JPS6049855B2 - microwave radiometer - Google Patents

microwave radiometer

Info

Publication number
JPS6049855B2
JPS6049855B2 JP55171652A JP17165280A JPS6049855B2 JP S6049855 B2 JPS6049855 B2 JP S6049855B2 JP 55171652 A JP55171652 A JP 55171652A JP 17165280 A JP17165280 A JP 17165280A JP S6049855 B2 JPS6049855 B2 JP S6049855B2
Authority
JP
Japan
Prior art keywords
microwave radiometer
noise
microwave
temperature
resolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55171652A
Other languages
Japanese (ja)
Other versions
JPS5796225A (en
Inventor
誠 小野
宏 金井
宏和 田中
敏夫 今谷
洋 赤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP55171652A priority Critical patent/JPS6049855B2/en
Publication of JPS5796225A publication Critical patent/JPS5796225A/en
Publication of JPS6049855B2 publication Critical patent/JPS6049855B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/006Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of the effect of a material on microwaves or longer electromagnetic waves, e.g. measuring temperature via microwaves emitted by the object

Description

【発明の詳細な説明】 この発明はマイクロ波放射計の改良に関するものである
DETAILED DESCRIPTION OF THE INVENTION This invention relates to improvements in microwave radiometers.

従来、物体から放射されるマイクロ波雑音電波を受信し
て物体の輝度温度を観測するマイクロ波放射計としては
第1図に示すようなものがある。
2. Description of the Related Art Conventionally, there is a microwave radiometer as shown in FIG. 1, which receives microwave noise radio waves emitted from an object and observes the brightness temperature of the object.

第1図において1はアンテナ、2は低雑音受信機、3は
積分器である。物体から放射されるマイクロ波雑音電波
はアンテナ1により受信される。
In FIG. 1, 1 is an antenna, 2 is a low noise receiver, and 3 is an integrator. Microwave noise radio waves radiated from an object are received by an antenna 1.

この受信電波は低雑音受信機2によつて増巾、検波され
た後、さらに積分器3によつて積分された最終の出力信
号となるが、この出力信号はアンテナビーム幅の範囲内
の観測対象物の平均輝度温度を表わしている。この場合
、このマイクロ波放射計の最小受信感度を表す温度分解
能ΔTは次式で与えられる。第1式においてには低雑音
受信機2の構成によつて決める定数、TAはアンテナ1
で受信されたマイクロ波雑音電波のアンテナ温度、TR
は低雑音受信機2の受信機雑音温度、Bは低雑音受信機
2の帯域幅。
This received radio wave is amplified and detected by the low-noise receiver 2, and then integrated by the integrator 3 to become the final output signal. It represents the average brightness temperature of the object. In this case, the temperature resolution ΔT representing the minimum reception sensitivity of this microwave radiometer is given by the following equation. In the first equation, TA is a constant determined by the configuration of the low noise receiver 2, and TA is the antenna 1.
The antenna temperature of the microwave noise radio wave received at TR
is the receiver noise temperature of the low-noise receiver 2, and B is the bandwidth of the low-noise receiver 2.

Tは積分器3の積分時間である。T is the integration time of the integrator 3.

第1式から明らかなように積分時間を大きくとればこの
マイクロ波放射計の温度分解能ΔTを小さくすることが
できる。しかし、この種のマイクロ波放射計をたとえは
人工衛星に搭載して使用する場合、積分時間丁を大きく
とるということは、第2図に示すようにアンテナ1のビ
ーム幅に対応して決める地表のフットプリントが大きく
なり、フットプリントが大きくなるということはこのマ
イクロ波放射計の距離分解能が劣化することを意味して
いる。したがつてこの従来のマイクロ波放射計において
は、温度分解能を高くしようと思えは距離分解能が劣化
し、距離分解を高くしようと思えは距離分解能が劣化す
るという欠点があつた。そこてこの発明においては複数
台の低雑音受信機を設けることにより、上述の従来の欠
点を除去するようにしたものてある。
As is clear from the first equation, the temperature resolution ΔT of this microwave radiometer can be reduced by increasing the integration time. However, when using this type of microwave radiometer onboard a satellite, for example, the integration time must be large, as shown in Figure 2. The footprint becomes larger, and a larger footprint means that the distance resolution of this microwave radiometer deteriorates. Therefore, this conventional microwave radiometer has the disadvantage that when trying to increase the temperature resolution, the distance resolution deteriorates, and when trying to increase the distance resolution, the distance resolution deteriorates. Therefore, in the present invention, by providing a plurality of low-noise receivers, the above-mentioned drawbacks of the conventional method are eliminated.

