JPS6049150B2 - Manufacturing method of low magnetic loss Mn-Zn ferrite - Google Patents

Manufacturing method of low magnetic loss Mn-Zn ferrite

Info

Publication number
JPS6049150B2
JPS6049150B2 JP56135262A JP13526281A JPS6049150B2 JP S6049150 B2 JPS6049150 B2 JP S6049150B2 JP 56135262 A JP56135262 A JP 56135262A JP 13526281 A JP13526281 A JP 13526281A JP S6049150 B2 JPS6049150 B2 JP S6049150B2
Authority
JP
Japan
Prior art keywords
ferrite
magnetic loss
weight
oxygen concentration
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56135262A
Other languages
Japanese (ja)
Other versions
JPS5836974A (en
Inventor
栄三 高間
茂 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP56135262A priority Critical patent/JPS6049150B2/en
Publication of JPS5836974A publication Critical patent/JPS5836974A/en
Publication of JPS6049150B2 publication Critical patent/JPS6049150B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 この発明は、低磁気損失特性を有し、かつ高密度のMn
−Znフェライトの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention has low magnetic loss characteristics and high density Mn.
-Regarding a method for manufacturing Zn ferrite.

従来の低磁気損失Mn−Znフェライトは最終工程の焼
結後における密度が理論密度の99%程度で、焼結体内
の気孔が多く、これを例えば磁気ヘッド材料として使用
した楊合、低磁気損失特性を有するもの、記録媒体が摺
動した際に上記気孔を起点として結晶が脱落し、磁気ヘ
ッドとしての耐摩耗性か劣り、記録媒体を損傷したりす
る問題があつた。又記録媒体の磁性粉が前記気孔および
結晶の脱落孔に溜まると、磁性粉により発生する磁場の
ため、記録媒体に記録された信号が乱されるという問題
があつた。これらの問題を解決するため、Mn−Znフ
ェライトの気孔率を低減して高密度化を図る方法が種々
提案されている。
Conventional low magnetic loss Mn-Zn ferrite has a density of about 99% of the theoretical density after sintering in the final process, and there are many pores in the sintered body. However, when the recording medium slides, the crystals fall off starting from the pores, resulting in poor wear resistance as a magnetic head and damage to the recording medium. Furthermore, when the magnetic powder of the recording medium accumulates in the pores and drop-off pores of the crystal, there is a problem in that the signal recorded on the recording medium is disturbed due to the magnetic field generated by the magnetic powder. In order to solve these problems, various methods have been proposed for reducing the porosity of Mn-Zn ferrite to increase its density.

本願出願人は先に、特開昭54−7329時にて、Mn
−Znフェライト成型体を2〜10%の酸素を含有する
窒素ガスの酸化性雰囲気で1次焼結を行ない、その後焼
結体を同一組成のフェライト粉末と共に1重構造の容器
内に充填し、熱間静水圧プレスを行うことにより、密度
99.95%以上のMn−Znフェライトが得られるこ
とを提案した。しかし、相対磁気損失係数(tanδ/
μ)が100KH2、4m0eの測定条件下で10×、
10−6以上であり、低磁気損失特性を有するMn一Z
nフェライトは得られなかつた。本発明者は上記の問題
を解決するため、種々検討した結果、1次焼結工程の焼
結条件、冷却条件及び熱間静水圧プレス条件の改善によ
り、相対磁ク気損失係数が5×10−0以下、密度が1
00%の低磁気損失特性を有し、かつ高密度のMn−Z
nフェライトが得られることを知見した。
The applicant of this application previously published Mn
- Perform primary sintering of the Zn ferrite molded body in an oxidizing atmosphere of nitrogen gas containing 2 to 10% oxygen, and then fill the sintered body with ferrite powder of the same composition in a single-layer container, It was proposed that Mn-Zn ferrite with a density of 99.95% or more can be obtained by hot isostatic pressing. However, the relative magnetic loss coefficient (tanδ/
μ) is 10× under the measurement conditions of 100 KH2 and 4 m0e,
10-6 or more and has low magnetic loss characteristics
No n-ferrite was obtained. In order to solve the above problem, the present inventor conducted various studies and found that by improving the sintering conditions, cooling conditions, and hot isostatic pressing conditions of the primary sintering process, the relative magnetic loss coefficient was reduced to 5 × 10. -0 or less, density is 1
00% low magnetic loss characteristic and high density Mn-Z
It was discovered that n-ferrite can be obtained.

