JPS6049264B2 - radiation telescope - Google Patents

radiation telescope

Info

Publication number
JPS6049264B2
JPS6049264B2 JP8394179A JP8394179A JPS6049264B2 JP S6049264 B2 JPS6049264 B2 JP S6049264B2 JP 8394179 A JP8394179 A JP 8394179A JP 8394179 A JP8394179 A JP 8394179A JP S6049264 B2 JPS6049264 B2 JP S6049264B2
Authority
JP
Japan
Prior art keywords
radiation
collimator
radiation detector
measured
radioactive contamination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8394179A
Other languages
Japanese (ja)
Other versions
JPS5610271A (en
Inventor
英治 関
一郎 田井
主税 小長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8394179A priority Critical patent/JPS6049264B2/en
Publication of JPS5610271A publication Critical patent/JPS5610271A/en
Publication of JPS6049264B2 publication Critical patent/JPS6049264B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 この発明は、環境の放射能汚染の監視等に有用な放射
線望遠鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation telescope useful for monitoring radioactive contamination of the environment.

従来、環境の放射能汚染状態を測定するには、測定し
たい所まて放射線検出器を持つて行かなければならず、
広範囲にわたる汚染状態を知るには数多くの測定点を必
要とし、そのため測定者の放射線被曝量もかなり大きい
値になるという問題があつた。
Conventionally, in order to measure the radioactive contamination status of the environment, it was necessary to carry a radiation detector to the place to be measured.
In order to determine the state of contamination over a wide area, a large number of measurement points are required, which poses a problem in that the amount of radiation exposure of the person taking the measurements is quite large.

しかも従来の方式ては測定値は周囲の影響が加わつて誤
差も大きく、また常時放射能汚染密度分布を自動的に監
視することはできなかつた。例えば原子力発電所等では
、主要施設、主要機器表面、配管、床面、壁面等の放射
能汚染密度分布を連続的かつ自動的に測定する装置が強
く望まれている。 この発明は上記した点に鑑み、所定
の被測定体からの放射能汚染密度分布を、被測定体から
離れた位置で自動的かつ連続的に測定し得る放射線望遠
鏡を提供するものである。
Moreover, with conventional methods, the measurement values have large errors due to the influence of the surrounding environment, and it is not possible to automatically monitor the radioactive contamination density distribution at all times. For example, in nuclear power plants and the like, there is a strong desire for a device that continuously and automatically measures radioactive contamination density distribution on main facilities, main equipment surfaces, piping, floors, walls, etc. In view of the above-mentioned points, the present invention provides a radiation telescope that can automatically and continuously measure the radioactive contamination density distribution from a predetermined object to be measured at a position away from the object to be measured.

すなわち本発明は被測定体に対して所定の開き角をもつ
放射線透過孔を有するコリメータと、このコリメータの
後方に配置された少なくとも1組の自動距離計を付けた
放射線検出器と、前記距離計および放射線検出器を前記
コリメータの中心軸を含む平面内で前記放射線透過孔を
中心として円弧を描くように移動させる第1の走査駆動
手段と、前記自動距離計及び放射線検出器を前記コリメ
ータの中心軸まわりに回転させる第2の走査駆動手段と
を備えた放射線望遠鏡である。 この発明に係る放射線
望遠鏡では、被測定体に対して所定の開き角をもつ放射
線透過孔を有するコリメータを用い、その後方に少なく
とも1個の・自動距離計を付けた放射線検出器を配置す
る。
That is, the present invention includes a collimator having a radiation transmitting hole having a predetermined opening angle with respect to the object to be measured, a radiation detector equipped with at least one set of automatic rangefinders arranged behind the collimator, and the rangefinder. and a first scanning drive means for moving the radiation detector in a circular arc centering on the radiation transmitting hole within a plane including the central axis of the collimator, and moving the automatic range finder and the radiation detector at the center of the collimator. and a second scanning drive means for rotating around the axis. In the radiation telescope according to the present invention, a collimator having a radiation transmitting hole having a predetermined opening angle with respect to the object to be measured is used, and a radiation detector equipped with at least one automatic distance meter is arranged behind the collimator.

