JPS6049631A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6049631A
JPS6049631A JP15647083A JP15647083A JPS6049631A JP S6049631 A JPS6049631 A JP S6049631A JP 15647083 A JP15647083 A JP 15647083A JP 15647083 A JP15647083 A JP 15647083A JP S6049631 A JPS6049631 A JP S6049631A
Authority
JP
Japan
Prior art keywords
resist film
mirror
light
ultraviolet
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15647083A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ozawa
清 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15647083A priority Critical patent/JPS6049631A/en
Publication of JPS6049631A publication Critical patent/JPS6049631A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To reduce an impact to a semiconductor substrate according to ultraviolet light at manufacture of a semiconductor device by a method wherein a resist film is irradiated directly by ultraviolet light of long wavelength, and the film is made as not to be irradiated directly by ultraviolet light of short wavelength. CONSTITUTION:Light emitted from a light source 1 enters into a first and a second ultraviolet mirrors 5, 6 through a condenser 2, an aperture 3 and a collimeter 4. The mirror 5 reflects ultraviolet light of wavelength of 270nm or less, and the mirror 6 reflects light of 1mum or less. Accordingly, light reflected by the mirror 5 forms oxygen radicals efficiently. Light reflected by the mirror 6 cuts bonding of a resist film 10B.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、紫外線照射、X線照射、電子ビーム照射、イ
オン・ビーム照射等でパターンが形成されるレジスト膜
をマスクとして種々の加工を行なう半導体装置の製造方
法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to semiconductor devices that undergo various processing using a resist film, on which a pattern is formed by ultraviolet irradiation, X-ray irradiation, electron beam irradiation, ion beam irradiation, etc., as a mask. Concerning improvements in manufacturing methods.

従来技術と問題点 一般に、半導体装置を製造する際、パクーニングされた
レジスト膜をマスクとして下地のエツチングを行なう工
程は不可欠といって良い。
Prior Art and Problems In general, when manufacturing semiconductor devices, it can be said that a step of etching the underlying layer using a patterned resist film as a mask is indispensable.

また、マスクとして使用されたレジスト膜は、工程終了
後、適当な剥離溶液に浸漬して半導体基体から剥離する
か、例えば酸素プラズマにさらして除去することが行な
われている。
Further, after the completion of the process, the resist film used as a mask is removed from the semiconductor substrate by immersing it in an appropriate removal solution or by exposing it to oxygen plasma, for example.

然し乍ら、剥離溶液に浸漬する方法は、廃液処理に面倒
な問題が存在すると共にレジストの種類やパターン形成
の条件に依っては剥離に著しく時間がかかる等の欠点が
ある。
However, the method of immersing the resist in a stripping solution has drawbacks such as troublesome waste liquid treatment and a considerable time required for stripping depending on the type of resist and pattern formation conditions.

また、酸素プラズマにさらす方法は前記剥離溶液に浸漬
する方法に於ける問題は全て解消され、そして、実施が
容易であるから、現在、多用されているが、プラズマに
依って半導体基板に10傷が発生する旨の新たな問題が
存在する。即ち、プラダマ中にレジスト膜を有する半導
体基体を配置すると、プラズマ中の荷電粒子が半導体基
体表面に衝撃を加え、場合に依っては、回復不能な損傷
を与える。
In addition, the method of exposing the semiconductor substrate to oxygen plasma is currently widely used because it solves all the problems of the method of immersing the semiconductor substrate in the stripping solution and is easy to implement. There is a new problem that occurs. That is, when a semiconductor substrate having a resist film is disposed in plasma, charged particles in the plasma impact the surface of the semiconductor substrate, causing irreparable damage depending on the case.

そこで、本発明者等は、さきに、酸化性雰囲気中にレジ
ストを有する半導体基体を配置し、そこに紫外線を照射
することに依りレジストを灰化する技術を提供した。こ
の技術に依ると、酸素プラズマにさらしてレジストを剥
離する場合と比較して、半導体基体が受ける損傷を極め
て小さくすることが可能である。
Therefore, the present inventors have previously provided a technique in which a semiconductor substrate having a resist is placed in an oxidizing atmosphere and the resist is ashed by irradiating it with ultraviolet rays. According to this technique, it is possible to significantly reduce damage to the semiconductor substrate compared to the case where the resist is removed by exposing it to oxygen plasma.

然し乍ら、この紫外線照射に依るレジストの剥離技術に
於いても、問題が皆無とはいえない状態にある。
However, even this resist stripping technique using ultraviolet irradiation is not completely free from problems.