すなわち、この発明は、Fe20350〜56モル%、
MnO23〜40モル%、ZnO5〜27モル%を主成
分とし、CaOO.Ol〜0.鍾量%とSiO2O.O
3重量%以下、ZrO2O.35重量%以下、TiO2
O.35重量%以下、■20.0.鍾量%以下のうち少
なくとも1種を含有するMn−Znフェライト成型体を
、従来法と同じく1100℃〜1300℃の温度条件下
で0.1〜5%の酸素を含む窒素等不活性ガスの雰囲気
中で1次焼結後に、平衡酸素濃度より2〜5倍高い酸素
濃度で冷却処理を行い、その場合の1次焼結体密度を9
5%以上とし、次に上記焼結体を2重以上の構造の容器
に上記フェライトと同一組成のフェライト粉末と共に充
填し、圧力媒体にアルゴンガス等の不活性ガスを用い、
温度1000゜C〜1250℃、圧力500k9/d〜
2000k9/Criの適当な条件下で熱間静水圧ブレ
スを行ない、密度が99.95%以上、相対磁気損失係
数が100KHz,4m0eの測定条件下で5×10−
6以下の特性を有する低磁気損失Mn−Znフェライト
を得ることを特徴とするものである。
That is, in this invention, Fe20350 to 56 mol%,
The main components are 23 to 40 mol% of MnO, 5 to 27 mol% of ZnO, and CaOO. Ol~0. Weight % and SiO2O. O
3% by weight or less, ZrO2O. 35% by weight or less, TiO2
O. 35% by weight or less, ■20.0. A molded Mn-Zn ferrite containing at least one of the following: After primary sintering in an atmosphere, cooling treatment is performed at an oxygen concentration 2 to 5 times higher than the equilibrium oxygen concentration, and the density of the primary sintered body in that case is 9.
5% or more, then the sintered body is filled in a container with a double or more structure together with ferrite powder having the same composition as the ferrite, and an inert gas such as argon gas is used as the pressure medium.
Temperature 1000°C ~ 1250°C, pressure 500k9/d ~
Hot isostatic pressing was performed under suitable conditions of 2000 k9/Cri, and the density was 99.95% or more, and the relative magnetic loss coefficient was 5 × 10- under the measurement conditions of 100 KHz and 4 m0e.
The present invention is characterized by obtaining a low magnetic loss Mn-Zn ferrite having a characteristic of 6 or less.

以下に、この発明において成分を限定する理由を説明す
る。主成分組成Fe2O35O〜56モル%、MnO2
3〜40モル%、ZnO5〜27モル%は、キュリー温
度70℃以上、透磁率1000以上の軟質磁気特性を有
する領域であり、これ以外の領域では軟質磁性材料と,
しては実用的てない。
The reasons for limiting the components in this invention will be explained below. Main component composition Fe2O35O~56 mol%, MnO2
3 to 40 mol% and ZnO 5 to 27 mol% are regions that have soft magnetic properties with a Curie temperature of 70° C. or higher and a magnetic permeability of 1000 or higher; other regions are soft magnetic materials,
It's not practical.

CaOは低磁気損失特性を得る添加成分であり、第1図
にCaO単独添加並びにSiO2と複合添加した場合の
磁気損失特性との関係をグラフに示しているが、第1図
から明らかな如く、0.01重量%未3満の添加では低
磁気損失特性は得られない。
CaO is an additive component that obtains low magnetic loss characteristics, and FIG. 1 shows the relationship between the magnetic loss characteristics when CaO is added alone and when CaO is added in combination with SiO2. As is clear from FIG. If less than 0.01% by weight is added, low magnetic loss characteristics cannot be obtained.

