JPS6049848B2 - Temperature measurement method and device - Google Patents

Temperature measurement method and device

Info

Publication number
JPS6049848B2
JPS6049848B2 JP55086328A JP8632880A JPS6049848B2 JP S6049848 B2 JPS6049848 B2 JP S6049848B2 JP 55086328 A JP55086328 A JP 55086328A JP 8632880 A JP8632880 A JP 8632880A JP S6049848 B2 JPS6049848 B2 JP S6049848B2
Authority
JP
Japan
Prior art keywords
radiant heat
temperature
heat absorbing
measured
objects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55086328A
Other languages
Japanese (ja)
Other versions
JPS5712330A (en
Inventor
典久 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP55086328A priority Critical patent/JPS6049848B2/en
Publication of JPS5712330A publication Critical patent/JPS5712330A/en
Publication of JPS6049848B2 publication Critical patent/JPS6049848B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/048Protective parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • G01J5/051Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path using a gas purge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J2005/066Differential arrangement, i.e. sensitive/not sensitive

Description

【発明の詳細な説明】 本発明は温度測定方法および装置に係り、特に非接触て
被測温物体表面の温度を測定する温度測定方法および装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature measuring method and apparatus, and more particularly to a temperature measuring method and apparatus for non-contactly measuring the temperature of the surface of an object to be measured.

従来より、非接触て被測温物体の表面温度を測定する温
度測定装置として、放射温度計、光高温計および2色高
温計が知られている。
Conventionally, radiation thermometers, optical pyrometers, and two-color pyrometers are known as temperature measuring devices that non-contactly measure the surface temperature of an object to be measured.

しかし、放射温度計は、黒体については正確な温度を測
定できるが、黒体以外の物体については放射率を知つて
温度補正を行なわねばならない。従つて、放射率が未知
あるいは変化する場合は、正確な温度を測定することが
困難である。また、ランド型放射温度計は、被測温物体
が黒体以外である場合の誤差がかなり小さくなるように
考案されており、放射率0.6〜1.0の間ならば略正
しい温度が測定できる。しかし、上記いずれの場合にお
いても冷延鋼板等の様に放射率が0.2〜0.4と小さ
い場合には誤差が大きくなる、という問題点がある。光
高温度計では、被測温物体が黒体である場合には、正確
な温度を測定できるが、黒体以外の物体については温度
補正をしなけれはならず、放射温度計と同様の問題点が
ある。また、2色高温計は、上記の様に被測温物体が黒
体でない場合の温度補正を少なくする目的で作製された
ものであるが、波長λ、波長λ2での放射輝度の比率を
計測して温度を知る装置であり放射比(λ、/λ。)を
知らなければならない、という問題点がある。本発明は
、上記問題点を解消すべくなされたもので、その第1の
目的は放射率による温度補正の必要がない温度測定方法
を提供することにある。
However, although a radiation thermometer can accurately measure the temperature of a black body, it is necessary to know the emissivity of objects other than black bodies and perform temperature correction. Therefore, it is difficult to accurately measure temperature if the emissivity is unknown or changing. In addition, the land-type radiation thermometer is designed so that the error when the object to be measured is other than a black body is considerably small, and if the emissivity is between 0.6 and 1.0, the temperature will be approximately correct. Can be measured. However, in any of the above cases, there is a problem that the error becomes large when the emissivity is as small as 0.2 to 0.4, such as in cold-rolled steel sheets. Optical thermometers can accurately measure temperature when the object to be measured is a black body, but temperature correction must be made for objects other than black bodies, which causes the same problem as radiation thermometers. There is a point. In addition, the two-color pyrometer was created to reduce the temperature correction when the object to be measured is not a blackbody, as mentioned above, but it measures the ratio of the radiance at wavelength λ and wavelength λ2. The problem is that the radiation ratio (λ, /λ) must be known since it is a device that can be used to determine temperature. The present invention has been made to solve the above problems, and its first purpose is to provide a temperature measurement method that does not require temperature correction based on emissivity.