自動距離計及び放射線検出器はその放射線入射面が常に
コリメータからの放射線に直交する状態に保たれて、コ
リメータ中心からの所定の立体角の範囲内て走査駆動さ
れる。即ち、放射線検出器に対して、コリメータの中心
軸を含む平面内でコリメータの放射線透過孔を中心とし
て円弧を描くように移動させる第1の走査駆動手段およ
びコリメータの中心軸まわりに回転させる第2の走査駆
動手段を備える。そして、このように走査駆動される放
射線検出器の出力をパルス増幅器で増幅し、この増幅器
出力及ひ自動距離計出力を放射線検出器の走査駆動情報
と共にプロセスコンピュータ等により処理して被測定体
の所定範囲からの放射能汚染密度分布を求める。以下、
この発明に係る装置の一実施例を第1図から第3図を参
照しながら説明する。
The automatic rangefinder and radiation detector are driven to scan within a predetermined solid angle range from the center of the collimator, with their radiation incident surfaces always kept perpendicular to the radiation from the collimator. That is, a first scanning driving means moves the radiation detector in a circular arc centering on the radiation transmitting hole of the collimator within a plane including the central axis of the collimator, and a second scanning driving means rotates around the central axis of the collimator. scanning drive means. Then, the output of the radiation detector scan-driven in this way is amplified by a pulse amplifier, and the output of this amplifier and the automatic distance meter output are processed by a process computer etc. together with the scan drive information of the radiation detector to detect the object to be measured. Find the radioactive contamination density distribution from a predetermined range. below,
An embodiment of the apparatus according to the present invention will be described with reference to FIGS. 1 to 3.

第1図A,bはコリメータ1の平面図とそのA−A″断
面図である。
FIGS. 1A and 1B are a plan view of the collimator 1 and a sectional view thereof taken along the line AA''.

コリメータ1は放射線透過率の小さい鉛、タングステン
等からなる板体で作られ、その表裏面から円錐状に切り
込んだ形の放射線透過孔2を有する。図の場合、放射線
透過孔2は被測定体に対してOの開き角をもつ。第2図
はこのようなコリメータ1を用いて構成した放射線望遠
鏡概略図で、コリメータ1の後方に、放射線透過孔2を
中心として略球面を描くように走査駆動される1個の自
動距離計11を付けた放射線検出器3を配置し、前方に
ある被測定体4からの放射線を検出するようになつてい
る。コリメータ1の放射線透過孔2の開き角θと放射線
検出器3の走査範囲により、被測定体4の測定範囲が決
定されることになる。放射線検出器3は例えばNaIシ
ンチレータ、プラスチックシンチレータ、半導体放射線
検出器等てある。自動距離計11は例えばビジトロニツ
クモジユールを用いた光学方式の.自動焦点距離計であ
る。この放射線検出器3および自動距離計11は、具体
的には第3図に示すようにコリメータ1の中心軸を含む
面を有する架台9上に設置して、架台9に沿つて矢印イ
のように移動させる第1の走査駆動手段と架台9をコリ
メ.ータ1と同軸の回転軸10まわりに矢印口のように
回転させる第2の走査駆動手段を備え、これらの走査駆
動の組合せによつて、放射線検出器3の放射線入射面の
軌跡がコリメータ1を中心として略球面を描くようにし
ている。放射線検出器3の出力はパルス増幅器5により
増幅し、必要ならば波形整形を行い、波高弁別回路等て
雑音を除去して処理装置6に入れる。
The collimator 1 is made of a plate made of lead, tungsten, or the like having low radiation transmittance, and has a radiation transmitting hole 2 cut into a conical shape from the front and back surfaces thereof. In the case of the figure, the radiation transmitting hole 2 has an opening angle of O with respect to the object to be measured. FIG. 2 is a schematic diagram of a radiation telescope configured using such a collimator 1. Behind the collimator 1 is an automatic range finder 11 that is driven to scan in a substantially spherical manner with the radiation transmission hole 2 as the center. A radiation detector 3 equipped with a radiation detector 3 is arranged to detect radiation from an object 4 to be measured in front. The measurement range of the object to be measured 4 is determined by the opening angle θ of the radiation transmission hole 2 of the collimator 1 and the scanning range of the radiation detector 3. The radiation detector 3 is, for example, a NaI scintillator, a plastic scintillator, a semiconductor radiation detector, or the like. The automatic distance meter 11 is, for example, an optical type using a visitronic module. It is an automatic focal length meter. Specifically, the radiation detector 3 and the automatic distance meter 11 are installed on a pedestal 9 having a surface including the central axis of the collimator 1 as shown in FIG. The first scanning drive means and the pedestal 9 are collimated. The radiation detector 3 is provided with a second scanning drive means that rotates around the rotation axis 10 coaxial with the collimator 1 as shown by an arrow. A roughly spherical surface is drawn with . The output of the radiation detector 3 is amplified by a pulse amplifier 5, subjected to waveform shaping if necessary, noise removed by a pulse height discrimination circuit, etc., and then input to a processing device 6.