又、第2図にCaOの含有量とMn−Znフェライトの
1次焼結後の密度との関係をグラフに示しているが、こ
れより明らかな如く、0.3重量%を越える添加により
、1次焼結後の密度が95%より小とな3り、次工程の
熱間静水圧ブレスによる高密度化ができないため、Ca
Oは0.01〜0.鍾量%とする。SjO2はCaOと
の複合添加により、CaO単独含有の場合よりもさらに
良い低磁気損失特性が得られるが、第1図に示す如く、
0.03重量%を越える41とその効果が得られなくな
る。ZrO2,TlO2,v2O5はSlO2と同様に
CaOとの複合添加により、低磁気損失特性を得るもの
であるが、第3図は0.1%CaO,O.Ol%SjO
2の条件下でZrO2,TiO2,V2への添加量を変
化させた場合の磁気特性の関係をグラフに示したもので
あり、これから明らかな如く、ZrO2,TiO2,v
2O5がそれぞれ0.35重量%,0.35重量%,0
.鍾量%を越える5添加では上記の効果がなくなる。
Furthermore, Fig. 2 shows a graph showing the relationship between the CaO content and the density of Mn-Zn ferrite after primary sintering, and as is clear from this, addition of more than 0.3% by weight Since the density after primary sintering is less than 95% and it is not possible to increase the density by hot isostatic pressing in the next step, Ca
O is 0.01-0. The weight is expressed as %. By adding SjO2 in combination with CaO, even better low magnetic loss characteristics can be obtained than when CaO is contained alone, but as shown in Figure 1,
If the amount of 41 exceeds 0.03% by weight, the effect cannot be obtained. Like SlO2, ZrO2, TlO2, and v2O5 obtain low magnetic loss characteristics by combined addition with CaO. Ol%SjO
This is a graph showing the relationship between the magnetic properties when the amounts added to ZrO2, TiO2, and V2 are changed under the conditions of 2. As is clear from this, ZrO2, TiO2,
2O5 is 0.35% by weight, 0.35% by weight, and 0, respectively.
.. If the amount of 5 is added in excess of the amount by weight, the above effect disappears.

この発明において、1次焼結後の冷却は、平衡酸素濃度
より2〜5倍高い酸素濃度条件で行なう必要がある。
In this invention, cooling after primary sintering must be performed under oxygen concentration conditions that are 2 to 5 times higher than the equilibrium oxygen concentration.

この酸素濃度が平衡酸素濃度の2倍未満であると、熱間
静水圧ブレス後のフェライトOの相対磁気損失係数が劣
化し、又平衡酸素濃度の5倍を越えると、1次焼結後の
相対磁気損失係数が劣化し、これが熱間静水圧ブレス後
においても回復しないため、2〜5倍の酸素濃度とする
。又、1次焼結後の焼結体の密度を95%以上にし7た
理由は、密度が95%未満では気孔がフェライトの表面
と内部とが連通する貫通孔となり、熱間静水圧ブレス時
に圧力媒体がフェライト焼結体中の気孔に侵入して高密
度品が得られなくなるためである。従つて、Mn−Zn
フェライト成型体の成型密度、1次焼結温度、1次焼結
保持時間を適宜選定する必要がある。次に、熱間静水圧
ブレス処理するためのコンテナを説明する。
If this oxygen concentration is less than twice the equilibrium oxygen concentration, the relative magnetic loss coefficient of ferrite O after hot isostatic pressing will deteriorate, and if it exceeds five times the equilibrium oxygen concentration, the relative magnetic loss coefficient after primary sintering will deteriorate. Since the relative magnetic loss coefficient deteriorates and does not recover even after hot isostatic pressure pressing, the oxygen concentration is set to be 2 to 5 times higher. In addition, the reason why the density of the sintered body after primary sintering was set to 95% or more7 is that if the density is less than 95%, the pores become through holes that communicate with the surface of the ferrite and the inside, and during hot isostatic pressing. This is because the pressure medium invades the pores in the ferrite sintered body, making it impossible to obtain a high-density product. Therefore, Mn-Zn
It is necessary to appropriately select the molding density, primary sintering temperature, and primary sintering holding time of the ferrite molded body. Next, a container for hot isostatic pressing will be explained.