フまた、本発明の第2の目的は、放射率による温度補正
の必要がない上に、構造が簡単で、低価格で製造できる
温度測定装置を提供することにある。本発明の第1の目
的は被測温物体からの放射熱を吸収する複数の放射熱吸
収物体の放射熱吸収側クを該被測温物体から略等距離に
配置し、前記複数の放射熱吸収物体の放射熱放出側を異
る熱的条件に設定すると共に、前記複数の放射熱吸収物
体の放射熱吸収側および放射熱放出側の温度を検出し、
この検出温度から前記被測温物体の温度を測定すること
により達成される。また、本発明の第2の目的は、被測
温物体から略等距離に配置された該被測温物体からの放
射熱を吸収する複数の放射熱吸収物体と、該複数の放射
熱吸収物体の放射熱放出側と異なる熱的条件に設定する
温度設定装置と、前記複数の放射熱吸収物体の放射熱吸
収側および放射熱放出側に接触して設けられた複数の温
度検出装置と、該複数の温度検出装置の各々に接続され
た演算装置と、該演算装置に接続された温度表示部とを
含んで構成することにより達成される。 〜以
下図面を参照して本発明の実施例を詳細に説明する。
A second object of the present invention is to provide a temperature measuring device that does not require temperature correction based on emissivity, has a simple structure, and can be manufactured at low cost. A first object of the present invention is to arrange the radiant heat absorbing sides of a plurality of radiant heat absorbing objects that absorb radiant heat from the object to be measured at approximately the same distance from the object to be measured, and to absorb the radiant heat from the object to be measured. setting the radiant heat releasing side of the absorbing object to different thermal conditions, and detecting the temperatures of the radiant heat absorbing side and the radiant heat releasing side of the plurality of radiant heat absorbing objects;
This is achieved by measuring the temperature of the object to be measured from this detected temperature. A second object of the present invention is to provide a plurality of radiant heat absorbing objects that absorb radiant heat from the object to be measured, which are arranged approximately equidistant from the object to be measured; a temperature setting device for setting a thermal condition different from that of the radiant heat emitting side of the plurality of radiant heat absorbing objects; This is achieved by configuring the system to include an arithmetic device connected to each of the plurality of temperature detection devices and a temperature display unit connected to the arithmetic device. - Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

ます、温度測定方法の一実施例を説明する。第1図に示
すように、被測温物体表面2から等しい距離に放射熱吸
収物体4および6を配置する。すなわち、この放射熱吸
収物体4および6は被温物体からの放射熱を吸収する例
えばセラミック等で形成され被測温物体表面2から等し
い距離に放射熱吸収側4aおよび6aが位置するように
配置されている。そして、放射熱吸収物体4および6の
放射熱放出側4bおよび6bは異なる熱的条件に設定し
てある。異なる熱的条件を設定するには、例えば放射熱
放出側4bを加熱し、放射熱放出側6bを冷却するよう
にすればよい。ここで、被測温物体表面2の温度をTX
C′K〕、放射熱放出側4bの温度をT1〔玉〕、放射
熱吸収側4aの温度をT2〔玉〕、放射熱放出側6bの
温度をLC′K〕、放射熱吸収側6aの温度をT4〔玉
〕とすれは、被測温物体表面2から放射熱吸収物体4お
よび6に伝わる熱量Ql,q2〔Kcal/!d−Hr
〕は、定常状態と仮定すると次の(1)、(2)式のよ
うに表わされる。
First, an embodiment of the temperature measurement method will be described. As shown in FIG. 1, radiant heat absorbing objects 4 and 6 are placed at equal distances from the surface 2 of the object to be measured. That is, the radiant heat absorbing objects 4 and 6 are made of, for example, ceramic, which absorbs radiant heat from the object to be heated, and are arranged so that the radiant heat absorbing sides 4a and 6a are located at equal distances from the surface 2 of the object to be temperature measured. has been done. The radiant heat emitting sides 4b and 6b of the radiant heat absorbing bodies 4 and 6 are set to different thermal conditions. To set different thermal conditions, for example, the radiant heat emitting side 4b may be heated and the radiant heat emitting side 6b may be cooled. Here, the temperature of the surface 2 of the object to be measured is TX
C'K], the temperature of the radiant heat releasing side 4b is T1 [ball], the temperature of the radiant heat absorbing side 4a is T2 [ball], the temperature of the radiant heat releasing side 6b is LC'K], the temperature of the radiant heat absorbing side 6a is If the temperature is T4 [ball], then the amount of heat transmitted from the surface 2 of the object to be measured to the radiant heat absorbing objects 4 and 6 is Ql, q2 [Kcal/! d-Hr
] is expressed as the following equations (1) and (2) assuming a steady state.

