JPS604925A - Electrochromic element - Google Patents

Electrochromic element

Info

Publication number
JPS604925A
JPS604925A JP58113968A JP11396883A JPS604925A JP S604925 A JPS604925 A JP S604925A JP 58113968 A JP58113968 A JP 58113968A JP 11396883 A JP11396883 A JP 11396883A JP S604925 A JPS604925 A JP S604925A
Authority
JP
Japan
Prior art keywords
layer
electrochromic
film
electrochromic layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58113968A
Other languages
Japanese (ja)
Inventor
Kazuya Ishiwatari
和也 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP58113968A priority Critical patent/JPS604925A/en
Publication of JPS604925A publication Critical patent/JPS604925A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • G02F1/15245Transition metal compounds based on iridium oxide or hydroxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To obtain a fully solid-state electrochromic element by using a mixture of three kinds of hydroxides of specified elements for the first electrochromic layer. CONSTITUTION:A base plate 1 is made of a colorless transparent glass or the like and the first electrochromic layer 3 of a color developing layer on the anode side is made of CrO3, iridium hydroxide, and nickel hydroxide. An insulating layer 4 is made of a dielectric of SiO2 or other oxides, or MgF2 or other fluorides. The second electrochromic layer 6 of a color developing layer on a cathode side is made of WO3 or the like. When voltage is impressed between the electrodes 2, 5, electrochemical reaction is caused to erase a color. The layer 3 is formed by the reactive high frequency ion plating method, Co, Ir, or Ni pellets or powder is used for the vapor deposition material, and a film is formed by using an electron gun alone or together with a resistance heater.

Description

【発明の詳細な説明】 本発明は、電気化学的発消色現象、即ち、エレクトロク
ロミック現象を応用した素子を製造する際の第1エレク
トロクロミック層を、コバルト、イリジウム、ニッケル
の水酸化物の3種混合膜にしたエレクトロクロミック素
子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a first electrochromic layer in the production of an element that applies an electrochemical coloring/discoloring phenomenon, that is, an electrochromic phenomenon, using cobalt, iridium, and nickel hydroxides. This invention relates to an electrochromic device having a mixed film of three types.

エレクトロクロミック現象を応用した、全固体型エレク
トロクロミック素子の従来の例を1第1゜2図を用いて
説明する。ゝ 第1,2図は全固体型エレクトロクロミック素子の一般
的な構造を示す断面図である。
A conventional example of an all-solid-state electrochromic element to which electrochromic phenomenon is applied will be explained with reference to FIGS. 1 and 2. 1 and 2 are cross-sectional views showing the general structure of an all-solid-state electrochromic device.

図において、1はガラス基板、2は透明導電膜、6は陽
極側発色層である第1エレクトロクロミック層、4は誘
電体からなる絶縁層、6は陰極側発色層である第2エレ
クトロクロミック層、5は電極である。
In the figure, 1 is a glass substrate, 2 is a transparent conductive film, 6 is a first electrochromic layer which is a coloring layer on the anode side, 4 is an insulating layer made of a dielectric, and 6 is a second electrochromic layer which is a coloring layer on the cathode side. , 5 are electrodes.

ここで、1のガラス基板は、ガラスのみではなく、プラ
スチック、アクリル等々のいわゆる無色透明であるもの
ならば良く、その位置に関しても、電極のどちら側か一
方で良いし、あるいは両側にあっても良い。2,5の電
極に関しても、どちらか一方が透明であれば良いし、両
側が透明であれば、透過型の素子が出来る。4も誘電体
のみではなく、固体電解質等の様なものでも良い。
Here, the glass substrate 1 is not only made of glass, but may be made of plastic, acrylic, etc., as long as it is colorless and transparent, and its position may be on either side of the electrode, or it may be on both sides. good. Regarding electrodes 2 and 5, it is sufficient if either one is transparent, and if both sides are transparent, a transmissive type element can be obtained. 4 may also be made of not only a dielectric material but also a solid electrolyte or the like.

透明導電膜としては、I′rO膜(酸化インジウム。The transparent conductive film is an I'rO film (indium oxide).

InsQg 、中に酸化錫、8nomをドープしたもの
)やネサ膜等々が用いられる。
InsQg (in which tin oxide, 8 nm) is doped), Nesa film, etc. are used.

乙の陽極側発色層である第1エレクFロク四ミツク層は
、三酸化クロム(Or冨Os)、水酸化イリジウム(I
r(O)1)*)、木酢化ニッケル(N4(O)い)等
々を用いて形成する。
The first electric F color layer, which is the coloring layer on the anode side of B, is made of chromium trioxide (OrtomiOs) and iridium hydroxide (I).
r(O)1)*), nickel pyrolyl acetate (N4(O)), etc.