従来のコンテナは第4図のa図に示す如く、アルミナ容
器1とアルミナ蓋2からなり、フェライト焼結体3と共
に同一組成のフェライト粉末4を充填しているが、容器
1内構造によつて得られるフェライトの磁気損失特性は
異なるのである。第4図のa図に示す従来の1重構造に
対して、この発明では同b図に示す2重の容器1、又は
同c図に示す3重構造の容器1の如く、多重構造の容器
1にフェライト焼結体3をフェライト粉末4と共に充填
する。この2重以上の構造の容器を用いて熱間静水圧ブ
レスを行なうとフェライトからの酸素の離脱が防止され
るため、得られるフェライトの磁気損失特性の劣化が防
止される。以下にこの発明を実施例に基づいて説明する
As shown in FIG. 4A, a conventional container consists of an alumina container 1 and an alumina lid 2, and is filled with ferrite powder 4 of the same composition as a ferrite sintered body 3. However, due to the internal structure of the container 1, The resulting ferrites have different magnetic loss characteristics. In contrast to the conventional single layer structure shown in FIG. 4A, the present invention has a multi-layer container 1, such as a double structure container 1 shown in FIG. 4B, or a triple structure container 1 shown in FIG. 4C. 1 is filled with ferrite sintered body 3 together with ferrite powder 4. When hot isostatic pressing is performed using a container with this double or more structure, oxygen is prevented from leaving the ferrite, thereby preventing deterioration of the magnetic loss characteristics of the obtained ferrite. The present invention will be explained below based on examples.

史施例1Fe203,MnC03,Zn0を第1表の試
料Aの組成となる如く秤量し、ボールミルにて十分攪拌
混合一た後、空気中で900℃で仮焼成を行ない、さら
こボールミルで粉砕し平均粒度1.0μmの原料粉kを
得た。添加成分は第1表に示す如く、CaO源ヒしてC
acO3とZrO2を粉砕時に添加した。次いで、原料
粉末にバインダーとしてPVAを1重量%添加し、造粒
後に4『×12薗×7瓢の成型体となし、1次焼結を行
なつた。1次焼結の条件は、1250′Cで3時間、1
%の酸素を含む窒素ガス中で加熱し、冷却は平衡酸素濃
度より4倍高い酸素濃度の酸化性雰囲気中で行ない、第
5図に冷却時の温度と酸素濃度との関係を示す如く、曲
線2に従い150℃/Hrの冷却速度で行なつた。また
、比較例として一次焼結までを上記と全く同一条件で行
ない、冷却のみを第5図の直線1に示す如く平衡酸素濃
度の雰囲気中で行なつた。得られた2種の1次焼結体を
、第4図のb図に示す2重構造のアルミナ容器内に同一
組成のMn−Znフェライト粉末と共に充填し、蓋をし
たのち、アルゴンガスを圧力媒体とし、温度1150゜
C1圧力1150kg/dの条件で3時間の熱間静水圧
ブレス処理を行なつた。
History Example 1 Fe203, MnC03, and Zn0 were weighed to have the composition of sample A in Table 1, thoroughly stirred and mixed in a ball mill, then calcined in air at 900°C, and pulverized in a Sarako ball mill. A raw material powder k having an average particle size of 1.0 μm was obtained. The additive components are as shown in Table 1, including CaO source and C
acO3 and ZrO2 were added during milling. Next, 1% by weight of PVA was added as a binder to the raw material powder, and after granulation, it was made into a molded body of 4" x 12 balls x 7 gourds, and primary sintering was performed. The conditions for the primary sintering were: 1250'C for 3 hours;
% of oxygen, and cooling was performed in an oxidizing atmosphere with an oxygen concentration four times higher than the equilibrium oxygen concentration. 2 at a cooling rate of 150° C./Hr. Further, as a comparative example, the steps up to the primary sintering were carried out under exactly the same conditions as above, and only the cooling was carried out in an atmosphere having an equilibrium oxygen concentration as shown by the straight line 1 in FIG. The two types of primary sintered bodies obtained were filled into a double-structured alumina container as shown in Figure 4(b) together with Mn-Zn ferrite powder of the same composition, and after the lid was closed, argon gas was applied under pressure. Using the medium as a medium, hot isostatic pressing was carried out for 3 hours at a temperature of 1150°C and a pressure of 1150 kg/d.