処理装置6は例えはプロセスコンピュータであつて内部
記憶装置および計算機能を有し、放射線検出器3および
自動距離計11の架台9上での位置および架台9の回転
角位置そして距離計出力をアドレス情報として放射線出
力信号をいつたん記憶する。アドレス情報として被測定
体の方向に関する情報の他に被測定体までの距離に関す
る情報もインプットされるので、距離情報と放射線出力
信号から処理装置6に内蔵された計算機能を使つて被測
定体の放射能汚染密度を計算出来る。これを読ノみ出し
てブラウン管等のディスプレイ装置7に2次元的な放射
能汚染密度分布を表示することになる。必要ならば、読
出した放射線量データを外部の記録装置8に記録して自
動的なデータ収集を行うことができる。ディスプレイ装
置7として、例えばカラーブラウン管を用いて放射能汚
染密度を色別で表示すれば、被測定体4のどの部分の放
射能汚染密度が高く、また放射能汚染密度がどの程度で
あるかを一見して判別することができる。
The processing device 6 is, for example, a process computer and has an internal storage device and a calculation function, and addresses the positions of the radiation detector 3 and the automatic distance meter 11 on the pedestal 9, the rotation angle position of the pedestal 9, and the distance meter output. The radiation output signal is temporarily stored as information. In addition to information regarding the direction of the object to be measured, information regarding the distance to the object to be measured is also input as address information, so the calculation function built into the processing device 6 is used to calculate the direction of the object to be measured from the distance information and the radiation output signal. Radioactive contamination density can be calculated. This is read out and a two-dimensional radioactive contamination density distribution is displayed on a display device 7 such as a cathode ray tube. If necessary, the read radiation dose data can be recorded on an external recording device 8 for automatic data collection. If the display device 7 displays the radioactive contamination density in different colors using, for example, a color cathode ray tube, it is possible to see which part of the object 4 to be measured has a high radioactive contamination density and how high the radioactive contamination density is. It can be identified at a glance.

勿論、白黒のブラ゛ウン管により?射能汚染密度を明る
さで表示してもよい。以上のようにして、この実施例の
放射線望遠鏡を用いれば、被測定体から離れた位置で被
測定体からの放射能汚染密度分布を自動的かつ連続的に
測定、監視することができる。
Of course, by a black and white cathode ray tube? Radioactive contamination density may be displayed in terms of brightness. As described above, by using the radiation telescope of this embodiment, it is possible to automatically and continuously measure and monitor the radioactive contamination density distribution from the object to be measured at a position away from the object to be measured.

従つて、測定者が検出器を持つて測定点まで近ずくとい
う危険な作業を要せず、また被測定体に対して所定の開
き角をもつ放射線透過孔を有するコリメータを用いるこ
とで周囲の影響を受けずある定められた範囲の放射能汚
染密度分布を正しく測定することができる。また、1個
の自動距離計を付けた放射線検出器を走査駆動すること
で2次元的放射能汚染密度分布を測定し、広い範囲の正
確な放射能汚染の監視を行なうことができる。なお、コ
リメータを通して、放射線検出器から被測定体まての距
離を測定するため放射線検出器と自動距離計の視野をで
きるだけ同一に近ずけておくことが好ましい。例えば第
4図aに示すようにできるだけ小型の放射線検出器と、
小型の自動距離計を並置する。または第4図bに示すよ
うに放射線の吸収の少ない鏡を用いて可視光のみを反射
させることにより放射線検出器と同軸上に自動距離計を
配置する方法がより好ましい。また、放射線検出器およ
び自動距離計を2個ずつ用いて架台上での走査範囲を分
担させれば、架台の回転走査駆動を半回転として同様の
放射能汚染密度分布を測定することができる。
Therefore, the measuring person does not have to carry out the dangerous work of approaching the measurement point while holding the detector, and by using a collimator with a radiation transmitting hole having a predetermined opening angle with respect to the object to be measured, it is possible to detect the surroundings. It is possible to accurately measure the radioactive contamination density distribution within a defined range without being affected. Further, by scanning and driving a radiation detector equipped with one automatic distance meter, it is possible to measure a two-dimensional radioactive contamination density distribution and to accurately monitor radioactive contamination over a wide range. Note that in order to measure the distance from the radiation detector to the object to be measured through the collimator, it is preferable to make the fields of view of the radiation detector and the automatic distance meter as close as possible. For example, as shown in Figure 4a, a radiation detector as small as possible,
A small automatic distance meter is placed side by side. Alternatively, as shown in FIG. 4b, a more preferable method is to place the automatic rangefinder coaxially with the radiation detector by reflecting only visible light using a mirror that absorbs little radiation. Furthermore, if two radiation detectors and two automatic distance meters are used to share the scanning range on the pedestal, it is possible to measure the same radioactive contamination density distribution by driving the pedestal for half a rotation.