4の誘導体からなる絶縁層は、二酸化ジルコン(ZrO
s) 、五酸化タンク/l/ (Ta5ks ) 、酸
化ケイ素(Sl、、 81oz)等々に代表される酸化
物、あるいは、フッ化リチウム(LlF)、フッ化マグ
ネシウム(MgF*)等々に代表されるフッ化物が用い
られる。
The insulating layer made of the derivative No. 4 is made of zircon dioxide (ZrO
s), pentoxide tank/l/ (Ta5ks), silicon oxide (Sl, 81oz), etc., or lithium fluoride (LlF), magnesium fluoride (MgF*), etc. Fluoride is used.

6の陰極側発色層である第2エレクトロクロミック層は
、酸化タングステン(W違、W)s)、酸化モリブデン
(Moss、Moon ) 、五酸化バナジウム(Vm
Oa)等々の物質を用いて形成する。
The second electrochromic layer, which is the coloring layer on the cathode side of No. 6, is made of tungsten oxide (W), molybdenum oxide (Moss, Moon), vanadium pentoxide (Vm).
Formed using materials such as Oa).

この様な構造を持つ、全固体型エレクトロクロミック素
子においては、第1電極2と第2電極5の間に電圧を印
加することにより、電気化学反応が起き着色、消色をす
る。
In an all-solid-state electrochromic element having such a structure, by applying a voltage between the first electrode 2 and the second electrode 5, an electrochemical reaction occurs to cause coloring and decoloring.

この着色機構としては、例えば、第2エレクトロク四ミ
ツク物質層6へのカチオンと電子のダブルインジェクシ
ョンによるブロンズ形成が一般的に言われている。この
場給、エレクトロクロミック物質にvyosを用いるな
らば、次の(1)式で表わされる醸化還元反応が起き着
色する。
This coloring mechanism is generally said to be, for example, formation of bronze by double injection of cations and electrons into the second electromic material layer 6. If vyos is used as the electrochromic substance in situ, a fermentation-reduction reaction represented by the following formula (1) occurs, resulting in coloration.

WOs +xH” + s:e−;HxWOs (1)
(1)式に従って、タングステンブロンズ1−hWOs
 カ形成され着色するが、ここで、印加電圧を逆転すれ
ば消色状態となる。
WOs +xH” + s:e-;HxWOs (1)
According to formula (1), tungsten bronze 1-hWOs
However, if the applied voltage is reversed, the color disappears.

(1)式のこの様な反応は、全固体型エレクトロクロミ
ック素子においては、素子内部の絶縁層によって、プロ
トンH+が供給され着色するとされている。
In an all-solid-state electrochromic device, such a reaction expressed by formula (1) is said to be caused by the supply of protons H+ by an insulating layer inside the device, causing coloration.

第1エレクト四クロミツク層は、水酸化イリジウム(I
r (OH)り等の水酸化物を、反応性スパッタや陽極
酸化膜法で形成することもできるが、本発明では、反応
性高周波イオンブレーティング法を用い形成した。蒸着
材料としては、コバルト(Co)、イリジウム(Ir)
、ニッケル(Ni)のベレット又は粉末を用い、電子銃
もしくは、抵抗加熱併用によって膜を形成した。
The first electro-tetrachromic layer consists of iridium hydroxide (I
Hydroxide such as r (OH) oxide can also be formed by reactive sputtering or an anodic oxidation film method, but in the present invention, it was formed using a reactive high frequency ion blating method. Cobalt (Co) and iridium (Ir) are used as vapor deposition materials.
A film was formed using a pellet or powder of nickel (Ni) using an electron gun or a combination of resistance heating.

本発明による方法を実施するのに使用されるイオンブレ
ーティング装置の一例を第3図に示す。
An example of an ion blating apparatus used to carry out the method according to the invention is shown in FIG.

図中、10はイオンブレーティング装置の本体、11は
拡散ポンプ、12は電子銃(EBガン)、16は傘、1
4はDCAイアスを印加するDCバイアス源、15は高
周波コイル(凝゛コイル)、16は0漏ガスを供給する
02ガスボンベ、17はニードルパルプを示す。
In the figure, 10 is the main body of the ion blating device, 11 is a diffusion pump, 12 is an electron gun (EB gun), 16 is an umbrella, 1
4 is a DC bias source that applies a DCA bias, 15 is a high frequency coil (concentration coil), 16 is an 02 gas cylinder that supplies zero leakage gas, and 17 is a needle pulp.

