is advantageously avoided.

本発明の方法の好適実施例においては、細胞内部における大型結晶に先だって/ 」・型結晶のかたlりが先づ形成されるようこれを促進するため冷却及び減圧に は細胞組織の攪拌及び若しくは振動がともなわれる。小さい細胞は、より小さな 容積を占め細胞形状の変形が小さくなり、更に細胞膜を破ることのでさるような 鋭い縁部又は尖端が少い。攪拌又は振動の速さ及び程度は重要なことではなく、 これらは、細胞構造に研摩その他の損傷を与えることなくしかも溶解ガスの脱出 を可能ならしめる限りさまざまに変えることができる。In a preferred embodiment of the method of the invention, prior to the formation of large crystals inside the cell/ ” - Cooling and depressurization are applied to promote the formation of a type crystal mass first. is accompanied by agitation and/or vibration of the cell tissue. smaller cells are smaller It occupies the volume, deforming the cell shape becomes smaller, and it also breaks the cell membrane. Few sharp edges or points. The speed and degree of agitation or vibration are not critical; These allow the escape of dissolved gases without abrasive or other damage to cellular structures. can be varied as much as is possible.

結晶形成を破ったり再組織するのに十分な程度に組織内で分子運動を誘起するこ とのできるいかなる装置も使用できる。これはおだやかな攪拌から可聴範囲周波 数の振動にいたる範囲内のものである。最良の結果は、細胞構造内の分泌液全部 が固体に凍結するまで一応の割合で継続するおだやかな攪拌により達成ができる 。Inducing molecular movement within a tissue sufficient to disrupt or reorganize crystal formation Any device capable of doing so may be used. This ranges from gentle stirring to audible range frequencies. It is within the range of vibrations of numbers. For best results, all secretions within the cell structure This can be achieved by gentle stirring that continues at a certain rate until it freezes into a solid. .

大抵の応用面で1約2.5cm (1,0インチ)ないし25.0cm(10, 0インチ)の変位振幅をともなった毎分約25から100サイクルの割合の横方 向振動により最良の結果が得られる。For most applications, it is approximately 2.5 cm (1.0 inch) to 25.0 cm (10,0 inch). lateral at a rate of approximately 25 to 100 cycles per minute with a displacement amplitude of Best results are obtained with anti-oscillation.

本発明の方法により濃密な又はかさばる材料を処理する際、かたまり全体にわた り冷凍が行われる−のが保証されるように留意せねばならぬ。熱伝導制限のため レタス結球芯などの内部は外部細胞層又はその近くの部分よりゆっくりと結晶す る。従って、いったん最終の温度ならびに減圧のレベルに達すると、完全なる冷 凍を保証するのに十分な時間にわたり使用時の攪拌を続行するのみならず上記条 件を維持するのがしばしば必要である。When processing dense or bulky materials by the method of the invention, Care must be taken to ensure that refrigeration takes place. Due to heat transfer limitations The interior of lettuce heads, etc., crystallizes more slowly than the outer cell layer or parts near it. Ru. Therefore, once the final temperature and vacuum levels are reached, complete cooling is achieved. In addition to continuing agitation during use for a sufficient period of time to ensure freezing, the above conditions must be met. It is often necessary to maintain

更に任意ではあるが、冷凍中の対象物の周りに湿気のある又は飽和状態の空気を 循環せしめ脱水を防止する別の装置を得ることができる。適宜循環装置が冷却装 置の構造内にしばしば組込まれる。いかなる場合にも、過度に乾燥した環境にお ける冷却はこれを避けねばならぬ。Additionally, optionally, humid or saturated air may be placed around the object being frozen. Other devices can be provided to provide circulation and prevent dehydration. Circulation device is installed as appropriate for cooling system. often incorporated into the structure of the installation. Under no circumstances should it be placed in an excessively dry environment. This must be avoided when cooling.

本発明の方法により生きている動物が冷凍及び減圧により生命中絶を受けると、 二酸化炭素又はその他効果的なガス状の麻酔剤を用いて不安を最小におさえ抑制 を促進することができる。麻酔剤は減圧中解除され、動物は解氷後完全に回復が できる。更に、組織の急速8 な冷却は冷却室にはけ口を与えるヘリウム酸素混合物の使用によりこれを強める ことができる・いったん所要量のm解ガスが脱出できるようになり組織が完全に 凍ったら、有機体は大気圧もしくは溶解がスが解放された部分的真空の状態で無 期限に冷凍状態で貯えることができる。細胞構造は再冷凍にともなう解氷がない 限り手つかずの状態を保つ。When a living animal undergoes life termination by freezing and decompression according to the method of the present invention, Minimize and suppress anxiety using carbon dioxide or other effective gaseous anesthetics can be promoted. The anesthetic was removed during decompression and the animal was allowed to fully recover after deicing. can. In addition, the organization's rapid Cooling is enhanced by the use of a helium-oxygen mixture that provides an outlet for the cooling chamber. ・Once the required amount of m-lysis gas is able to escape, the tissue is completely Once frozen, the organism is kept free at atmospheric pressure or in a partial vacuum with the release of molten gas. It can be stored frozen until the expiry date. Cell structure does not thaw upon refreezing Remain untouched as long as possible.