実験に依ると、短波長の紫外線は酸化性雰囲気中でレジ
スト剥離に有効な働きをする酸素ラジカルを生成させる
作用をするものであるが、約270(nm)以下の紫外
線を半導体基体に直接照射すると、酸素プラズマはどで
はないにせよ矢張り損傷される。
According to experiments, short-wavelength ultraviolet rays have the effect of generating oxygen radicals that are effective in removing resist in an oxidizing atmosphere, but it is difficult to directly irradiate the semiconductor substrate with ultraviolet rays of approximately 270 (nm) or less. As a result, the oxygen plasma is damaged in many ways.

例えば、現在、MTS電界9JJ果半導体装置に於ける
絶縁膜等は極めて薄くなっているので、僅かでも損傷さ
れることば耐圧の低下に結び付くので好ましくない。
For example, at present, insulating films and the like in MTS electric field 9JJ semiconductor devices are extremely thin, so even the slightest damage is undesirable because it leads to a decrease in breakdown voltage.

また、紫外線の作用は酸素ラジカルの生成のみでなく、
レジスト膜に照射した場合、ポリマの結合を切断する作
用もあるので、灰化速度を維持する上で、できれば直接
照射したいところである。
In addition, the action of ultraviolet rays is not limited to the generation of oxygen radicals.
When the resist film is irradiated, it also has the effect of breaking the bonds in the polymer, so in order to maintain the ashing rate, direct irradiation is preferable if possible.

更にまた、紫外線を得る為の光源からは、同時に赤外線
も放射されることが多く、その赤外線がレジスト膜に入
射すると温度−上昇に依り重合硬化を生ずるので灰化速
度は低下する。そして、このようなことは、短波長の紫
外線に依っても発生ずることがある。
Furthermore, a light source for obtaining ultraviolet rays often also radiates infrared rays at the same time, and when the infrared rays are incident on the resist film, polymerization and hardening occur due to a rise in temperature, thereby reducing the ashing rate. This kind of thing can also occur depending on short wavelength ultraviolet rays.

発明のト1的 本発明は、半導体装置を製造する際のバターニングに用
いたレジスト膜を除去するに際し、酸化性雰囲気中で紫
外線を照射して剥離する技術を適用するものであるが、
従来のこの種の技術と比較して、灰化速度の低下を招来
することなく、半導体基体に与える損傷が一層少なくな
るように、また、レジスト膜が赤外線の影響を受けるこ
とがないようにしようとするものである。
Part 1 of the Invention The present invention applies a technique of peeling off by irradiating ultraviolet rays in an oxidizing atmosphere when removing a resist film used for patterning in manufacturing a semiconductor device.
Compared to conventional technology of this type, we aim to reduce the damage caused to the semiconductor substrate without reducing the ashing rate, and to prevent the resist film from being affected by infrared rays. That is.

発明の構成 本発明の半導体装置の製造方法では、レジスト膜を有す
る半導体基体を酸化雰囲気中に配置し、該レジスト膜に
長波長紫外線を直接照射すると共に短波長紫外線を該レ
ジスト膜に直接照射しないように前記酸化性雰囲気中に
入射させて該レジスト膜の灰化除去を行なうことを基本
的な特徴とし、また、前記各紫外線は光源からの赤外線
を除去する光学系を経て取り出されたものであること、
更にまた、前記各紫外線は一光源からの光を分光して取
り出されたものであることを特徴とし、これに依り、半
導体基体に損傷を与える゛ことなく且つ剥離速度を減す
ることなくレジスト膜の灰化除去を行なうことが可能で
ある。
Structure of the Invention In the method for manufacturing a semiconductor device of the present invention, a semiconductor substrate having a resist film is placed in an oxidizing atmosphere, and the resist film is directly irradiated with long-wavelength ultraviolet rays, but the resist film is not directly irradiated with short-wavelength ultraviolet rays. The basic feature is that the resist film is ashed and removed by entering the oxidizing atmosphere, and each of the ultraviolet rays is extracted through an optical system that removes infrared rays from a light source. There is something
Furthermore, each of the ultraviolet rays is characterized in that it is extracted by dividing light from a single light source, and thereby the resist film can be removed without damaging the semiconductor substrate or reducing the peeling speed. It is possible to perform ashing removal.

発明の実施例 第1図は本発明を実施する装置の一例を表わす要部説明
図である。
Embodiment of the Invention FIG. 1 is an explanatory diagram of the main parts of an example of an apparatus for carrying out the present invention.