次に、全固体型エレクトロクロミック素子を製造する本
発明方法の実施例について説明する。
Next, an example of the method of the present invention for manufacturing an all-solid-state electrochromic device will be described.

実施例1 厚み0.8mmのCorning 7059ガラス基板
上に、適当な引き出し電極部及びリード部を備えた、I
TO膜上に、蒸着材料に金属コバ/l/ ) (Co)
 、金属イリジウム(Ir)、金属ニッケル(N1)を
用い1反応性高周波イオンブレーティング方法により、
陽極側発色層である、第1エレクトロクロミック層を形
成した。
Example 1 On a Corning 7059 glass substrate with a thickness of 0.8 mm, an I.
On the TO film, the metal coating (Co) is added to the vapor deposition material.
, by a reactive high-frequency ion blating method using metallic iridium (Ir) and metallic nickel (N1),
A first electrochromic layer, which is a coloring layer on the anode side, was formed.

条件として、HsO蒸気 を5.OX 10−’ Torrまで導入し、蒸着速度
を各各1. Q A / sso合計3.OJ/sea
とした。膜厚は1500 Aであった。
The conditions were as follows: HsO vapor 5. OX up to 10-' Torr, and the deposition rate was set at 1. Q A / sso total 3. OJ/sea
And so. The film thickness was 1500A.

この膜の上に、真空蒸着方法により、絶縁体層であるT
amesの層を300OA付けた。この時の真空度は2
. OX 10−’ Torr 、蒸着速度は8A /
 ss。
On top of this film, an insulating layer T
A layer of ames of 300 OA was applied. The degree of vacuum at this time is 2
.. OX 10-' Torr, deposition rate 8A/
ss.

であった。さらに、これらの膜の上に、陰極発色層であ
る、第2エレクトロクロミック層であるWOs層を、真
空蒸着方法により、4000 A付け、第21!極であ
る半透明AU 膜を30OA付けた。
Met. Furthermore, on top of these films, a WOs layer, which is a second electrochromic layer, which is a cathode coloring layer, is deposited at 4000 A by a vacuum evaporation method. A translucent AU film of 30 OA was attached as the pole.

この様にして製作した、全固体型エレクトロクロミック
素子を、第1.2mm極間に、2.2V印加して駆動し
たところ、着色濃度がΔODで0.4に達するまでに3
00 m5eo であった。
When the all-solid-state electrochromic device manufactured in this way was driven by applying 2.2 V between the 1.2 mm poles, the coloring density reached 3
00 m5eo.

実施例2 厚み0.8mmのCorning 7059ガラス基板
上に、適当なす1き出し電極部及びリード部を備えた、
■TO膜上に、蒸着材料に金属スバル)(Co)と金属
ニッケル(N1)合金ペレット(1:1λ及び金はイリ
ジウム(Ir )ペレットを用い、反応性高周波イオン
ブレーティング方法により、陽極側発色層である、第1
エレクトロクロミック層を形成した。
Example 2 On a Corning 7059 glass substrate with a thickness of 0.8 mm, an appropriate square electrode portion and lead portion were provided.
■On the TO film, using metallic Subaru (Co) and metallic nickel (N1) alloy pellets (1:1λ) and iridium (Ir) pellets for gold as evaporation materials, color is developed on the anode side by reactive high frequency ion blating method. The first layer is
An electrochromic layer was formed.

条件として、H寓0蒸気 を5. OX 10”−’Torr まで導入し、蒸着
速度を各々Aであった。
The conditions are 5.0 steam. OX was introduced up to 10''-'Torr, and the deposition rate was A in each case.

この膜の上に、真空蒸着方法により、絶縁体層であるT
aaOaの層を3000 i付けた。この時の真空度は
2. OX 10−’Torr、蒸着速度は8A / 
see テあった。さらに、これらの膜の上に、陰極発
色層である、第2エレクトロクロミック層であるVK)
s層を、真空蒸着方法により、4000 A付け、第2
電極である半透明Atr 膜を60OA付けた。
On top of this film, an insulating layer T
A layer of aaOa was applied for 3000 i. The degree of vacuum at this time is 2. OX 10-'Torr, deposition rate 8A/
see te was there. Furthermore, on top of these films, a second electrochromic layer (VK) which is a cathode coloring layer is formed.
The s layer was attached at 4000 A by a vacuum evaporation method, and the second
A translucent Atr film of 60 OA was attached as an electrode.