有機物をその元の状態に戻したい場合には、その有機物を周辺温度に徐々に暖め ることにより解氷が容易に行われる。有機物が暖められるので細胞構造内の氷結 晶が融は大気ガスがその平衡製置に達するまで細胞分泌液中に溶解する。If you want to return the organic material to its original state, gradually warm the organic material to ambient temperature. This makes it easier to thaw the ice. Freezing within cellular structures as organic matter is warmed Crystals dissolve in cell secretions until atmospheric gases reach their equilibrium configuration.

完全な膨圧及び最初の条件への復帰の確立は、有機物に大気圧を僅かに超える圧 力をかけることにより容易に行われる。これは特に、有機物が生命中絶中の動物 細胞や全体動物より成る場合に望ましい。大抵の好適実施例において、過度に大 気圧を超える加圧が解氷の前に行われ細胞内部が流動状態に戻る前に細胞間の圧 力を再確立する。Establishment of complete turgor pressure and return to initial conditions is achieved by subjecting organic matter to pressures slightly above atmospheric pressure. It is easily done by applying force. This is especially true for animals in which organic matter is aborting life. Preferable when consisting of cells or whole animals. In most preferred embodiments, excessively large Pressurization exceeding atmospheric pressure is performed before the ice thaws, and the intercellular pressure decreases before the inside of the cell returns to a fluid state. Reestablish power.

過剰圧力の量はそれ自体が細胞構造に害を引き起こさない限9重要なことではな い。周囲圧力を約5%から10%起える範囲の圧力が大概の応用面に対し十分で ある。同様に再加圧の割合も重要ではなく減圧中必要な強制も受けない。従って 、減圧に用いるのより若干早い割合が可能であシ、かかる割・合の代表的なもの は9 78表昭fig−500058 (4)部分的[]、05 kg/cm”  (、5キロパスカル)から0.1に97cm2(10キロパスカル)の範囲( 毎分38 mm Hgから77皿Hg )である。いったん完全な解氷が行われ ると、有機物は周囲温度に戻ることができ、そこで細胞膜内の余分のガスが解放 される。The amount of overpressure is not important unless it itself causes harm to the cell structure. stomach. Pressures in the range of approximately 5% to 10% above ambient pressure are sufficient for most applications. be. Similarly, the rate of repressurization is not critical and there are no necessary forces during depressurization. Therefore , a rate slightly faster than that used for decompression is possible, and is representative of such rates. is 9 78 table fig-500058 (4) partial [], 05 kg/cm” (, 5 kilopascals) to 0.1 to 97cm2 (10 kilopascals) ( (from 38 mm Hg to 77 plates Hg per minute). Once the ice has completely thawed The organic matter is then allowed to return to ambient temperature, where excess gas in the cell membrane is released. be done.

本発明の方法は、果物、野菜、食用に適しない植物、種子、食用肉、生体細胞及 び組織、動物及び人の器官、動物全体ならびに人間などを含むすべての植物性又 は動物性の対象物の冷凍及び回復に応用ができる。果物や野菜などの如き植物性 対象物が使用される場合、かかる対象物を収穫後できるだけ速やかに処理する時 最良の結果が得られる。本発明の方法は、医学及び科学上の保存における植物性 及び動物性の対象物の改良された貯蔵及び輸送と、外科又は一般の医療目的によ る損傷又は分解した組織ならびに有機系統の医療的中絶と、生物学的保存のだめ の生きている細胞及び複合系統の仮死状態形成に有用性を有している。The method of the invention applies to fruits, vegetables, inedible plants, seeds, edible meat, living cells and All plant or animal products, including tissues, animal and human organs, whole animals, and humans. can be applied to the freezing and recovery of animal objects. Vegetables such as fruits and vegetables If the material is used, when such material is processed as soon as possible after harvest. Get the best results. The method of the present invention is useful for preserving botanicals in medical and scientific preservation. and improved storage and transportation of objects of animal origin and for surgical or general medical purposes. Medical abortion of damaged or decomposed tissue and organic strains and biological preservation measures. It has utility in the formation of suspended animation in living cells and complex lineages.