図に於いて、1は例えば高圧水銀燈のような光源、2は
コンデンサ・レンズ、3はアパーチャ、4はコリメータ
・レンズ、5は第1の紫外線ミラー、6は第2の紫外線
ミラー、7は例えばアルミニウム鏡面を有するミラー、
8は半導体基体保持台、9はヒータ、10はシリコン半
導体基体、10Aは厚さ例えば150 〔人〕程度の二
酸化シリコン(Si02)膜、1. OBは厚さ例えば
1 〔μm〕程度のOMR(東京応化製のレジスト)か
らなるレジスト膜をそれぞれ示している。
In the figure, 1 is a light source such as a high-pressure mercury lamp, 2 is a condenser lens, 3 is an aperture, 4 is a collimator lens, 5 is a first ultraviolet mirror, 6 is a second ultraviolet mirror, and 7 is, for example mirror with aluminum mirror surface,
8 is a semiconductor substrate holding stand, 9 is a heater, 10 is a silicon semiconductor substrate, 10A is a silicon dioxide (Si02) film having a thickness of, for example, about 150 [people]; 1. OB indicates a resist film made of OMR (manufactured by Tokyo Ohka Chemical Co., Ltd.) and has a thickness of about 1 μm, for example.

図示の装置に於いて、光源1からの光は、コンデンサ・
レンズ2、アパーチャ3、コリメータ・レンズ4を介し
て第1の紫外線ミラー5に入射する。
In the illustrated device, light from light source 1 is transmitted through a condenser.
The ultraviolet light enters the first mirror 5 via the lens 2, aperture 3, and collimator lens 4.

第1の紫外線ミラー5及び第2の紫外線ミラー6は、そ
れぞれ多層誘電体膜を備え、波長選択性を有している。
The first ultraviolet mirror 5 and the second ultraviolet mirror 6 each include a multilayer dielectric film and have wavelength selectivity.

即ち、第1の紫外線ミラー5は波長270(nm〕以下
の紫外線を反射し、それを越える波長の光は透過する作
用をしている。また、第2の紫外線ミラー6は第1の紫
外線ミラー5を透過した光のうち波長1 〔μm〕以下
の光を反射し、それを越える波長の光を透過する作用を
している。
That is, the first ultraviolet mirror 5 has the function of reflecting ultraviolet rays with a wavelength of 270 (nm) or less, and transmitting the light with a wavelength exceeding that. Among the light that has passed through the filter, it reflects light with a wavelength of 1 [μm] or less, and transmits light with a wavelength exceeding that.

従って、紫外線ミラー5に入射した光のうち、波長27
0(nm)以下の紫外線は反射されてミラー7に入射し
、そこで反射され半導体基体10と略平行な方向にむか
って入射することに依り酸素ラジカルを効率良く生成す
る。尚、図示されているところから明らかなように、こ
の紫外線は半導体基体10に直接衝撃を与えることはな
い。
Therefore, among the light incident on the ultraviolet mirror 5, wavelength 27
Ultraviolet rays of 0 (nm) or less are reflected and incident on the mirror 7, and are reflected there and incident in a direction substantially parallel to the semiconductor substrate 10, thereby efficiently generating oxygen radicals. Note that, as is clear from the illustration, this ultraviolet ray does not directly impact the semiconductor substrate 10.

また、第1の紫外線ミラー5を透過し、第2の紫外線ミ
ラー6で反射された波長1 〔μm〕以下の紫外線は、
酸素ラジカルの生成は勿論のこと、半導体基体10に直
接入射してレジスト膜10Bに於けるポリマーの結合を
切断する。
Further, the ultraviolet rays having a wavelength of 1 [μm] or less transmitted through the first ultraviolet mirror 5 and reflected by the second ultraviolet mirror 6 are
Not only is oxygen radical generated, but it also directly enters the semiconductor substrate 10 and breaks the polymer bonds in the resist film 10B.

第1の紫外線ミラー5を透過した光に含まれていた赤外
線等は第2の紫外線ミラー6も透過するので、レジスト
膜10Bに熱線が照射されることを防止することができ
る。
Since the infrared rays and the like contained in the light transmitted through the first ultraviolet mirror 5 are also transmitted through the second ultraviolet mirror 6, it is possible to prevent the resist film 10B from being irradiated with heat rays.

本実施例に於いて、波長270(nm)以下の紫外線を
半導体基体10に直接入射しないようにした理由は、そ
の波[並範囲の紫外線が半導体基体10を損傷すること
に依るものであるのは前記説明から理解できると思われ
る。
In this embodiment, the reason why ultraviolet rays with a wavelength of 270 (nm) or less is not directly incident on the semiconductor substrate 10 is that the ultraviolet rays [in the normal range] damage the semiconductor substrate 10. can be understood from the above explanation.