また、コリメータの材料としては、鉛、タングステンの
他モリブデン、金、タンタル、白金等も放射線透過率が
小さいので好ましい。
In addition to lead and tungsten, molybdenum, gold, tantalum, and platinum are also preferred as materials for the collimator because they have low radiation transmittance.

γ線エネルギーが低い線源たけを使用する場所て用いる
場合には、更に上記材料の他、例えば銅、鉄、ニッケル
あるいはこれらの合金を用いることもできる。また、放
射線検出器は測定対象となる放射線エネルギーによつて
好ましいものを選択すればよい。例えばγ線エネルギー
が高い場合には、NaIシンチレータまたは半導体検出
器が好ましく、γ線エネルギーが低い場合には上記検出
器の他にプラスチックシンチレータも用いる。更にまた
、放射線検出器として放射線エネルギーに対して出力直
線性を有するものを使用し波高弁別回路を用いてその弁
別レベルを選ぶことにより、特定の放射線核種について
の放射能汚染密度分布を用めることが可能てある。
When used in a place where a radiation source with low gamma ray energy is used, in addition to the above-mentioned materials, for example, copper, iron, nickel, or an alloy thereof can also be used. Furthermore, a suitable radiation detector may be selected depending on the radiation energy to be measured. For example, when the γ-ray energy is high, a NaI scintillator or a semiconductor detector is preferable, and when the γ-ray energy is low, a plastic scintillator is also used in addition to the above detector. Furthermore, by using a radiation detector that has output linearity with respect to radiation energy and selecting its discrimination level using a pulse height discrimination circuit, it is possible to use the radioactive contamination density distribution for a specific radionuclide. It is possible.

以上述べたように、この発明に係る放射線望遠鏡は、自
動距離計を放射線検出器に取付けたので予かじめ被測定
体の配置を知らなくても測定点から離れた位置で放射能
汚染密度分布を測定できるから人体への放射線被曝の危
険が少なく、しかも2つの走査駆動手段の組合せにより
1組あるいは2組の放射線検出器と自動距離計を用いて
広い範囲にわたる正確な放射能汚染密度分布を測定する
ことができ、環境の放射能汚染の監視等に非常に有用で
ある。
As described above, since the radiation telescope according to the present invention has an automatic distance meter attached to the radiation detector, it is possible to detect the radioactive contamination density distribution at a position far from the measurement point without knowing the location of the object to be measured in advance. The risk of radiation exposure to the human body is low, and the combination of two scanning drive means allows accurate radioactive contamination density distribution over a wide range to be obtained using one or two sets of radiation detectors and an automatic distance meter. It is very useful for monitoring environmental radioactive contamination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aはこの発明の一実施例におけるコリメータの構
造を示す正面図、第1図bは第1図aのA−A″線矢視
方向に沿つて切断して示す横断面図、第2図は同実施例
の放射線望遠鏡の概略構成を示す概念図、第3図はこの
発明に係る放射線検出器および距離計の具体的な走査駆
動の様子を示す模型図、第4図A,bはこの発明の実施
例における放射線検出器および自動距離計の配置を示す
断面図である。 1・・・・・コリメータ、2・・・・・・放射線透過孔
、O・・・・・・開き角、3・・・・・・放射線検出器
、4・・・・・・被測定”体、5・・・・・・パルス増
幅器、6・・・・・・処理装置、7・・・・・・ディス
プレイ装置、8・・・・・・記録装置、9・・・・・・
架台、10・・・・・回転軸、11・・・・・・自動距
離計、12・・・・鏡。
FIG. 1a is a front view showing the structure of a collimator in an embodiment of the present invention, FIG. Figure 2 is a conceptual diagram showing the schematic configuration of the radiation telescope of the same embodiment, Figure 3 is a model diagram showing the specific scanning drive of the radiation detector and distance meter according to the present invention, and Figures 4A and b. 1 is a sectional view showing the arrangement of a radiation detector and an automatic distance meter in an embodiment of the present invention. 1... Collimator, 2... Radiation transmission hole, O... Opening. Corner, 3... Radiation detector, 4... Body to be measured, 5... Pulse amplifier, 6... Processing device, 7... ... Display device, 8... Recording device, 9...
Frame, 10...rotation axis, 11...automatic distance meter, 12...mirror.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定体に対して所定の開き角をもつ放射線透過孔
を有するコリメータと、このコリメータの後方に配置さ
れた少なくとも1組の距離計を付けた放射線検出器と、
前記距離計及び放射線検出器を前記コリメータの中心軸
を含む平面内で前記放射線透過孔を中心として円弧を描
くように移動させる第1の走査駆動手段と、前記自動距
離計及び放射線検出器を前記コリメータの中心軸まわり
に回転させる第2の走査駆動手段とを備えた放射線望遠
鏡。
1. A collimator having a radiation transmitting hole having a predetermined opening angle with respect to the object to be measured, and a radiation detector equipped with at least one set of rangefinders arranged behind the collimator;
a first scanning driving means for moving the rangefinder and the radiation detector in a circular arc centering on the radiation transmission hole within a plane including the central axis of the collimator; and a second scanning drive means for rotating the collimator around its central axis.
JP8394179A 1979-07-04 1979-07-04 radiation telescope Expired JPS6049264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8394179A JPS6049264B2 (en) 1979-07-04 1979-07-04 radiation telescope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8394179A JPS6049264B2 (en) 1979-07-04 1979-07-04 radiation telescope