次の諸例は解説目的上あげたものであり、必して本発明を制限したりないしはこ れを規定するものではない。The following examples are provided for illustrative purposes and are not intended to limit or in any way limit the invention. It does not stipulate that.

6匹の標準の実験室用ねずみと6個のコスヂシャレタスを一4°Cにセットした 開口型の0.06 m” (2,2立方フイート)の携帯式の冷凍器内におき、 この冷凍器を振動能力を有する高標高ンミュレータの内部においた。ベントを設 けた高真空ポンプによりシミュレータ内の圧力を約20分間にわたり一定の率て 11,100メートル(67,000フイート)の標高に相蟲する圧力CI 6 4mmHg絶対圧又は−0,782ki9/cm2(−78,2キロパスカル) 〕に低下させた。減圧中、約7.6cm(6インチ)の偏位ならびに毎分60か ら70サイクルの割で横方向振動を装置系にかけた。いったん指定された圧力に 達すると、冷凍器は閉ざされ1時間45分にわたり振動を続けた。Six standard laboratory mice and six lettuce lettuce were set at -4°C. Placed in an open 0.06 m” (2.2 cubic feet) portable freezer, This refrigerator was placed inside a high-altitude simulator with vibration capability. Set up a vent The pressure inside the simulator is maintained at a constant rate for approximately 20 minutes using a high-pressure high-vacuum pump. Pressure CI 6 at an altitude of 11,100 meters (67,000 feet) 4mmHg absolute pressure or -0,782ki9/cm2 (-78,2 kilopascals) ]. Approximately 7.6 cm (6 inches) of excursion and 60 m/min during decompression Lateral vibration was applied to the device system at a rate of 70 cycles. Once the specified pressure is reached Once reached, the refrigerator was closed and continued to vibrate for 1 hour and 45 minutes.

次に、この振動を止め、冷凍器を再び開き圧力を20分かけ徐すに大気圧に戻す ことができた。更に0.1気圧をシミュレータに誘導しノールを解きドアの開口 を容易ならしめた。そこで、ねずみとレタスを取り出しだ。Next, stop this vibration, open the refrigerator again and gradually return the pressure to atmospheric pressure over 20 minutes. I was able to do that. Furthermore, 0.1 atm is induced into the simulator, the knot is released, and the door opens. made it easy. So I took out the mouse and the lettuce.

ねずみはなんら活気ある徴候を示さず触っても堅く明かに凍っていることを示し だ。ねずみはそれぞれのかごの底部を内張すするのに用いた布と一緒にそのかご から出した。次に、ねずみと布を観察のためボール紙の箱に入れた。減圧室から 取出して約45分して1匹のねずみがため息をつくように見えた。次の15分間 に残りのねずみの4匹が少し動いて生活機能の回復を示した。6香目のねずみは 約10分おくれて動きを見せた。The mouse showed no signs of vitality and was clearly frozen to the touch. is. The mouse is placed in each cage along with the cloth used to line the bottom of the cage. I took it out. Next, the mouse and cloth were placed in a cardboard box for observation. From the decompression chamber About 45 minutes after I took it out, a mouse seemed to sigh. next 15 minutes The remaining four mice moved a little and showed recovery in their daily functions. The sixth-scented mouse is It took about 10 minutes to make a move.

減圧室から取出して約1時間抜水と食物を全部のねずみに与えた2、次の1時間 にわたり6匹のねずみは艮好な健康を保つように見え通常の動作と食パターンを 示した。After removal from the decompression chamber, water was drained for about 1 hour and food was given to all mice.2, for the next 1 hour. Over the years, the six mice appeared to be in excellent health and had normal behavior and eating patterns. Indicated.

レタスも又真空室から取出した9時は堅くすっかり凍っていた。結球は紙タオル 上におき解氷時細胞破裂によるあらゆる洩れの検出を可能々らしめた。The lettuce was also completely frozen solid when I took it out of the vacuum chamber at 9am. Paper towel for bulbs This made it possible to detect any leakage caused by cell rupture when the ice was placed on top.