得られたMn−Znフェライト試料の特性を第2表に示
す。第2表から明らかな如く、この発明によるMn一Z
nフェライトは極めてすぐれた低磁気損失特性を有して
おり、1次焼結における冷却条件を発明方法条件外とし
た比較例の磁気損失特性と比較して大きな差異が認めら
れた。
Table 2 shows the properties of the obtained Mn-Zn ferrite sample. As is clear from Table 2, Mn-Z according to the present invention
N-ferrite has extremely excellent low magnetic loss characteristics, and a large difference was observed compared to the magnetic loss characteristics of a comparative example in which the cooling conditions during primary sintering were outside the conditions of the invention method.

実施例2 Fe203,MnC03,Zn0を第1表の試料Bの組
成となる如く秤量し、ボールミルにて十分攪拌混合した
後、空気中で900℃で仮焼成を行ない、さらにボール
ミルで粉砕し平均粒度0.95μmの原料粉末を得た。
Example 2 Fe203, MnC03, and Zn0 were weighed to have the composition of sample B in Table 1, stirred and mixed thoroughly in a ball mill, pre-calcined in air at 900°C, and further ground in a ball mill to obtain an average particle size. A raw material powder of 0.95 μm was obtained.

添加成分は第1表に示す如く、CaCO3,SjO2,
TiO2を粉砕時に添加した。
As shown in Table 1, the additive components include CaCO3, SjO2,
TiO2 was added during milling.

次いで、原料粉末にバインダーとしてPVAを1重量%
添加し、造粒後に40wrLX12薗×7朗の成型体に
成型して1次焼結を行なつた。1次焼結の条件は、11
80℃で3時間、0.5%の酸素を含む窒素ガス中で加
熱し、冷却は平衡酸素濃度より3倍高い酸素濃度の酸化
性雰囲気中で150℃/Hrの冷却速度で行なつた。
Next, 1% by weight of PVA was added to the raw material powder as a binder.
After granulation, a molded body of 40 wr L x 12 yen x 7 yen was formed and primary sintering was performed. The conditions for primary sintering are 11
Heating was performed at 80° C. for 3 hours in nitrogen gas containing 0.5% oxygen, and cooling was performed at a cooling rate of 150° C./Hr in an oxidizing atmosphere with an oxygen concentration three times higher than the equilibrium oxygen concentration.

得られた1次焼結体を、第4図A,b,cに示した1重
、2重、3重構造のアルミナ容器内にそれぞれ試料と同
一組成のMn−Znフェライト粉末と共に充填し、蓋を
した後、圧力媒体にアルコンガスを用い温度1100℃
、圧力900kg/cイの条件でつ3時間の熱間静水圧
ブレス処理を行なつた。
The obtained primary sintered body was filled into single, double, and triple structured alumina containers shown in FIGS. 4A, b, and c together with Mn-Zn ferrite powder having the same composition as the sample. After closing the lid, use Alcon gas as the pressure medium and increase the temperature to 1100℃.
A hot isostatic press treatment was carried out for 3 hours at a pressure of 900 kg/cm.

