JPS6049697B2 - Method for manufacturing thin metal sheets - Google Patents
Method for manufacturing thin metal sheetsInfo
- Publication number
- JPS6049697B2 JPS6049697B2 JP54076112A JP7611279A JPS6049697B2 JP S6049697 B2 JPS6049697 B2 JP S6049697B2 JP 54076112 A JP54076112 A JP 54076112A JP 7611279 A JP7611279 A JP 7611279A JP S6049697 B2 JPS6049697 B2 JP S6049697B2
- Authority
- JP
- Japan
- Prior art keywords
- thin metal
- plate
- annealing
- thin
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
- C21D8/1211—Rapid solidification; Thin strip casting
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Continuous Casting (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Description
【発明の詳細な説明】
本発明は、圧延工程を殆んど経ることなく、結晶粒のよ
く成長した鉄を主成分とする金属薄膜を得ることを目的
とする。DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to obtain a metal thin film containing iron as a main component in which crystal grains have grown well without undergoing a rolling process.
従来電気鉄板として板厚0.3〜0.5Tn!nの低炭
素鋼板およびけい素3%以下の鋼板が用いられている。The thickness of conventional electric iron plates is 0.3 to 0.5Tn! n low carbon steel plates and steel plates with silicon content of 3% or less are used.
いずれも鋼塊を熱延しさらに冷延するという工程を経て
おり、大規模な圧延設備を必要とし、また多数回の圧延
工程等の中間工程を必要としてきたためコストが高いも
のとなつている。またけい素が3%を越えると硬度が大
きくなり圧延率を大きくとることが難しくなるというよ
うに製造面から組成に制限がある。ただ冷延を行なつた
後、最終的に熱処理を行なうと良好な磁気特性をもつよ
うな方向に結晶粒が成長するということが知られている
。一方圧延急冷法と呼ばれる手法によつて作る電気鉄板
に相当する鉄を主成分とする金属材料として、Fe−B
−M(鉄−ほう素−金属)(M=C、5i1P1Ge)
の成分の板厚約50μmのアモルファス磁性材料等があ
る。In both cases, a steel ingot is hot-rolled and then cold-rolled, requiring large-scale rolling equipment and intermediate processes such as multiple rolling steps, resulting in high costs. . Furthermore, if the silicon content exceeds 3%, the hardness increases and it becomes difficult to obtain a large rolling ratio, so there are restrictions on the composition from the manufacturing standpoint. However, it is known that if a final heat treatment is performed after cold rolling, crystal grains will grow in a direction that provides good magnetic properties. On the other hand, Fe-B
-M (iron-boron-metal) (M=C, 5i1P1Ge)
There is an amorphous magnetic material with a plate thickness of about 50 μm and the like.
しカルこのアモルファス磁性材料を製造するためには、
溶融金属の冷却速度や組成等種々の制限が多くであり、
大きな幅で板厚の大きいものは製造が困難である。また
歪とりの熱処理を行なうときには再結晶化しないような
温度で行なわねばならず、処理時間が長くかかつたり、
完全に歪がとれないという欠点がある。以上述べたよう
に電気鉄板を製造する従来の方法では問題点が多かつた
。本発明はこのような難点を改良するもので、以下図面
を参考に説明する。In order to produce this amorphous magnetic material,
There are many restrictions such as cooling rate and composition of molten metal,
It is difficult to manufacture large width and thick plates. In addition, when heat treatment is performed to remove distortion, it must be performed at a temperature that does not cause recrystallization, resulting in a long treatment time.
The disadvantage is that distortion cannot be completely removed. As mentioned above, the conventional method of manufacturing electric iron plates has many problems. The present invention is intended to improve these drawbacks, and will be described below with reference to the drawings.
第1図に示すように鉄を主成分とする所定の組成の溶融
金属1をアルゴンガス等の不活性ガスの・圧力を利用し
て、ローラ2上に連続的に吹き出し冷却して金属薄板3
とする。As shown in FIG. 1, a molten metal 1 of a predetermined composition mainly composed of iron is continuously blown onto a roller 2 using the pressure of an inert gas such as argon gas and cooled to form a thin metal plate 3.
shall be.