15分間、レタスはいちじるしく解氷し細胞含有物の洩れは見られなかった。回 復しなかった僅か々領域が若干の葉のへ9近くに表われた。これは冷凍前の葉の きずにより起こったものである。しかし、レタスの大部分は完全な膨圧により回 復した。During the 15 minutes, the lettuce thawed significantly and no leakage of cell contents was observed. times A small area that did not heal appeared near the 9th edge of some leaves. This is the leaves before freezing. This was caused by a scratch. However, most of the lettuce is rotated by complete turgor pressure. Recovered.

f!l 2から例乙に用いた装置は化学攪拌器に配置した透明の真空室を有し、 これらの全部は人が中で歩けるような大型冷蔵庫の内部におかれた。減圧は小型 真空ポンプを使用して真空室の頂部にあるケ゛−ジからの圧力読取りで達成した 。f! The apparatus used in Example B from l.2 has a transparent vacuum chamber placed in a chemical stirrer, All of this was placed inside a large refrigerator that people could walk inside. Decompression is small Achieved by pressure readings from a cage at the top of the vacuum chamber using a vacuum pump. .

サラダボールレタスの結球を真空室内の○ha U Sスケール上におき、スケ ールはレタスが実験当初505grあったことを指示していた。室は、サンプル の冷却時20分間にわたり徐すに−0,77kg7’cm2の真空に減圧され、 その間攪拌器は約7.6cm(3インチ)の横変位置で毎分約50サイクルで作 動していた。冷凍型温度は約−7°Cであった。減圧中、レタスの重量は10g r±2だけ減少した。Place the heads of salad bowl lettuce on the ○ha U S scale in the vacuum chamber, and The rule indicated that the amount of lettuce was 505 gr at the beginning of the experiment. chamber sample During cooling, the pressure was gradually reduced to -0.77 kg7'cm2 over 20 minutes, Meanwhile, the agitator was running at approximately 50 cycles per minute with a lateral displacement of approximately 7.6 cm (3 inches). It was moving. The frozen mold temperature was approximately -7°C. During decompression, the weight of lettuce is 10g. It decreased by r±2.

いったん所要の真空レベルに達すると、その状態を更に4時間維持した。次に、 真空室をベント接続し圧力を徐々に上げ大気圧に戻した再圧縮率は毎分0.05 kj9/cm2(5キロパスカル)から0.06 kg/cm2(6キロパスカ ル)であった。次に、レタス真空室及び冷凍器より取出し、解氷できるように実 験室内の紙タオル上においた。実験室の温度は20°C(68°F)であった。Once the required vacuum level was reached, it was maintained for an additional 4 hours. next, The recompression rate when the vacuum chamber was connected to a vent and the pressure was gradually increased to atmospheric pressure was 0.05 per minute. kj9/cm2 (5 kilopascals) to 0.06 kg/cm2 (6 kilopascals) ). Next, remove the lettuce from the vacuum chamber and freezer, and prepare it so that it can be thawed. It was placed on a paper towel in the laboratory. Laboratory temperature was 20°C (68°F).

比較目的のため、追加の2個の同種類のレタスを照査標準として同じように処理 を施した。しかしその内の1つは減圧も攪拌もせずに冷凍器内に単に置きもう1 つは減圧し攪拌なしに冷凍した。その他の点では同じ方法を施した。For comparison purposes, two additional lettuces of the same variety were treated in the same way as a reference standard. was applied. However, one of them was simply placed in the freezer without depressurization or stirring. One was vacuumed and frozen without stirring. The same method was applied in other respects.

冷凍器から取出して10分内に、第1の照査標準サンプル(減圧も攪拌も伴うこ となしに凍らした)はタオルの汚れを示し、細胞破裂と損傷を示した。第2の照 査標準サンプル(減圧するも攪拌を行うことなく凍らした)はタオルの汚れじみ を示さなかったけれど膨圧の損失を示し、柔軟になりのりや海草に似ていた。Within 10 minutes of removal from the freezer, collect the first reference standard sample (which may involve both vacuum and agitation). (frozen without) showed stains on the towel, indicating cell rupture and damage. second light The test standard sample (frozen under reduced pressure but without stirring) was a stain on the towel. Although it did not show a loss of turgor pressure, it became flexible and resembled seaweed or seaweed.

残りのサンプル(減圧と攪拌の両方を行い凍らした)は解氷後完全な膨圧を維持 し分泌液の洩れを示さなかった。今回も、一枚の葉の僅/JS部分が明かにきす とその部分に働く毛細管の小さな破れに帰因して回復しな6個のサラダボールレ タスを実験用に選び、1つは実験の当日菜園から採取され他のものは取入を後少 くとも4日後に農産物販売業者から手に入れた。これらの3個の結球は例2の減 圧室内にきちんと詰め込んだ。The remaining sample (frozen with both vacuum and agitation) maintained full turgor pressure after thawing. There was no evidence of leakage of secretions. This time too, the slight JS part of one leaf is clearly scratched. 6 salad bowls that did not recover due to small breaks in the capillaries acting in that area. Tass were selected for the experiment; one was collected from the garden on the day of the experiment and the others were harvested later. At least four days later, I got it from a produce dealer. These three heads are the reduction in Example 2. It was packed neatly into the pressure chamber.