但し、σはステファン●ボルツマン定数、φ1、φ2は
被測温物体表面と放射熱吸収物体の放く射熱吸収側との
位置関係および放射率によつて定まる定数、λa、λb
はそれぞれ放射熱吸収物体4および6の熱伝導率〔Kc
al/イ・Hr・℃〕、ΔV1ΔXbはそれぞれ放射熱
吸収物体4および6の厚み〔m〕である。
However, σ is the Stefan Boltzmann constant, φ1 and φ2 are constants determined by the emissivity and the positional relationship between the surface of the object to be measured and the radiation heat absorbing side of the radiant heat absorbing object, λa, λb
are the thermal conductivities [Kc
al/I・Hr・℃] and ΔV1ΔXb are the thicknesses [m] of the radiant heat absorbing bodies 4 and 6, respectively.

上記(1)、(2)式において、放射熱吸収側4aおよ
び6aの被測温物体表面2からの距離が等しくなるよう
に配置され放射熱吸収物体の材質も同一であるので、φ
1″−φ2、λa′.入bである。
In the above equations (1) and (2), since the radiant heat absorption sides 4a and 6a are arranged so that the distances from the surface 2 of the object to be measured are equal, and the materials of the radiant heat absorption objects are the same, φ
1″-φ2, λa′.input b.

ここで(1)、(2)式の辺々を除算すると次の(3)
式のようになる。ここで、(3)式の右辺をαとおいて
Txを求めると(4)式のようになる。
If we divide the sides of equations (1) and (2), we get the following (3)
It becomes like the expression. Here, if the right side of equation (3) is set to α, Tx is calculated as shown in equation (4).

(4)式において、αは(3)式右辺に示すように放射
熱吸収物体4および6の温度勾配の比(但し、厚みΔX
aおよびΔ油が異なる場合はその補正係数を含む)を表
わしており、α半1である。
In equation (4), α is the ratio of the temperature gradients of the radiant heat absorbing bodies 4 and 6 as shown on the right side of equation (3) (however, the thickness ΔX
(including the correction coefficient if a and Δoil are different), which is α half 1.

従つて、前述したように放射熱放出側4bおよび6bを
異なつた熱的条件に設定する必要がある。従つて、放射
熱吸収物体4および6の放射熱吸収側4a,6aの温度
T2,T4、放射熱放出側4b,6bの温度Tl,T3
を検出し、上記(4)式を用いれば被測温物体表面の温
度を測定することができる。なお、放射熱吸収物体の厚
みΔXa、Δ迅が異なる場合には、更にこの厚みを測定
して前記αを求める必要がある。また、上記は、放射熱
吸収物体を2個使用した例について説明したが、本方法
は放射熱吸収物体を3個以上使用しても同様に適用でき
るものてある。また、被測温物体表面から等しい距離に
放射熱吸収物体を配置した例について説明したが、略等
しい距離に配置しても、略同様の効果が得られる。次に
、温度測定装置について説明する。
Therefore, as described above, it is necessary to set the radiant heat emitting sides 4b and 6b to different thermal conditions. Therefore, the temperatures T2, T4 on the radiant heat absorbing sides 4a, 6a of the radiant heat absorbing bodies 4 and 6, and the temperatures Tl, T3 on the radiant heat releasing sides 4b, 6b.
By detecting and using equation (4) above, it is possible to measure the temperature of the surface of the object to be measured. Note that if the thicknesses ΔXa and ΔX of the radiant heat absorbing object are different, it is necessary to further measure these thicknesses to obtain the above α. Furthermore, although the above description has been given of an example in which two radiant heat absorbing objects are used, the present method can be similarly applied even when three or more radiant heat absorbing objects are used. Further, although an example has been described in which the radiant heat absorbing objects are arranged at equal distances from the surface of the object to be measured, substantially the same effect can be obtained even if the radiant heat absorbing objects are arranged at substantially equal distances. Next, the temperature measuring device will be explained.