溶融金属1の吹き付け量とローラ2の回転スピードを調
節することによつて、所定の板厚になるようにする。ま
た第2図に示すように、溶融金属1を2個のローラ4の
フ間に連続して吹き出し、冷却と圧延を同時に行なつて
金属薄板5を得ることもできる。そして第2図に示す方
法の方が、第1図に示す方法より板厚を正確に出すこと
ができ、冷却条件が均一である。このとき組成や冷却速
度等の条件によつで金5属薄板中にアモルファス部分が
含まれても、本発明の方法によつて所定の特性をもつ金
属薄板が得られれば問題とならない。ここては所定の板
厚の金属薄体を作ることが主目的である。ローラ2,4
の材質としては、所定の板厚を実現させるために必要な
条件として冷却速度や耐熱性等の面から銅やその他の金
属製のものや、金属よりも熱伝導の悪いアルミナ等ある
いはセラミック製のものを用いることができる。By adjusting the spray amount of molten metal 1 and the rotational speed of roller 2, a predetermined plate thickness is obtained. Further, as shown in FIG. 2, the molten metal 1 can be continuously blown between two rollers 4, and the thin metal plate 5 can be obtained by cooling and rolling at the same time. The method shown in FIG. 2 allows the plate thickness to be determined more accurately than the method shown in FIG. 1, and the cooling conditions are more uniform. At this time, even if an amorphous portion is included in the five-metal thin plate due to conditions such as composition and cooling rate, it will not be a problem as long as a metal thin plate with predetermined characteristics can be obtained by the method of the present invention. The main purpose here is to make a thin metal body with a predetermined thickness. rollers 2, 4
In order to achieve the desired thickness, copper and other metals such as copper and other metals, alumina, etc., which have poorer thermal conductivity than metals, and ceramics are recommended. can be used.
またローラ2,4の表面が凹凸のない面であり、金属薄
体の冷却時に、アルゴンガス等の不活性ガス雰囲気ある
いは真空雰囲気によつて非酸化性雰囲気にしたり、ロー
ラの温度制御を行なうことが安定して一定の特性を持つ
金属薄板を製造するのに望しい。このようにして得られ
た金属薄板は、歪が不均一に入り、結晶粒が小さく、ま
たアモルファス部分を含んだりするので磁気的に良好な
特性を示さず電気鉄板としては利用価値が小さい。強磁
性体であるα鉄分を多く含む金属薄板を再結晶化温度以
上て焼鈍熱処理を行ない、歪をとつて粒成長を起させる
と磁気特性が改善され電気鉄板として利用価値が大きく
なつてくる。In addition, the surfaces of the rollers 2 and 4 are smooth surfaces, and when cooling the thin metal body, a non-oxidizing atmosphere is created using an inert gas atmosphere such as argon gas or a vacuum atmosphere, and the temperature of the rollers is controlled. is desirable for producing thin metal sheets with stable and constant properties. The metal sheet thus obtained has non-uniform strain, small crystal grains, and contains amorphous parts, so it does not exhibit good magnetic properties and has little utility as an electric steel sheet. When a thin metal sheet containing a large amount of alpha iron, which is a ferromagnetic material, is annealed at a temperature above the recrystallization temperature to remove strain and cause grain growth, its magnetic properties are improved and its utility as an electric iron sheet increases.
当然アモルファス分が含まれているとしてもそれは結晶
化されてしまう、また平坦化および歪をいれるため;に
スキンバスをかけた後、上記熱処理を行なうと粒成長が
促進されるだけでなく、スキンバスの方向に磁化容易方
向を持つように再結晶が起こり磁気特性の改善効果は大
きい。また脱炭焼鈍を熱処理として行なえば、よく知ら
れているように、結2晶粒成長が促進される等の効果の
ため磁気特性の改善効果は大きい。そして急冷法によつ
て得られる金属薄板は非磁性であるγ鉄分を含むので、
そのγ鉄分をα鉄分に変えるような入点以上で熱処理を
行なえば磁気特性が改善される。以上のよ3うな熱処理
やスキンバス工程を適当に組合わせば電気鉄板として良
好な磁気特性を得ることができる。次に実施例を示す。Naturally, even if amorphous components are included, they will be crystallized, and if the above heat treatment is performed after applying a skin bath to flatten and introduce distortion, not only will grain growth be promoted, but the skin will be Recrystallization occurs so that the direction of easy magnetization is in the direction of the bus, and the effect of improving magnetic properties is significant. Furthermore, if decarburization annealing is performed as a heat treatment, as is well known, the effect of improving magnetic properties is significant due to effects such as promotion of crystal grain growth. And since the metal thin plate obtained by the rapid cooling method contains γ iron, which is non-magnetic,
If heat treatment is performed at a temperature above the entry point where the γ iron content is changed to α iron content, the magnetic properties will be improved. By appropriately combining the above three heat treatments and skin bath processes, it is possible to obtain good magnetic properties as an electric iron plate. Next, examples will be shown.
実施例13
処理前の金属薄板の組成はFe:97%、Si:3%、
その他の不純物:微量。Example 13 The composition of the metal thin plate before treatment was Fe: 97%, Si: 3%,
Other impurities: Trace amounts.