結球は例2に記載せる要領で徐々に減圧及び攪拌を施した。安定せる部分的真空 レベルの下で45分攪拌した後結球は完全には凍っていないのが肉眼で観察され た。次に、低圧において攪拌を更に2時間15分にわたシ続け、完全な凍結を達 成した。The heads were gradually depressurized and stirred as described in Example 2. Partial vacuum stabilizing After stirring for 45 minutes under the level, it was observed with the naked eye that the heads were not completely frozen. Ta. Stirring was then continued at low pressure for an additional 2 hours and 15 minutes to achieve complete freezing. accomplished.

次に、漸進的再圧縮を20分間にわたり行うことができた。6個の結球を全部減 圧室と冷凍器の両方から取出し既述の如く実験室内で紙タオル上においた。レタ スの解氷につれ室の側面に接していた葉からの細胞分泌液の洩れが観察された。Gradual recompression could then be carried out over a period of 20 minutes. All 6 heads reduced It was removed from both the pressure chamber and the freezer and placed on paper towels in the laboratory as described above. Reta As the ice thawed, cell secretions were observed leaking from the leaves that were in contact with the sides of the chamber.

内部の葉は洩れを示さなかった。The inner leaves showed no leakage.

実験日に取入れた結球は全膨圧に戻った。菜園からの取入れから4日した結球は 僅かに部分的膨圧にしか戻らなかった。Heads taken on the day of the experiment returned to total turgor pressure. The head balls that were taken in from the vegetable garden after 4 days are The turgor pressure returned only partially.

それぞれ開いた花とつぼみをもった2本の菊を植えた一連の10.2cm (4 インチ)ポットを減圧室に入れ例2の方法により処理を施した。1つのポットに おける1本の菊は室内の高さより僅かに高かったので冷凍中室のトップと接触し ていた。A series of 10.2 cm (4 The pot was placed in a vacuum chamber and treated according to the method of Example 2. in one pot One chrysanthemum in the container was slightly higher than the height of the room, so it did not touch the top of the freezer compartment. was.

最終の部分的真空状態は攪拌をともなって2時間維持され、その時植木は再圧縮 され室及び冷凍器の両方から取出し実験室での解氷を可能ならしめた。1時間内 で植木は全部完全に解氷した。葉は実験前にもっていたのと同じ構造と膨圧を示 し、たV色が僅かにより暗色であった。次に、植木は4週間にわたり観察され室 のトップに接していた茎を除いて全部(は花はそのままでつぼみは開花して生長 を続けた。The final partial vacuum is maintained for 2 hours with agitation, at which time the plants are recompacted. This made it possible to remove the ice from both the room and the freezer and thaw it in the laboratory. within 1 hour All of the plants were completely thawed. The leaves show the same structure and turgor that they had before the experiment. However, the V color was slightly darker. Next, the plants were observed for four weeks in a room. All except the stem that was touching the top of the flower (flowers remain as they are, but buds bloom and grow) continued.

4個のホウズキトマトと、3個のビーフステーキトマトと、2個のイタリデント マトの全部もぎたてのものを既述の如く例2の減圧室におきこれに処理を施した 。更に、2個のホウズキトマトと2個のイタリアントマトこれももぎたてのもの を比較目的のため攪拌器上のしかも減圧室の外においた。最後に、4日ないし6 日早めに取入nたエンダイブを同様に減圧室内においた。4 Hozuki tomatoes, 3 Beefsteak tomatoes, and 2 Italidents Freshly picked whole tomatoes were placed in the vacuum chamber of Example 2 and treated as described above. . Additionally, 2 Hozuki tomatoes and 2 Italian tomatoes, also freshly picked. was placed on a stirrer and outside the vacuum chamber for comparison purposes. Finally, 4 to 6 days The endive that had been taken in earlier in the day was similarly placed in a vacuum chamber.

最終の部分的真空状態がトマトの高水分含有量のため4時間にわたり攪拌を施し て維持された。次に野菜は再圧縮され室及び冷凍器よシ取出され実験室内の解氷 のための紙タオル上におかれた。The final partial vacuum was agitated for 4 hours due to the high moisture content of the tomatoes. maintained. The vegetables are then recompressed and removed from the room and freezer to thaw in the laboratory. Placed on a paper towel.