この測定装置は前記測定方法を直接利用したものてある
。第2図および第3図に本測定装置の一実施例を示す。
第1の温度センサ10は第2図Aに示すように第1の保
護管11の開口端に第1の放射熱吸収物体12を嵌合し
ている。この第1の放射熱吸収物体12は、充分熱容量
の小さい例えば窒化硅素やセラミックで円柱状に形成さ
れ、放射熱吸収物体12と保護管11とを熱的に遮断す
るためのスリット13が穿設されている(第2図Aおよ
びB)。また、第1の放射熱吸収物体12の放射熱吸収
側および放射熱放出側には、例えば熱電対等の温度検出
装置14が埋設されている。この温度検出装置14は、
放射熱吸収側面および放射熱放出側面に貼着するように
してもよい。第1の放射熱吸収物体12の放射熱放出側
には、熱的条件を均等にするための銅板16を介して温
度設定装置としてのヒータ18が設けられている。第2
の温度センサ1『は第1の温度センサ10と同様に第2
の保護管1「に、第2の放射熱吸収物体12″、スリッ
ト13″、温度検出装置1Cおよび銅板16″を設けて
いる。また、第2の保護管1「の内部は仕切板20で分
割され、この中に冷却空気22を環流させて温度設定装
置を構成している。従つて、放射熱吸収物体の放射熱放
出側は異る熱的条件に設定されることになる。而して、
前記第1および第2の温度センサは、第3図に示すよう
に接続されて、温度測定装置を構成する。
This measuring device directly utilizes the measuring method described above. An embodiment of this measuring device is shown in FIGS. 2 and 3.
As shown in FIG. 2A, the first temperature sensor 10 has a first radiant heat absorbing object 12 fitted into the open end of a first protection tube 11. The first radiant heat absorbing object 12 is formed into a cylindrical shape of silicon nitride or ceramic having a sufficiently small heat capacity, and is provided with a slit 13 for thermally insulating the radiant heat absorbing object 12 and the protection tube 11. (Fig. 2 A and B). Further, a temperature detection device 14 such as a thermocouple is embedded in the radiant heat absorbing side and the radiant heat releasing side of the first radiant heat absorbing object 12. This temperature detection device 14 is
It may be attached to the radiant heat absorbing side and the radiant heat emitting side. A heater 18 as a temperature setting device is provided on the radiant heat emitting side of the first radiant heat absorbing object 12 via a copper plate 16 for equalizing thermal conditions. Second
temperature sensor 1' is the second temperature sensor 10 in the same way as the first temperature sensor 10.
A second radiant heat absorbing object 12'', a slit 13'', a temperature detecting device 1C, and a copper plate 16'' are provided in the protective tube 1''. Further, the inside of the second protection tube 1 is divided by a partition plate 20, and cooling air 22 is circulated therein to constitute a temperature setting device.Therefore, the radiant heat releasing side of the radiant heat absorbing object is will be set to different thermal conditions.
The first and second temperature sensors are connected as shown in FIG. 3 to constitute a temperature measuring device.

図に示すように、温度センサ10および1『は固定部材
24に並列させて固定されている。温度センサ10には
、ヒータ18用電圧調節計26が接続され、温度センサ
1『には、冷却空気流量調節弁28が接続されている。
なお、30は冷却空気入口、32は冷却空気出口てある
。温度センサ10および1『の温度検出装置14および
1Cは電線34を介して演算装置36に接続されている
。そしてこの演算装置は温度表示部38に接続されてい
る。本実施例は、第3図に示すように温度センサ10お
よび1『を被測温物体表面2の近傍に配置し、電圧調節
計26および冷却空気流量調節弁28を調節して、放射
熱吸収物体の放射熱放出側に異つた熱的条件を設定する
。すると、温度検出装置14および14″から温度信号
が出力され、演算装置36で前記(4)式の演算が成さ
れ、演算結果が温度表示部に表示される。次に、放射熱
吸収物体をセラミック(97%Al2O3)て厚み4W
r!nに作成し、保護管の内径を60?、銅板の厚みを
0.5醜、ヒータの電力を0.1KW1冷却空気量を2
.5d/Minとして本発明の温度測定装置を作成した
ときの応答速度を第4図に示す。
As shown in the figure, the temperature sensors 10 and 1' are fixed to a fixing member 24 in parallel. A voltage regulator 26 for the heater 18 is connected to the temperature sensor 10, and a cooling air flow rate control valve 28 is connected to the temperature sensor 1'.
Note that 30 is a cooling air inlet, and 32 is a cooling air outlet. The temperature detection devices 14 and 1C of the temperature sensors 10 and 1'' are connected to a calculation device 36 via an electric wire 34. This arithmetic device is connected to the temperature display section 38. In this embodiment, as shown in FIG. 3, temperature sensors 10 and 1' are placed near the surface 2 of the object to be measured, and a voltage regulator 26 and a cooling air flow rate control valve 28 are adjusted to absorb radiant heat. Set different thermal conditions on the radiant heat emitting side of the object. Then, a temperature signal is output from the temperature detection devices 14 and 14'', and the arithmetic unit 36 calculates the above equation (4), and the calculation result is displayed on the temperature display section.Next, the radiant heat absorbing object is Ceramic (97% Al2O3) thickness 4W
r! n, and the inner diameter of the protection tube is 60? , the thickness of the copper plate is 0.5, the power of the heater is 0.1KW, the amount of cooling air is 2
.. FIG. 4 shows the response speed when the temperature measuring device of the present invention was made with a temperature of 5 d/Min.