得られたMn−Znフェライトの特性を第3表に示す。
第3表の結果から明らかな如く、熱間静水圧ブレス処理
のコンテナに2重以上の多重構造の容器を使用すると、
比較例の1重構造の容器を用いた5場合の得られた磁気
損失特性とは著しい差異があり、この発明方法によるM
n−Znフェライトはすぐれた低磁気損失特性を有して
いることがわかる。
Table 3 shows the properties of the obtained Mn-Zn ferrite.
As is clear from the results in Table 3, if a container with a double or more multilayer structure is used for hot isostatic pressing,
There is a significant difference between the magnetic loss characteristics obtained in the case of Comparative Example 5 using a single-layered container, and the M
It can be seen that n-Zn ferrite has excellent low magnetic loss characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCaO単独含有並びにCaO−SlO2複合含
有量と磁気損失特性との関係を示すグラフである。 第2図はCaO含有量と1次焼結後密度との関係を示す
グラフである。第3図は0.1%CaO,0.01%S
lO2含有時のZrO2,TiO2,v2c).含有量
と磁気損失特性との関係を示すグラフである。第4図は
熱間静水圧ブレスに用いるコンテナの説明図であり、a
図は1重構造容器、b図は2重構造容器、c図は3重構
造容器を示す。第5図は1次焼結の冷却時の酸素濃度と
温度との関係を示すグラフであり、直線1は平衡酸素濃
度で冷却した場合、曲線2は平衡酸素濃度より4倍高い
酸素濃度の酸化性雰囲気中で冷却した場合を示す。図中
、1・・・アルミナ容器、2・・・アルミナ蓋、3・・
・フェライト焼結体、4・・・フェライト粉末。
FIG. 1 is a graph showing the relationship between CaO single content and CaO-SlO2 composite content and magnetic loss characteristics. FIG. 2 is a graph showing the relationship between CaO content and density after primary sintering. Figure 3 shows 0.1%CaO, 0.01%S
ZrO2, TiO2, v2c) when containing lO2. It is a graph showing the relationship between content and magnetic loss characteristics. FIG. 4 is an explanatory diagram of a container used for hot isostatic pressure pressing, and a
The figure shows a single-layer structure container, figure b shows a double-layer structure container, and figure c shows a triple-layer structure container. Figure 5 is a graph showing the relationship between oxygen concentration and temperature during cooling during primary sintering, where straight line 1 represents oxidation at an oxygen concentration four times higher than the equilibrium oxygen concentration. The figure shows the case of cooling in a static atmosphere. In the figure, 1... alumina container, 2... alumina lid, 3...
- Ferrite sintered body, 4... ferrite powder.

Claims (1)

【特許請求の範囲】[Claims] 1 Fe2O_350〜56モル%、MnO23〜40
モル%、ZnO5〜27モル%を主成分とし、CaO0
.01〜0.3重量%とSiO_20.03重量%以下
、ZrO_20.35重量%以下、TiO_20.35
重量%以下、V_2O_50.3重量%以下のうち少な
くとも1種を含有したMn−Znフェライト成型体を1
次焼結し、その後平衡酸素濃度よりも2〜5倍高い酸素
濃度下で冷却処理した焼結体を、2重以上の構造からな
る容器内に同一組成のフェライト粉末と共に充填し、熱
間静水圧プレスすることを特徴とする低磁気損失Mn−
Znフェライトの製造方法。
1 Fe2O_350-56 mol%, MnO23-40
mol%, ZnO5 to 27 mol% as the main component, CaO0
.. 01 to 0.3% by weight and SiO_20.03% by weight or less, ZrO_20.35% by weight or less, TiO_20.35
1 Mn-Zn ferrite molded body containing at least one of V_2O_50.3% by weight or less
The sintered body is then sintered and then cooled at an oxygen concentration 2 to 5 times higher than the equilibrium oxygen concentration. The sintered body is then filled with ferrite powder of the same composition into a container with a double or more layered structure, and then hot-sintered. Low magnetic loss Mn- characterized by hydraulic pressing
A method for producing Zn ferrite.
JP56135262A 1981-08-27 1981-08-27 Manufacturing method of low magnetic loss Mn-Zn ferrite Expired JPS6049150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135262A JPS6049150B2 (en) 1981-08-27 1981-08-27 Manufacturing method of low magnetic loss Mn-Zn ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135262A JPS6049150B2 (en) 1981-08-27 1981-08-27 Manufacturing method of low magnetic loss Mn-Zn ferrite

Publications (2)

Publication Number Publication Date
JPS5836974A JPS5836974A (en) 1983-03-04
JPS6049150B2 true JPS6049150B2 (en) 1985-10-31