解氷の結果、照査標準のトマト(攪拌されたが減圧されなかった)は細胞破裂と 皮のしわ立ちの徴候を示し柔かなパルフ0状の堅さをもっていた。残りのトマト はその元の形状と堅さを保持し、表面に暖気に急激にさらさ扛たための水滴がつ いた。もつとも熟したトマトの若干個数のものは最初より暗い色であった。As a result of thawing, the control tomatoes (which were agitated but not depressurized) suffered from cell rupture. The skin showed signs of wrinkling and had a soft pulp-like consistency. remaining tomatoes retains its original shape and firmness and retains water droplets on its surface due to sudden exposure to warm air. there was. However, a few of the ripe tomatoes were darker than the first.

エンダイブは解氷後混ざシ合った反応を示した。あ5 る葉は回復せずにしぼみ他の葉は完全膨圧に戻った。Endive showed mixed reactions after thawing. A5 Some leaves did not recover and shriveled, while other leaves returned to full turgor.

760mから1220m(2500フイートか”ら4000フイート)の高地に 生長した2個のコスチシャと2個の赤葉結球を含む4個のメキンカン レタスを 例2に記載の如く処理をした。結球解氷後、細胞破裂もしくは分泌液の洩れは観 察されなかった。しかし、膨圧は減少し、葉はゴム状のさめ組織と頭初見られな かった表面つやをもっていた。At altitudes between 760m and 1220m (2500 to 4000 feet) 4 pieces of Mekinkan lettuce, including 2 grown costicia and 2 red head heads. Processed as described in Example 2. Cell rupture or secretion leakage should not be observed after the ice cubes have thawed. It wasn't noticed. However, the turgor pressure has decreased, and the leaves have rubbery shark tissue and the heads are not visible for the first time. It had a shiny surface.

追加として同タイプのレタス4個を、減圧を−0,77kg/am2(−77キ ロパスカル)でなく僅か−0,70に!?/cm2(0,70キロパスカ”)  (217++m+Hg絶対圧)のレベルに実施した点を除いて同じ要領で処理し た。これらの結球は解氷後光全膨圧に戻り、きめ組織及び表面外観は冷凍前のも のと同じであった。In addition, 4 pieces of lettuce of the same type were added at a vacuum of -0,77 kg/am2 (-77 kg). Lopascal) but only -0.70! ? /cm2 (0.70 kilopascua”) (217++m+Hg absolute pressure) Ta. These heads return to their total turgor pressure after thawing, and their texture and surface appearance remain the same as before freezing. It was the same as

上記説明は単に解説の目的のためである。本発明は記載せる特徴又は実施例に制 限されるものではない。The above description is for illustrative purposes only. The invention is limited to the features or embodiments described. It is not limited.

本発明の範囲内における数多くの修正及び変更なるものは当業者には自明である 。Numerous modifications and variations within the scope of this invention will be apparent to those skilled in the art. .

国際調査報告 In+s+nmanil^ppHcallan Na、? CT/ 82/ 0 1888第1頁の続きinternational search report In+s+nmanil^ppHcallan Na,? CT/82/0 Continuation of 1888 page 1

Claims (9)