Publications (2)

Publication Number Publication Date
JPS5610271A JPS5610271A (en) 1981-02-02
JPS6049264B2 true JPS6049264B2 (en) 1985-10-31

Family

ID=13816603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8394179A Expired JPS6049264B2 (en) 1979-07-04 1979-07-04 radiation telescope

Country Status (1)

Country Link
JP (1) JPS6049264B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217898A1 (en) 2019-04-24 2020-10-29 住友理工ホーステックス株式会社 High-pressure hose and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265907A (en) * 1989-02-15 1989-10-24 Matsushita Electric Works Ltd Rotary storing unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217898A1 (en) 2019-04-24 2020-10-29 住友理工ホーステックス株式会社 High-pressure hose and method for manufacturing same
JP2020180631A (en) * 2019-04-24 2020-11-05 住友理工ホーステックス株式会社 High pressure hose and manufacturing method thereof
US11333272B2 (en) 2019-04-24 2022-05-17 Sumitomo Riko Hosetex, Ltd. High-pressure hose and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5610271A (en) 1981-02-02

Similar Documents

Publication Publication Date Title
US5286973A (en) Radiation mapping system
US3878373A (en) Radiation detection device and a radiation detection method
JP5918093B2 (en) Radiation measurement apparatus and radiation measurement method
JP2953772B2 (en) Real-time position measurement device for radiation source
US4109150A (en) Scintillation camera with the scintillators in different planes
KR102049518B1 (en) An imaging device that combines gamma-ray images with visual optical camera images
US3979594A (en) Tomographic gamma ray apparatus and method
JP2013501929A (en) New radiation detector
CN105974461A (en) Gamma ray scanning imaging and radionuclide identification system and method thereof
JP2006058296A (en) Tomograph and method thereof
KR100251064B1 (en) Three dimensional measuring apparatus and method of the distribution of radiation
US3329814A (en) Stereo positron camera for determining the spatial distribution of radioactive material in a test body
US3612867A (en) X-ray television microscope
US10524748B2 (en) Method for determining the locations of origin of radiation signals in a measurement zone, and measuring device for simultaneously detecting radiation events of decaying radionuclides in the measurement zone
JPS6049264B2 (en) radiation telescope
US3769509A (en) Scintillation camera
CN210323386U (en) Ray monitor
JPH09101371A (en) Gamma ray detection method and device
JPS5940278B2 (en) radiation telescope
JPH0418636B2 (en)
JPS5945952B2 (en) radiation telescope
JPH03185383A (en) Method for measuring radiation
CN110568469A (en) Ray monitor
RU2293971C2 (en) Radiography and tomography device
JPH11202052A (en) Directional gamma-ray detection device and detection system using the same