金属薄板?α鉄化焼鈍
板厚約0.35mm950℃″,2分,アルゴンガス,
4(スキンバ
ス?再結晶化焼鈍約4% 800℃,2時間,窒
素ガス,磁気待肚:Wl5/60=8W/Kf,BlO
=15KGa実施例2処理前の金属薄板の組成Fe96
%、Si:2%、A1:1%、C:1%、その他の不純
物:微量。Metal thin plate? α-iron annealed plate thickness approx. 0.35 mm, 950°C'', 2 minutes, argon gas,
4 (Skin bath? Recrystallization annealing approx. 4% 800℃, 2 hours, nitrogen gas, magnetic waiting room: Wl5/60=8W/Kf, BLO
=15KGa Example 2 Composition of thin metal plate before treatment Fe96
%, Si: 2%, A1: 1%, C: 1%, other impurities: trace amounts.
金属薄板?脱炭焼鈍? 板厚約0。Metal thin plate? Decarburization annealing? Board thickness approximately 0.
35mTL800℃,10分,湿潤水素ガス,一α鉄化
焼鈍?スキンバス950℃,2分,アルゴンガス
約5%再結晶化焼鈍850℃,2時聞,10%水
素ガス,その他窒素ガス,磁?ぺα卆〆L:Wl5/4
0=7W/Kク ,BlO=15KGa実施例3処理前
の金属薄板の組成Fe:98%、Ci:1.5%、Mn
:0。35mTL 800℃, 10 minutes, wet hydrogen gas, mono-α iron annealing? Skin bath 950℃, 2 minutes, argon gas
Approximately 5% recrystallization annealing at 850℃, 2 hours, 10% hydrogen gas, other nitrogen gas, magnetic? Peα卆〆L:Wl5/4
0=7W/K, BLO=15KGa Example 3 Composition of thin metal plate before treatment Fe: 98%, Ci: 1.5%, Mn
:0.
5%、その他の不純物:微量。5%, other impurities: trace amounts.
金属薄板?脱炭焼鈍?板厚約0.35TLTL800℃
,10分,湿潤水素ガス,一α鉄化焼鈍?スキンバス9
50℃,2分,アルゴンガス、 約5%〜脱炭
焼鈍?再結晶化焼鈍800℃,10分,湿潤水素ガス8
50℃,2時間,窒素ガス磁気特囲:Wl5AO=7W
Af,B10=16KGa上記実施例から明らかなよう
に、本発明の金属薄板の製造方法によれば、電気鉄板等
にようにある特別の特性を持つ金属薄板を簡単ら工数で
直接的に得られ、大規模な圧延装置等の設備を要せず、
圧延■数を省略てきるので、安価に製造できる。Metal thin plate? Decarburization annealing? Plate thickness approx. 0.35TLTL800℃
, 10 minutes, wet hydrogen gas, alpha iron annealing? skin bath 9
50℃, 2 minutes, argon gas, about 5% ~ decarburization annealing? Recrystallization annealing 800℃, 10 minutes, wet hydrogen gas 8
50℃, 2 hours, nitrogen gas special magnetic field: Wl5AO=7W
Af, B10 = 16KGa As is clear from the above examples, according to the method of manufacturing a thin metal sheet of the present invention, a thin metal sheet having special characteristics such as an electric iron plate can be directly obtained with a simple process and a lot of man-hours. , does not require equipment such as large-scale rolling equipment,
Since the number of rolling steps can be omitted, it can be manufactured at low cost.
また、電気鉄板を作る場合、圧延工程等中間工程が少な
いので、工程中の不均一が少なくなる。Furthermore, when making electric iron plates, there are fewer intermediate steps such as rolling, so there is less non-uniformity during the process.
さらにローラの回転速度および溶融金属の吹き出し滴下
量によつて容易に板厚調整ができ、両ロール法では、と
くに平坦で正確な板厚が得られる。また、再結晶焼鈍と
スキンバス工程をくり返すことによつて磁気特性の改善
ができる。さらにまた、圧延では実現困難な組成(4%
Si鉄等)の薄膜が容易に得られ、かつ電気鉄板等とし
て実用化でき、熱処理を行なうので歪等による時効現象
が発生しない。Furthermore, the plate thickness can be easily adjusted by adjusting the rotational speed of the rollers and the amount of molten metal being blown out and dropped, and the double-roll method makes it possible to obtain a particularly flat and accurate plate thickness. Furthermore, magnetic properties can be improved by repeating recrystallization annealing and skin bath steps. Furthermore, a composition that is difficult to achieve by rolling (4%
A thin film of Si (Si iron, etc.) can be easily obtained and can be put to practical use as an electric iron plate, etc., and since heat treatment is performed, aging phenomena due to distortion etc. do not occur.
なお、上記実施例は電気鉄板を中心として述べたが、そ
の他の用途にも適用できるのは勿論である。It should be noted that although the above embodiments have been described with a focus on electric iron plates, it is of course applicable to other uses as well.