【特許請求の範囲】[Claims] (1) 有機組織の冷凍のための方法にして、(a) 前記組織に接触している 空気の圧力を下げ該組織からの水分蒸発がはgない状態で内部に溶解せるガス状 物質の少くともかなシの部分を前記組織から放出する段階と、 (b) 前記組織を該組織の冷凍点又は以下の温度に冷却する段階を有する有機 組織の冷凍方法。(1) A method for freezing an organic tissue, comprising: (a) contacting said tissue; A gaseous substance that can be dissolved inside the tissue by lowering the pressure of the air and preventing moisture from evaporating from the tissue. releasing at least a small portion of the substance from the tissue; (b) an organic compound comprising the step of cooling the tissue to a temperature at or below the freezing point of the tissue; How to freeze tissues. (2)前記(a)と(b)の段階ははV同時に行われる請求の範囲第1項による 方法。(2) According to claim 1, steps (a) and (b) are performed simultaneously. Method. (3) 前記(a)と(b)の段階ははy同時に行われ、前記組織は同時に攪拌 又は振動され冷凍による結晶形成を妨げるのに十分なように組織内に分子運動を 誘起せしめる請求の範囲第1項による方法。(3) Steps (a) and (b) above are performed simultaneously, and the tissue is stirred at the same time. or vibrated to induce molecular movement within the tissue sufficient to prevent crystal formation by freezing. A method according to claim 1 for inducing. (4) 前記段階(alと(blははy同時に行われ、前記組織は毎分約25サ イクルから100サイクルの率で同時に攪拌される請求の範囲第1項による方法 。(4) The steps (al and (bl) are performed simultaneously, and the tissue is heated at approximately 25 cycles per minute. The method according to claim 1, wherein the method is simultaneously stirred at a rate of 100 cycles to 100 cycles. . (5)前記段階(alで達成される最/」・圧力は大気圧以下約0.90 kl lJ/cm” (90キロパスカル)から約0.60kg/cII]2(60キ ロパスカル)である請求の範囲第1項による方法。(5) The maximum pressure achieved in the above step (al) is approximately 0.90 kl below atmospheric pressure. lJ/cm” (90 kilopascals) to approximately 0.60 kg/cII]2 (60 kilopascals) 2. The method according to claim 1, wherein: (6) 前記段階(alで達成される最小圧力は大気圧以下約0.80 kg/ crn2(80キロパスカル)から約0.65kg/cm2(65キロパスカル )である請求の範囲第1項による方法。(6) The minimum pressure achieved in the above step (al is approximately 0.80 kg/min below atmospheric pressure) crn2 (80 kilopascals) to approximately 0.65kg/cm2 (65 kilopascals) ). (7) 前記段階(alは毎分約−0,03kg/an2(−3キロパスカル) から約−0,07kl?/era2(−7キロパスカル)の率で実施される請求 の範囲第1項による方法。(7) The above step (al is approximately -0.03 kg/an2 (-3 kilopascal) per minute Approximately -0.07kl? Claims carried out at the rate of /era2 (-7 kilopascals) The method according to the first term of the range. (8)前記段階(a)は毎分−0,05kg/crrI2(−5キロパスカル) から約−0,06kg/am2(−6キロパスカル)の率で実施される請求の範 囲第1項による方法。(8) The step (a) is -0,05 kg/crrI2 (-5 kilopascals) per minute. Claims carried out at a rate of approximately -0,06 kg/am2 (-6 kilopascals) from The method according to paragraph 1 of the box. (9)前記組織中に溶解せるガス状物質の少くとも約半分は解放される請求の範 囲第1項による方法。 fil+ 前記有機組織は野菜物で、前記方法は取入れの約1日以内に行われる 請求の範囲第1項による方法。 αυ 有機組織の冷凍のための方法にして、該有機組織に接触している大気の圧 力を毎分約−0,03kg/am2(−6キロパスカル)から約−0,07kg /aT12(−7キロパスカル)の率で大気圧以下約0.9 kg/an2(9 0キロパスカル)から約0.6 kg/am2(60キロパスカル)の最小圧力 に下げ、前記組織からの水分蒸発をほとんど伴わずに該組織中に溶解せるガス状 物質の少くとも約半分を解放し、他方前記組織を約−10°Cから約0℃の温度 に冷却し、毎分約25サイクルから約100サイクルの率で前記組織を攪拌する 段階を有する有機組織の冷凍のための方法。 u21 野菜物の冷凍のための方法にして、該野菜物に接触している大気の圧力 を毎分約−0,05kg/■2(−5キロパスカル)から約−0,06kg/a n2(−6キロバスカル)の率で大気圧以下約0.8 kg/c+n2(80キ ロパスカル)から約0−65 kg/cm” (65キo)eスカル)の最小圧 力に下げ前記野菜物からの水分蒸発をほとんど伴わずに該野菜物に溶解せるガス 状物質の少くとも約半分を解放し、他方前記野菜物を約−10°Cから約0°C の温度に冷却し、毎分約25サイクルから約100サイクルの率て前記野菜物を 攪拌する段階を有し、前記野菜物の取入れの約1日以内に実施される野菜物の冷 凍のための方法。(9) At least about half of the gaseous substance dissolved in the tissue is released. The method according to paragraph 1 of the box. fil+ The organic tissue is a vegetable, and the method is performed within about 1 day of intake. A method according to claim 1. αυ A method for freezing organic tissue, the atmospheric pressure in contact with the organic tissue Force from approximately -0,03 kg/am2 (-6 kilopascals) to approximately -0,07 kg per minute /aT12 (-7 kilopascals) below atmospheric pressure approximately 0.9 kg/an2 (9 Minimum pressure from 0.6 kg/am2 (60 kilopascals) to approximately 0.6 kg/am2 (60 kilopascals) a gaseous substance that dissolves into the tissue with little water evaporation from the tissue. At least about half of the material is released while the tissue is heated to a temperature of about -10°C to about 0°C. and agitating the tissue at a rate of about 25 to about 100 cycles per minute. A method for freezing organic tissue with stages. u21 A method for freezing vegetables, the atmospheric pressure in contact with the vegetables from about -0,05 kg/■2 (-5 kilopascals) to about -0,06 kg/a per minute Approximately 0.8 kg/c+n2 (80 kg) below atmospheric pressure at a rate of n2 (-6 kilobascal) Minimum pressure from approximately 0-65 kg/cm" (65 kio) escal) A gas that can be dissolved in the vegetables without evaporating moisture from the vegetables under low pressure. release at least about half of the material, while heating the vegetable material to about -10°C to about 0°C. The vegetable material is cooled to a temperature of about 25 to about 100 cycles per minute. cooling of the vegetable material, which comprises a step of stirring and is carried out within about one day of the intake of said vegetable material; Method for freezing.
JP84500357A 1982-12-10 1983-11-30 Preservation method of living organic tissue by freezing Pending JPS60500058A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US448467 1982-12-10
US06/448,467 US4423600A (en) 1982-12-10 1982-12-10 Method for preservation of living organic tissue by freezing
PCT/US1983/001888 WO1984002389A1 (en) 1982-12-10 1983-11-30 Method for preservation of living organic tissue by freezing