図は初期の段階では800℃の一定温度の鋼板の温度を
測定した場合の応答速度を示している。続いて鋼板の温
度が80CfCから900900℃から800℃へステ
ップ的に変化した場合、また更に鋼板温度がサインカー
ブで変化した場合の応答速度を示している。図の実線は
、鋼板温度を示し、破線は装置の指示温度を示している
。この図よりこの温度測定装置の時定数は約0.5mi
nである。この値は、従来の放射温度計と比較して大き
いが、炉内温度計側に用いる熱電対と比較する同程度で
ある。なお、放射熱吸収物体の放射熱吸収側または放出
側に設ける温度検出装置を複数個直列接続して熱起電力
を拡大することにより、精度を上げることができる。
The figure shows the response speed when measuring the temperature of a steel plate at a constant temperature of 800°C in the initial stage. Next, the response speed is shown when the temperature of the steel plate changes stepwise from 80CfC to 900900°C to 800°C, and when the temperature of the steel plate changes in a sine curve. The solid line in the figure shows the steel plate temperature, and the broken line shows the temperature indicated by the device. From this figure, the time constant of this temperature measuring device is approximately 0.5 mi.
It is n. Although this value is larger than that of a conventional radiation thermometer, it is comparable to that of a thermocouple used on the in-furnace thermometer side. Note that the accuracy can be increased by connecting a plurality of temperature detection devices provided on the radiant heat absorption side or the radiant heat emission side of the radiant heat absorbing object in series to expand the thermoelectromotive force.

この精度は0.5%以下とすることが可能である。以上
説明したように、本発明によれば、放射率に伴う補正が
不必要で、測定温度範囲は任意になり、構造簡単て低価
格の装置を提供てきる、という効果が得られる。
This accuracy can be 0.5% or less. As explained above, according to the present invention, it is possible to obtain an advantageous effect that correction due to emissivity is unnecessary, the measurement temperature range can be set arbitrarily, and a device with a simple structure and low cost can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の温度測定方法の一実施例を説明する
ための説明図、第2図Aは、本発明の温度測定装置の温
度センサ部の断面図、第2図Bは、第2図A(7)B−
B線断面図、第3図は、本発明の温度測定装置の一実施
例を示すブロック図、第4図は、温度測定装置の応答速
度を示す線図てある。 2・・・・・・被測温物体表面、4,6,12,12″
・・・・・放射熱吸収物体、4a・・・・・・放射熱吸
収側、4b・・・・・・放射熱放出側、10,1『・・
・・・温度セン5サ、14,14″・・・・温度検出装
置、16,16″・・・・・銅板、18・・・・・・ヒ
ータ、36・・・・・・演算装置、38・・・・・・温
度表示部。
FIG. 1 is an explanatory diagram for explaining one embodiment of the temperature measuring method of the present invention, FIG. 2 A is a sectional view of the temperature sensor section of the temperature measuring device of the present invention, and FIG. Figure 2 A (7) B-
3 is a block diagram showing one embodiment of the temperature measuring device of the present invention, and FIG. 4 is a diagram showing the response speed of the temperature measuring device. 2...Temperature measurement object surface, 4, 6, 12, 12''
...Radiant heat absorption object, 4a...Radiant heat absorption side, 4b...Radiant heat release side, 10,1'...
...Temperature sensor 5 sensor, 14,14''...Temperature detection device, 16,16''...Copper plate, 18...Heater, 36...Calculation device, 38...Temperature display section.