Family

ID=15147587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135262A Expired JPS6049150B2 (en) 1981-08-27 1981-08-27 Manufacturing method of low magnetic loss Mn-Zn ferrite

Country Status (1)

Country Link
JP (1) JPS6049150B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963705A (en) * 1982-09-29 1984-04-11 Hitachi Metals Ltd Transformer core
JPS59217624A (en) * 1983-05-23 1984-12-07 Matsushita Electric Ind Co Ltd Polycrystalline ferrite
JPS59232965A (en) * 1983-06-11 1984-12-27 株式会社トーキン Low loss oxide magnetic material
JPS60132301A (en) * 1983-12-20 1985-07-15 Sumitomo Special Metals Co Ltd Oxide magnetic material
JPS62278162A (en) * 1986-05-23 1987-12-03 株式会社トーキン Oxide ferrite composition and manufacture
JPS63158307U (en) * 1987-04-07 1988-10-17
JP2775740B2 (en) * 1987-11-16 1998-07-16 ソニー株式会社 High frequency high permeability magnetic material
JPH0666178B2 (en) * 1987-11-30 1994-08-24 株式会社トーキン Low loss oxide magnetic material
JPH01253210A (en) * 1988-03-31 1989-10-09 Ngk Insulators Ltd Polycrystalline ferrite material and manufacture thereof
WO1991010241A1 (en) * 1989-12-26 1991-07-11 Tokin Corporation Low-loss oxide magnetic material
JPH03248403A (en) * 1990-02-26 1991-11-06 Hitachi Ferrite Ltd Low-loss ferrite
JP3042627B2 (en) * 1990-02-26 2000-05-15 日立金属株式会社 Low loss ferrite
JPH0744098B2 (en) * 1990-03-03 1995-05-15 川崎製鉄株式会社 Low loss Mn-Zn ferrite
JP2510788B2 (en) * 1991-01-08 1996-06-26 新日本製鐵株式会社 Low power loss oxide magnetic material
EP0551907B1 (en) * 1992-01-14 1997-04-09 Matsushita Electric Industrial Co., Ltd. An oxide magnetic material
CN111056829A (en) * 2018-10-17 2020-04-24 临沂春光磁业有限公司 High-frequency low-power-consumption manganese-zinc ferrite material and preparation method thereof

Also Published As

Publication number Publication date
JPS5836974A (en) 1983-03-04

Similar Documents

Publication Publication Date Title
JPS6049150B2 (en) Manufacturing method of low magnetic loss Mn-Zn ferrite
EP2141136B1 (en) Ni-zn-cu ferrite powder, green sheet and method of making a sintered ni-zn-cu ferrite body
US7294284B2 (en) Method for producing Mn-Zn ferrite
US5026614A (en) Magnetic recording medium with a zinc cobalt oxide non-magnetic substrate containing nickel or manganese
JPS61256967A (en) Manufacture of mn-zn ferrite
JP2007070209A (en) METHOD FOR PRODUCING Mn-Zn-BASED FERRITE
KR0174387B1 (en) Mn-Zn Ferrite Core Composition and its Manufacturing Method
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
JPH04354305A (en) Manufacture of soft ferrite
JP2007197255A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JPS61117804A (en) Mn-zn system soft ferrite and manufacture thereof
JP3239439B2 (en) Ferrite manufacturing method
JP2007197253A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE
JP3825079B2 (en) Manufacturing method of non-magnetic ceramics
KR0143068B1 (en) A method of oxide magnetized material
JPH0122228B2 (en)
JP2949297B2 (en) Porcelain composition for magnetic head
JPH01252565A (en) Non-magnetic porcelain material for magnetic head and production thereof
JPS6158859A (en) High density ferrite sintered body
JPH0555463B2 (en)
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JPH04306809A (en) Manufacture of soft ferrite
JPS61280602A (en) Manufacture of highly concentrated ferrite
JPS60194507A (en) Ceramic substrate material for magnetic head
JPS61117805A (en) Mn-zn system soft ferrite and manufacture thereof