ところで、波長270(μm〕以下の紫外線が半導体基
体10に損傷を与えるからといって、それを用いないよ
うにすることは不利である。
By the way, it is disadvantageous not to use ultraviolet rays with a wavelength of 270 (μm) or less because they damage the semiconductor substrate 10.

その理由は、波長270(nm)以下の紫外線は02か
ら酸素ラジカルを生成するのに有効であり、また、波長
260 Cnm) 〜270 (”nm)の紫外線は0
3に良く吸収され、従って、03から酸素ラジカルを生
成するのにも大きな力を持つからであり、これ等ばレン
ズ1へ膜の灰化速度を高く維持するには不可欠である。
The reason for this is that ultraviolet rays with a wavelength of 270 (nm) or less are effective in generating oxygen radicals from 0.
This is because it is well absorbed by 03 and therefore has a large power to generate oxygen radicals from 03, which is essential for maintaining a high ashing rate of the film on the lens 1.

さて、前記工程を採るに際しては、半導体基体10をヒ
ータ9に依り加熱しておくと灰化速度は向上する。
Now, when taking the above step, if the semiconductor substrate 10 is heated by the heater 9, the ashing rate will be improved.

その場合に於ける半導体基体10の温度としては、60
(”C)〜120〔℃〕程度の範囲で選択することが好
ましい。それは、温度が60C”C)未満であると加熱
したことに依る効果が乏しく、また、120(”C)を
越えるとレジスト膜10が硬化して剥離し難くなるから
である。
In that case, the temperature of the semiconductor substrate 10 is 60
It is preferable to select the temperature within the range of approximately 120 (C) to 120 (C). If the temperature is less than 60 (C), the effect of heating will be poor, and if it exceeds 120 (C), the heating effect will be poor. This is because the resist film 10 hardens and becomes difficult to peel off.

前記説明した装置に於いて、少なくとも半導体基体10
は酸化雰囲気中、即ち、反応室中におく必要があるが、
ミラー等は反応室の内外何れでも良い。
In the device described above, at least the semiconductor substrate 10
must be placed in an oxidizing atmosphere, that is, in a reaction chamber,
The mirror etc. may be placed inside or outside the reaction chamber.

発明の効果 本発明の半導体装置の製造方法では、レジスト膜を有す
る半導体基体を酸化雰囲気中に配置し、該レジスト膜に
長波長紫外線を直接照射すると共に短波長紫外線を該レ
ジスト膜に直接照射しないように前記酸化雰囲気中に入
射させて該レジスト膜の灰化除去を行なうことを基本と
し、また、前記各紫外線は光源から赤外線を除去する光
学系を経て取り出されものであること、更にまた、前記
各紫外線は一光源からの光を分光して取り出されたもの
であること等に依り、従来のこの種のレジスト膜剥離技
術と比較して、半導体基体に与える損傷を著しく少なく
することが可能であり、しかも、レジストの剥離速度、
即ち、灰化速度の低下を招来することばない。
Effects of the Invention In the method for manufacturing a semiconductor device of the present invention, a semiconductor substrate having a resist film is placed in an oxidizing atmosphere, and the resist film is directly irradiated with long-wavelength ultraviolet rays, but the resist film is not directly irradiated with short-wavelength ultraviolet rays. Basically, the resist film is ashed and removed by entering the resist film into the oxidizing atmosphere, and each of the ultraviolet rays is extracted from a light source through an optical system that removes infrared rays; Because each of the above-mentioned ultraviolet rays is extracted by dividing the light from a single light source, it is possible to significantly reduce damage to the semiconductor substrate compared to conventional resist film stripping techniques of this type. Moreover, the peeling speed of the resist is
In other words, it does not cause a decrease in the ashing rate.