この様にして製作した、全固体型エレクトロクロミック
素子を、第1,2電極間に、2.2V印加して駆動した
ところ、着色濃度がΔODで0.4に達するまでに!1
50 maeo であった。
When the all-solid-state electrochromic device manufactured in this way was driven by applying 2.2V between the first and second electrodes, the coloring density reached ΔOD of 0.4! 1
It was 50 maeo.

実施例6 厚み0.8 mmのearning 7059ガラス基
板上に、適当な引き出し電極部及びリード部を備えた、
ITO膜上に、蒸着材料に金属コバル)(Co)と金属
イリジウム(Ir)の合金へレット(1:1)及び、粉
末状ニッケルを用い、反応性高周波イオンブレーティン
グ方法により、陽極側発色層である、第1エレクトロク
ロミック層を形成した。
Example 6 Appropriate extraction electrode portions and lead portions were provided on an Earning 7059 glass substrate with a thickness of 0.8 mm.
On the ITO film, a coloring layer is formed on the anode side by using a reactive high-frequency ion blating method using Hellet (1:1), an alloy of metal cobal (Co) and metal iridium (Ir), and powdered nickel as vapor deposition materials. A first electrochromic layer was formed.

条件として、ニードルバルブ17′を開放して水溜19
からH露O蒸気 を5. D X 10−’Torrまで導入し、蒸着速
度を各々膜厚は120OAであった。
As a condition, the needle valve 17' is opened and the water reservoir 19
5. H dew O vapor from The deposition rate was 120 OA, and the film thickness was 120 OA.

この膜の上に、真空蒸着方法により、絶縁体層であるT
a露Osの層を300OA付けた。この時の真空度は2
. OX 10”−’Torr、蒸着速度は8A / 
sea ”’Cあった。さらに、これらの膜の上に、陰
極発色層である、第2エレクトロクロミック層であるW
as層を、真空蒸着方法により4000 A付け、第2
電極である半透明Atr 膜を600A付けた。
On top of this film, an insulating layer T
A layer of 300 OA of a-Os was applied. The degree of vacuum at this time is 2
.. OX 10''-'Torr, deposition rate 8A/
Furthermore, on top of these films, there was a second electrochromic layer, W, which was a cathode coloring layer.
The AS layer was attached at 4000 A by a vacuum evaporation method, and the second
A translucent Atr film serving as an electrode was attached at 600A.

この様にして製作した、全固体型エレクトロクロミック
素子を、第1.2電極間に、2.2■印加して駆動した
ところ、着色濃度がΔODで0.4に達するまでに34
0m5θCであった。
When the all-solid-state electrochromic device manufactured in this way was driven by applying a voltage of 2.2μ between the first and second electrodes, the coloring density reached ΔOD of 0.4.
It was 0m5θC.

実施例4 厚みO−8mmのCorning 7059ガラス基板
上に、適当な引き出し電極部及びリード部を備えた、■
TO膜上に、蒸着材料にコバルト、イリジウム、ニッケ
ルの酸化物を混合(1:1:1)ペレットを用い、反応
性高周波イオンブレーティング方法により、陽極側発色
層である、第1エレクトロクロミック層を形成した。
Example 4 On a Corning 7059 glass substrate with a thickness of O-8 mm, appropriate extraction electrode parts and lead parts were provided.
A first electrochromic layer, which is a coloring layer on the anode side, is formed on the TO film by a reactive high-frequency ion blasting method using pellets containing a mixture of cobalt, iridium, and nickel oxides (1:1:1) as a vapor deposition material. was formed.

条件として、H20蒸気 を4. OX 10−’Torr まで導入し、蒸着速
度ヲ1.5この膜の上に、真空蒸着方法により、絶縁体
層であるTaaOaの居を300OA付けた。この時の
真空度は2. OX 10−’Torr、蒸着速度は8
A / seaであった。さらに、これらの膜の上に、
陰極発色層である、第2エレクトロクロミック層である
W)s層を、真空蒸着法により、4000 A付け、第
2電極である半透明Atr膜を60OA付けた。
The conditions were 4. H20 steam. OX was introduced to 10-'Torr, and the deposition rate was 1.5. On top of this film, an insulating layer of TaaOa was deposited at 300 OA by vacuum deposition. The degree of vacuum at this time is 2. OX 10-'Torr, deposition rate 8
It was A/sea. Furthermore, on top of these membranes,
A W)s layer, which is a second electrochromic layer, which is a cathode coloring layer, was attached at 4000 A by vacuum evaporation, and a translucent Atr film, which was a second electrode, was attached at 60 OA.