以下図面によりこの発明の一実施例について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第3図において1a〜1nはアンテナ、2a〜2nは低
雑音受信機、3a〜3nは積分器、4は信号処理器てあ
る。物体から放射されるマイクロ波雑音電波はアンテナ
1aから1nまでの合計N個のアンテナにより受信され
る。
In FIG. 3, 1a to 1n are antennas, 2a to 2n are low noise receivers, 3a to 3n are integrators, and 4 is a signal processor. Microwave noise radio waves radiated from an object are received by a total of N antennas from antennas 1a to 1n.

それぞれのアンテナで受信された電波はそれぞれのアン
テナに接続された低雑音受信機2a〜2nによつて増幅
、検波された後、さらに積分器3a〜3nによつて積分
される。これら積分された信号は信号処理器3内で合成
され、最終の出力信号となる。アンテナ1a〜1nおよ
び低雑音受信機2a〜2nはそれぞれ互いに同一の性能
を有するものとし、また積分器3a〜3nの各種分時間
は同一でτとするとこの場合のマイクロ波放射計の温度
分解能ΔTは次式て表わすことができる。第(2)式に
おいてNは低雑音受信機等の台数を表わしており、その
他の記号の意味するところは第(1)式と同じてある。
The radio waves received by each antenna are amplified and detected by low noise receivers 2a to 2n connected to each antenna, and then integrated by integrators 3a to 3n. These integrated signals are combined within the signal processor 3 and become the final output signal. It is assumed that the antennas 1a to 1n and the low noise receivers 2a to 2n have the same performance, and the minutes of each integrator 3a to 3n are the same and τ is the temperature resolution ΔT of the microwave radiometer in this case. can be expressed as: In equation (2), N represents the number of low-noise receivers, etc., and the meanings of the other symbols are the same as in equation (1).

したがつて、たとえばこの発明のマイクロ波放射計を人
工衛星に搭載し、かつそれぞれのアンテナのビームが同
一地点を照射するようにアンテナの方向を調整しておく
ものとすると、従来のマイクロ波放射計に比べ各積分器
の積分時間は1/Nに減らすことができるので地表のフ
ットプリントは第4図に示すように小さいものとなり、
その結果高い距離分解能が得られる。
Therefore, for example, if the microwave radiometer of the present invention is mounted on an artificial satellite and the directions of the antennas are adjusted so that the beams of each antenna illuminate the same point, the conventional microwave radiation Since the integration time of each integrator can be reduced to 1/N compared to the total time, the footprint on the earth's surface becomes smaller as shown in Figure 4.
As a result, high distance resolution can be obtained.