Publications (1)

Publication Number Publication Date
JPS60500058A true JPS60500058A (en) 1985-01-17

Family

ID=26768769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP84500357A Pending JPS60500058A (en) 1982-12-10 1983-11-30 Preservation method of living organic tissue by freezing

Country Status (5)

Country Link
JP (1) JPS60500058A (en)
BR (1) BR8307626A (en)
DK (1) DK383684D0 (en)
MC (1) MC1610A1 (en)
MW (1) MW1784A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372847A (en) * 1976-12-04 1978-06-28 Katsuichi Koizumi Preservation of fresh japanese horseradish
JPS58193649A (en) * 1982-05-07 1983-11-11 Osaka Daido Gas Kk Long-term preservation of grated radish

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372847A (en) * 1976-12-04 1978-06-28 Katsuichi Koizumi Preservation of fresh japanese horseradish
JPS58193649A (en) * 1982-05-07 1983-11-11 Osaka Daido Gas Kk Long-term preservation of grated radish

Also Published As

Publication number Publication date
BR8307626A (en) 1984-11-27
MW1784A1 (en) 1985-11-13
DK383684A (en) 1984-08-09
DK383684D0 (en) 1984-08-09
MC1610A1 (en) 1985-05-09

Similar Documents

Publication Publication Date Title
US4423600A (en) Method for preservation of living organic tissue by freezing
CA1330541C (en) Method for preserving transplantable sheets of epithelium cultured in vitro
Ozturk et al. Effect of pressure on the vacuum cooling of iceberg lettuce
US20110027439A1 (en) Method for freezing fruit and vegetable produce
IL172001A (en) Method for preserving pomegranate arils and other small seedless and seed-bearing fruit juice bearing vesicles
JPS60500058A (en) Preservation method of living organic tissue by freezing
EP1407671B1 (en) Freezing vegetables
US3219463A (en) Process of dehydrofreezing foods
WO2010134149A1 (en) Method for processing caulerpa lentillifera and processed caulerpa lentillifera
CN113729218A (en) Edible bird&#39;s nest freeze-drying technology
CN113951319A (en) Storage and preservation method for eggplants
CN105851198A (en) Preservation method for aquatic products
US2443866A (en) Method of treating apples
CN115005267B (en) Winter bamboo shoot preservation device and method
JP3083262B2 (en) Manufacturing method of frozen grape and freezing and thawing method of fresh grape
PL146389B1 (en) Method of freezing organic tissues
SU1672979A1 (en) Keeping method of leek maternal plants
Maurer et al. A histological study of ice formation in frozen vegetable tissues
CN105123901B (en) A kind of fresh-cut Chinese celery cold-storage and fresh-keeping method
CN115005267A (en) Winter bamboo shoot preservation device and method
US2339028A (en) Preservation of potatoes, fruit, and vegetables
CN112106823A (en) Preparation method of quick-frozen daylily
JP2821954B2 (en) Antifreeze fruit food
JPH02109938A (en) Method for long-term preservation of persimmon
CN112425646A (en) Durian preservative taking trehalose as main raw material, and method and application thereof