第1図は本発明の一実施例を示す金属薄板の製造方法の
説明図、第2図は本発明の他の実施例を示す金属薄板の
製造方法の説明図である。
1・・・・・・溶融金属、2,4・・・・・・ローラ、
3,5・・・・・・金属薄板。FIG. 1 is an explanatory diagram of a method of manufacturing a thin metal plate showing one embodiment of the present invention, and FIG. 2 is an explanatory diagram of a method of manufacturing a thin metal plate showing another embodiment of the invention. 1... Molten metal, 2, 4... Roller,
3,5... Metal thin plate.
Claims (1)
に連続的に吹き出して薄板状にした後、少なくとも2回
以上の熱処理を行うとともに、前記熱処理間にスキンパ
スをかけることを特徴とする金属薄板の製造方法。 2 熱処理として再結晶化焼鈍、脱炭焼鈍、α鉄化焼鈍
のいずれかを行うことを特徴とする特許請求の範囲第1
項記載の金属薄板の製造方法。[Claims] 1. Molten metal containing iron as a main component is continuously blown onto rollers rotating at high speed to form a thin plate, and then heat treated at least twice, and a skin pass is applied between the heat treatments. A method for manufacturing a thin metal sheet, characterized by: 2. Claim 1, characterized in that the heat treatment is performed by any one of recrystallization annealing, decarburization annealing, and alpha ironization annealing.
A method for producing a thin metal plate as described in Section 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54076112A JPS6049697B2 (en) | 1979-06-15 | 1979-06-15 | Method for manufacturing thin metal sheets |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54076112A JPS6049697B2 (en) | 1979-06-15 | 1979-06-15 | Method for manufacturing thin metal sheets |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56226A JPS56226A (en) | 1981-01-06 |
JPS6049697B2 true JPS6049697B2 (en) | 1985-11-05 |
Family
ID=13595804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54076112A Expired JPS6049697B2 (en) | 1979-06-15 | 1979-06-15 | Method for manufacturing thin metal sheets |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6049697B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6182560A (en) * | 1984-09-28 | 1986-04-26 | Aisin Seiki Co Ltd | Telephone device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5356010A (en) * | 1976-10-30 | 1978-05-22 | Nippon Gakki Seizo Kk | Envelope generator for electronic musical instrument |
-
1979
- 1979-06-15 JP JP54076112A patent/JPS6049697B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5356010A (en) * | 1976-10-30 | 1978-05-22 | Nippon Gakki Seizo Kk | Envelope generator for electronic musical instrument |
Also Published As
Publication number | Publication date |
---|---|
JPS56226A (en) | 1981-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
HU177279B (en) | Process for producing boron-doped silicon steel having goss-texture | |
JPH0665724B2 (en) | Manufacturing method of electrical steel sheet with excellent magnetic properties | |
JP3392664B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
US2939810A (en) | Method for heat treating cube-on-edge silicon steel | |
US3144363A (en) | Process for producing oriented silicon steel and the product thereof | |
US3105781A (en) | Method for making cube-on-edge texture in high purity silicon-iron | |
JPS6049697B2 (en) | Method for manufacturing thin metal sheets | |
JP3392579B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
US3756867A (en) | Method of producing silicon steels with oriented grains by coiling with aluminum strip | |
JP2983129B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JPH07110974B2 (en) | Method for producing directional silicon iron alloy ribbon | |
US3586545A (en) | Method of making thin-gauge oriented electrical steel sheet | |
EP4265349A1 (en) | Method for manufacturing oriented electromagnetic steel sheet and rolling equipment for manufacturing electromagnetic steel sheet | |
JP3022074B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
EP4353850A1 (en) | Method for manufacturing oriented electromagnetic steel sheet and rolling equipment for manufacturing oriented electromagnetic steel sheet | |
EP4159335A1 (en) | Method for producing grain-oriented electromagnetic steel sheet | |
JPS62188756A (en) | Grain-oriented foil of high saturation magnetic flux density and its production | |
JP2634801B2 (en) | High magnetic flux density directional silicon iron plate with excellent iron loss characteristics | |
JPH10259422A (en) | Production of grain-oriented silicon steel sheet good in core loss characteristic | |
JPS6372824A (en) | Rolling method for improving magnetic characteristic of rapidly cooled foil of high silicon steel | |
JP3034964B2 (en) | Method for producing soft surface-treated original sheet by continuous annealing | |
JP2768994B2 (en) | Heating method of slab for non-oriented electrical steel sheet | |
JPH0699752B2 (en) | High magnetic flux density bi-directional electrical steel sheet manufacturing method | |
JPS6256204B2 (en) | ||
JPH01272718A (en) | Production of double oriented electrical steel sheet having high magnetic flux density and uniform magnetic characteristic in longitudinal direction |