この様にして製作した、全固体型エレクトロクロミック
素子を第1,2電極間に、2.2V印加して駆動したと
ころ、着色濃度がΔODで0.4に達するまでに300
m5eoであった。
When the all-solid-state electrochromic device manufactured in this way was driven by applying 2.2V between the first and second electrodes, the coloring density reached 300% by the time it reached ΔOD of 0.4.
It was m5eo.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明方法により製造される全
固体型エレクトロクロミック素子の2つ4史 の例を示す断面図、第6図は本発明方法に使用されるイ
オンプレティング装置を示す概略図である。 1:基板、2:第1電極、6:エレクトロクロミック層
、4:絶縁層、5:第2電極、6:エレクトロクロミッ
ク層、10:イオンプレティング装置本体、11;拡散
ポンプ、12:電子銃(EBガン)、13:傘、14:
DCバイアス源、15:高周波コイル(’R,Fコイル
)16:O雪ガスボンベ、17:ニードルバルブ、1’
9:水溜。 特許出願人 キャノン株式会社 口 C○ 恢
FIGS. 1 and 2 are cross-sectional views showing two examples of all-solid-state electrochromic devices manufactured by the method of the present invention, and FIG. 6 is an ion plating device used in the method of the present invention. FIG. 1: Substrate, 2: First electrode, 6: Electrochromic layer, 4: Insulating layer, 5: Second electrode, 6: Electrochromic layer, 10: Ion plating device main body, 11: Diffusion pump, 12: Electron gun (EB gun), 13: Umbrella, 14:
DC bias source, 15: High frequency coil ('R, F coil) 16: O snow gas cylinder, 17: Needle valve, 1'
9: Water puddle. Patent applicant: Canon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 第1電極としての透明導電体を第1層とし、第1エレク
トロクロミック層を第2層、絶縁層を第3ff、第2エ
レクトロクロミック層を第4層、第2電極を第5層とす
るとき、前記第1から第5層あるいは第1.2,3.5
層を順次積層して構成した、全固体型エレクトロクロミ
ック素子において、第1エレクトロクロミック層をコバ
ルト1イリジウム、およびニッケルの水激化物の6種混
合膜にしたことを特徴とするエレクトロクロミック素子
When the transparent conductor as the first electrode is the first layer, the first electrochromic layer is the second layer, the insulating layer is the third ff, the second electrochromic layer is the fourth layer, and the second electrode is the fifth layer. , the first to fifth layers or 1.2, 3.5
1. An all-solid-state electrochromic device constructed by sequentially laminating layers, characterized in that the first electrochromic layer is a mixed film of six types of hydrated products of cobalt-1-iridium and nickel.
JP58113968A 1983-06-23 1983-06-23 Electrochromic element Pending JPS604925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58113968A JPS604925A (en) 1983-06-23 1983-06-23 Electrochromic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58113968A JPS604925A (en) 1983-06-23 1983-06-23 Electrochromic element

Publications (1)

Publication Number Publication Date
JPS604925A true JPS604925A (en) 1985-01-11

Family

ID=14625721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58113968A Pending JPS604925A (en) 1983-06-23 1983-06-23 Electrochromic element

Country Status (1)

Country Link
JP (1) JPS604925A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543624B1 (en) * 1971-03-04 1979-02-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543624B1 (en) * 1971-03-04 1979-02-24

Similar Documents

Publication Publication Date Title
JPH04267227A (en) Electrochromic glass
US4294520A (en) Electrochromic display device
US4225216A (en) Tungsten niobate electrochromic device
US4585312A (en) Electrochromic element
US4508792A (en) Electrochromic element
JPS604925A (en) Electrochromic element
US4632516A (en) Electrochromic element
US4605285A (en) Electrochromic device
JPS59102216A (en) Production of fully solid-state type electrochromic element
JPS59228628A (en) Entirely solid electrochromic element
JPS6042739A (en) Preparation of electrochromic element
JPS6186733A (en) Electrochromic element
JPS604926A (en) Electrochromic element
JPS59228630A (en) Entirely solid electrochromic element
JPS59232316A (en) Electrochromic element
JPS60151616A (en) Electrochromic element
JPS59104626A (en) Manufacture of all solid-state electrochromic element
JPS59229528A (en) Entirely solid electrochromic element
JPS59123821A (en) All solid-state electrochromic element
JPS59102215A (en) Production of fully solid-state type electrochromic element
JPS61103982A (en) Electrochromic element
JPS60181732A (en) Electrochromic display device
JPS61103981A (en) Electrochromic element
JPS60263125A (en) Electrochromic display device
JPS59101627A (en) Manufacture of full solid-state type electrochromic element