また各積分器の積分時間は短かくとも、それらを合成す
ることによつて見かけ上の積分時間は長くすることがて
きるので、高い温度分解能を得ることができる。以上述
べたようにこの発明のマイクロ波放射計によれば、温度
分解能を劣化させることなく高い距離分解能が得られる
利点を有する。
Further, even though the integration time of each integrator is short, by composing them, the apparent integration time can be lengthened, so that high temperature resolution can be obtained. As described above, the microwave radiometer of the present invention has the advantage that high distance resolution can be obtained without deteriorating temperature resolution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来のマイクロ波放射計を説明す
るための図、第3図および第4図はこの発明のマイクロ
波放射計を説明するための図てあり、1はアンテナ2は
低雑音受信機、3は積分器、4は信号処理器である。 なお図中同一あるいは相当部分には同一符号を付して示
してある。
1 and 2 are diagrams for explaining a conventional microwave radiometer, and FIGS. 3 and 4 are diagrams for explaining a microwave radiometer of the present invention. 3 is an integrator, and 4 is a signal processor. Note that the same or corresponding parts in the figures are indicated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 1 物体から放射されるマイクロ波雑音電波を受信して
物体の輝度温度を観測するマイクロ波放射計においてマ
イクロ波放射計の温度分解能および距離分解能を向上さ
せる目的のために使用周波数帯および使用偏波が同一な
低雑音受信機を複数台設けたことを特徴とするマイクロ
波放射計。
1 Frequency band and polarization used for the purpose of improving the temperature resolution and distance resolution of a microwave radiometer in a microwave radiometer that receives microwave noise radio waves emitted from an object and observes the brightness temperature of the object. A microwave radiometer characterized by having a plurality of low-noise receivers with the same noise.
JP55171652A 1980-12-05 1980-12-05 microwave radiometer Expired JPS6049855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55171652A JPS6049855B2 (en) 1980-12-05 1980-12-05 microwave radiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55171652A JPS6049855B2 (en) 1980-12-05 1980-12-05 microwave radiometer

Publications (2)

Publication Number Publication Date
JPS5796225A JPS5796225A (en) 1982-06-15
JPS6049855B2 true JPS6049855B2 (en) 1985-11-05

Family

ID=15927176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55171652A Expired JPS6049855B2 (en) 1980-12-05 1980-12-05 microwave radiometer

Country Status (1)

Country Link
JP (1) JPS6049855B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2507897B2 (en) * 1990-05-08 1996-06-19 工業技術院長 Imaging method of object by radio radiometer
GB0104203D0 (en) 2001-02-21 2001-04-11 Secr Defence Calibrating radiometers
JP5308970B2 (en) * 2009-09-04 2013-10-09 スタンレー電気株式会社 Semiconductor growth equipment

Also Published As

Publication number Publication date
JPS5796225A (en) 1982-06-15

Similar Documents

Publication Publication Date Title
US4031535A (en) Multiple frequency navigation radar system
JPS6049855B2 (en) microwave radiometer
JP2006515070A (en) Wireless signal arrival direction detector
KR101912519B1 (en) Hybrid microwave imaging system and operating method thereof
FR2368836A1 (en) SWITCHABLE MULTI-BEAM RADIO-ELECTRIC HYPERFREQUENCY TRANSMISSION DEVICE
US4617570A (en) Interference cancelling receiver having high angular resolution intercept of transmitted radiators
US2467308A (en) Interference reducing radio pulse receiver
JPH11237464A (en) Radar attachment direction detection device and adjusting method for radar attachment direction using the device
JPH06273511A (en) Gps receiver for survey
JPH022539B2 (en)
JPH02111109A (en) Array antenna system
US2704805A (en) Frequency analyzer circuit
Abranin et al. Angular sizes of sources of solar radio bursts in the decameter range
SU1072272A1 (en) Microwave range radio receiving device
JPS6031281B2 (en) receiving device
JP3917090B2 (en) Receiver
KR100233090B1 (en) Freguemcg multiplicatiom complex aperture array antenna and method therefor
JPS6125330A (en) Diversity communication equipment
JPH06222126A (en) Gps location system
JPS6223260B2 (en)
JPH11125673A (en) Radar device
RU2037932C1 (en) Device for processing signals in phased antenna arrays
JP2947622B2 (en) Radar equipment
KR20040093170A (en) Radio communicate method and system
HO A survey of background noise from acoustic frequencies to optic frequencies[Interim Report]