更にまた、本発明に於いても、酸素プラズマを用いた場
合の効果、例えば廃液処理の問題がない等の効果がある
点では同様である。
Furthermore, the present invention also has the same effects as when oxygen plasma is used, such as eliminating the problem of waste liquid treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を実施する装置の一例を表わす要部説明図で
ある。 図に於いて、1は例えば高圧水銀燈のような光源、2は
コンデンサ・レンズ、3はアパーチャ、4はコリメータ
・レンズ、5は第1の紫外線ミラー、6は第2の紫外線
ミラー、7は例えばアルミニウムの鏡面を持つミラー、
8は半導体基体の保持台、9は加熱ヒータ、10は半導
体基体、10Aは5to21!、IOBはレジスト膜で
ある。 特許出願人 富士通株式会社 代理人弁理士 相 谷 昭 司 代理人弁理士 渡 邊 弘 − 0
The figure is an explanatory view of essential parts showing an example of an apparatus for carrying out the present invention. In the figure, 1 is a light source such as a high-pressure mercury lamp, 2 is a condenser lens, 3 is an aperture, 4 is a collimator lens, 5 is a first ultraviolet mirror, 6 is a second ultraviolet mirror, and 7 is, for example Mirror with aluminum mirror surface,
8 is a holding stand for the semiconductor substrate, 9 is a heater, 10 is a semiconductor substrate, and 10A is 5to21! , IOB is a resist film. Patent applicant: Fujitsu Ltd. Representative Patent Attorney: Shoji Aitani Representative Patent Attorney: Hiroshi Watanabe − 0

Claims (3)

【特許請求の範囲】[Claims] (1)レジスト膜を有する半導体基体を酸化性雰囲気中
に配置し、該レジスト膜に長波長紫外線を直接照射する
と共に短波長紫外線を該レジスト膜に直接照射しないよ
うに前記酸化性雰囲気中に入射させて該レジスト膜の灰
化除去を行なう工程が含まれてなることを特徴とする半
導体装置の製造方法。
(1) A semiconductor substrate having a resist film is placed in an oxidizing atmosphere, and the resist film is directly irradiated with long-wavelength ultraviolet rays, while short-wavelength ultraviolet rays are incident on the oxidizing atmosphere so as not to directly irradiate the resist film. A method for manufacturing a semiconductor device, comprising the step of removing the resist film by ashing.
(2)前記各紫外線は光源から赤外線を除去する光学系
を経て取り出されたものであることを特徴とする特許請
求の範囲第1項記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein each of the ultraviolet rays is extracted from a light source through an optical system that removes infrared rays.
(3)前記各紫外線は一光源からの光を分光して取り出
されたものであることを特徴とする特許請求の範囲第1
項記載の半導体装置の製造方法。
(3) The first aspect of the present invention is characterized in that each of the ultraviolet rays is extracted by spectrally dispersing light from one light source.
A method for manufacturing a semiconductor device according to section 1.
JP15647083A 1983-08-29 1983-08-29 Manufacture of semiconductor device Pending JPS6049631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15647083A JPS6049631A (en) 1983-08-29 1983-08-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15647083A JPS6049631A (en) 1983-08-29 1983-08-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6049631A true JPS6049631A (en) 1985-03-18

Family

ID=15628448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15647083A Pending JPS6049631A (en) 1983-08-29 1983-08-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6049631A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273732A (en) * 1986-05-21 1987-11-27 Toshiba Corp Photo excited gas processor
JPH01189653A (en) * 1988-01-25 1989-07-28 Dainippon Printing Co Ltd Production of photomask

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62273732A (en) * 1986-05-21 1987-11-27 Toshiba Corp Photo excited gas processor
JPH0467778B2 (en) * 1986-05-21 1992-10-29 Tokyo Shibaura Electric Co
JPH01189653A (en) * 1988-01-25 1989-07-28 Dainippon Printing Co Ltd Production of photomask

Similar Documents

Publication Publication Date Title
US4568632A (en) Patterning of polyimide films with far ultraviolet light
US5114834A (en) Photoresist removal
EP0108189B1 (en) A method for etching polyimides
JPS6049631A (en) Manufacture of semiconductor device
JPS5933830A (en) Dry etching
JPS6032322A (en) Resist film removing device
JPS59111333A (en) Method of forming sio2 by converting sio region into sio2 region
JPS6049630A (en) Manufacture of semiconductor device
JPS62245634A (en) Method and apparatus for removing positive type resist film
JP2978620B2 (en) Ashing device for resist film
JPH0721643B2 (en) Resist processing method
JP2803335B2 (en) Resist ashing method and apparatus
JPS59161827A (en) Method for processing insulating film
JP2968138B2 (en) Dry etching method
JPH0727887B2 (en) Ashing method for organic matter
JPH04307734A (en) Ashing apparatus
JPH0429220B2 (en)
JPH0473871B2 (en)
JPH01248528A (en) Hardening of sog film
RU2029979C1 (en) Method of dry obtaining of positive image in photolithography
JP2623672B2 (en) Etching method
JPH065559A (en) Ozone plasma treatment
JPH0794450A (en) Local ashing device
JPH0463538B2 (en)
JPH0388328A (en) Resist ashing method