Claims (1)

【特許請求の範囲】 1 被測温物体からの放射熱を吸収する複数の放射熱吸
収物体の放射熱吸収側を該被測温物体から略等距離に配
置し、前記複数の放射熱吸収物体の放射熱放出側を異る
熱的条件に設定すると共に、前記複数の放射熱吸収物体
の放射熱吸収側および放射熱放出側の温度を検出し、こ
の検出温度から前記被測温物体の温度を測定するように
した温度測定方法。 2 被測温物体から略等距離に配置された該被測温物体
からの放射熱を吸収する複数の放射熱吸収物体と、該複
数の放射熱吸収物体の放射熱放出側を異なる温度条件に
設定する温度設定装置と、前記複数の放射熱吸収物体の
放射熱吸収側および放射熱放出側に接触して設けられた
複数の温度検出装置と、該複数の温度検出装置の各々に
接続された演算装置と、該演算装置に接続された温度表
示部とを含んで構成された温度測定装置。
[Scope of Claims] 1. The radiant heat absorbing sides of a plurality of radiant heat absorbing objects that absorb radiant heat from an object to be temperature measured are arranged at approximately equal distance from the object to be temperature measured, and the plurality of radiant heat absorbing objects absorb radiant heat from the object to be temperature measured. The radiant heat releasing side of the plurality of radiant heat absorbing objects is set to different thermal conditions, and the temperature of the radiant heat absorbing side and the radiant heat releasing side of the plurality of radiant heat absorbing objects is detected, and the temperature of the object to be measured is determined from the detected temperature. A temperature measurement method that measures . 2. A plurality of radiant heat absorbing objects that absorb radiant heat from the object to be measured, which are arranged approximately equidistant from the object to be measured, and radiant heat releasing sides of the plurality of radiant heat absorbing objects are placed under different temperature conditions. a temperature setting device to be set; a plurality of temperature detection devices provided in contact with the radiant heat absorption side and the radiant heat release side of the plurality of radiant heat absorption objects; and a temperature detection device connected to each of the plurality of temperature detection devices. A temperature measurement device configured to include a calculation device and a temperature display unit connected to the calculation device.
JP55086328A 1980-06-25 1980-06-25 Temperature measurement method and device Expired JPS6049848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55086328A JPS6049848B2 (en) 1980-06-25 1980-06-25 Temperature measurement method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55086328A JPS6049848B2 (en) 1980-06-25 1980-06-25 Temperature measurement method and device

Publications (2)

Publication Number Publication Date
JPS5712330A JPS5712330A (en) 1982-01-22
JPS6049848B2 true JPS6049848B2 (en) 1985-11-05

Family

ID=13883762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55086328A Expired JPS6049848B2 (en) 1980-06-25 1980-06-25 Temperature measurement method and device

Country Status (1)

Country Link
JP (1) JPS6049848B2 (en)

Also Published As

Publication number Publication date
JPS5712330A (en) 1982-01-22

Similar Documents

Publication Publication Date Title
US5178464A (en) Balance infrared thermometer and method for measuring temperature
US2837917A (en) Radiation systems for measuring temperature
KR100539205B1 (en) Measuring tip for a radiation thermometer
GB2082767A (en) Surface temperature measuring apparatus for object within furnace
ES2040565T3 (en) TEMPERATURE REFERENCE UNION FOR MULTI-CHANNEL TEMPERATURE DETECTOR SYSTEM.
JPH0666639A (en) Infrared thermometer
RU2325622C1 (en) Technique of controlling authenticity of readings of thermoelectric converter during operation
US4472594A (en) Method of increasing the sensitivity of thermopile
JPS6049848B2 (en) Temperature measurement method and device
US4030362A (en) Self-calibrating radiometer
Diller et al. Heat flux measurement
US3285069A (en) Instrument for measuring temperature of extended surfaces
JP3099470B2 (en) Non-contact temperature measurement system for centrifuge
JP2002156283A (en) Thermopile-type infrared sensor
JPH0367137A (en) Surface temperatude controller
Gaviot et al. Thin foil planar radiometers: application for designing contactless sensors
JP2889416B2 (en) Space temperature distribution measurement device
SU679823A1 (en) Thermosound
JPS5923369B2 (en) Zero-level heat flow meter
SU489027A1 (en) Device for calibration of heat meters
JPS5922501Y2 (en) radiation thermometer
JPH07140008A (en) Radiation thermometer
SU693198A1 (en) Calorimeter for measuring specific heat and thermal effects
SU502242A1 (en) Device for measuring unsteady heat fluxes
SU440570A1 (en) The method of calibration of surface thermopile