JPS6049092A - Method for separating ash of coal - Google Patents
Method for separating ash of coalInfo
- Publication number
- JPS6049092A JPS6049092A JP58157120A JP15712083A JPS6049092A JP S6049092 A JPS6049092 A JP S6049092A JP 58157120 A JP58157120 A JP 58157120A JP 15712083 A JP15712083 A JP 15712083A JP S6049092 A JPS6049092 A JP S6049092A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- ash
- specific gravity
- remove
- vertical pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
Description
【発明の詳細な説明】
不発8Aは石炭を微粉化することによシ灰分を啄限まで
除去することを可能とする灰分分離方法に関する〇
石油危眠以米、エネルギー源の多様化のため、埋蔵証の
豊富さと取扱いの容易さから石炭の利用が注目されてい
る。[Detailed description of the invention] Unexploded 8A relates to an ash separation method that makes it possible to remove ash to the maximum limit by pulverizing coal. Since the oil crisis, due to the diversification of energy sources in the United States, The use of coal is attracting attention because of its abundant reserves and ease of handling.
この石炭も我が国の輸入炭は干均15%もの鉱物質を/
#会、燃焼後に残る石炭灰の処理が問題となること、8
02等の大気汚染5m*が発生すること等の欠点を含ん
でいる。This coal also has a mineral content of 15% on average in Japan's imported coal.
#Associate, disposal of coal ash remaining after combustion is a problem, 8
It includes drawbacks such as the generation of air pollution of 5 m* such as 02.
しかし、石炭の根元#!1JIXh周知のように植物で
らシ、これは本来的に鉱物質を含まないものである。鉱
物*位根元物質である植物等が地層中に埋没し炭化する
間に物理的lc混入したものであシ、このことは石炭組
織の顕微鏡による観察によっても裏付けられている。But the coal root #! 1JIXh As is well known, it is a plant material that does not inherently contain minerals. It is physically mixed with LC while plants, etc., which are the root substances of minerals, are buried in the strata and carbonized, and this is also supported by microscopic observation of the coal structure.
このため、石炭を微粉砕することによシ石炭質と鉱物で
ちる灰分とを分離出来るものと期待された。For this reason, it was expected that by pulverizing coal, it would be possible to separate the coal-based material from the mineral ash.
しかし、鉱物質は容易に微粉化しうるのに対して、石炭
の組成物質中には淘脂・蝋を根元物質とするレジニット
、花粉、胞子、若芽υ内皮等を根元物質とするエクジニ
ット、水藻類を根元物質とするアルギニット等vH粉化
性成分が會まれておシ、ボールミル勢、直営の粉砕装置
によって粉砕すると、微粉化した鉱物が未粉砕の石炭組
成物質中に捕捉されて十分な分離効果をあけることが出
来なかった。However, while minerals can be easily pulverized, the constituents of coal include resinite, whose root substance is soap and wax, exginite, whose root substance is pollen, spores, and the endothelium of young shoots, and aquatic algae. When vH pulverizable components such as alginite as the root substance are combined and pulverized by a grinder, ball mill, or directly operated pulverizer, the pulverized minerals are captured in the unpulverized coal composition material, resulting in a sufficient separation effect. I couldn't open it.
不発明位、図1に示すように石炭の揮発公社230℃以
上に加熱すると石炭から分離するが、200℃以下の加
熱においては水分の蚕が蒸発し、難粉化性我分も200
℃以下の空気等で脱湿しながら粉砕すれば容易に微粉化
出来ることを見出し、効果的な微粉炭化による灰分分離
法を確立したものである。As shown in Figure 1, when coal is heated above 230°C, it separates from the coal, but when heated below 200°C, the water content of the silkworms evaporates, and the powder resistance is reduced to 200°C.
They discovered that ash can be easily pulverized by pulverizing it while dehumidifying it with air at temperatures below 0.9°C, and established an effective ash separation method using pulverized carbonization.
すなわち、灰分15チの石炭を約150℃に加熱した乾
燥空気で脱湿しながらボールミルで、校区が10μm前
後になるまで粉砕し、特殊サイクロンで分離した、更に
分離された灰分の少ない石炭を水平方向の@場に置いた
鉛直管の中を水に浮遊させ、鉛直な管?を落下させ、管
軸に垂直(水f面)に幾重にも置いた金網によシ灰分を
とシ去った。In other words, coal with an ash content of 15 cm is pulverized in a ball mill while dehumidifying with dry air heated to about 150°C until the grain size becomes around 10 μm, separated in a special cyclone, and the separated coal with a low ash content is horizontally crushed. Floating in water in a vertical tube placed in a field of direction, a vertical tube? was dropped, and the ash was removed through several layers of wire mesh placed perpendicular to the tube axis (water f plane).
これは、石炭の組成!P2I質は階数ないし数十μmの
大きさであシ、校区が10μm前後8度に微粉化すれば
、はぼ拳−物質からなる粒子に迄分離されうるためであ
る。そして石炭組成物質の比重が2以下なのに対して、
鉱物質粒子の比重は5程肛であるので、比重差を利用し
て容易に分離出来る。また灰分中の鉄分によシ灰分を分
離したものである。This is the composition of coal! This is because the P2I substance has a size of several stories to several tens of micrometers, and if the particle size is pulverized to about 10 micrometers and 8 degrees, it can be separated into particles consisting of particles. And while the specific gravity of the coal composition is less than 2,
Since the specific gravity of mineral particles is about 5, they can be easily separated using the difference in specific gravity. Also, the ash is separated from the iron in the ash.
図1には石炭を加熱した場合の太平年次の特性を示し、
230℃以下では発熱量を含む揮発分の発生社々い。図
2は100℃まで加熱した後粉砕し、これを特殊設計の
サイクロンによシ分離した時のサイクロン人口風速と出
口石炭中の灰分量の実験直を示す。灰分け15.451
よシ13.5%まで減少している。ヱセ1は磁場中にお
いて金網の目に灰分を捕捉した実験結果を示しである。Figure 1 shows the characteristics of the Taiping era when heating coal.
At temperatures below 230°C, volatile matter including calorific value is generated. Figure 2 shows the experimental results of the cyclone artificial wind speed and the ash content in the exit coal when the coal is heated to 100°C and then pulverized and separated by a specially designed cyclone. Ash division 15.451
It has decreased to 13.5%. Ese 1 shows the results of an experiment in which ash was trapped in the mesh of a wire mesh in a magnetic field.
入口で14.4−の灰分を持つ石炭の中の灰分な多く含
むものは金網の鉄線が交差するだめの強い磁ノ為で捕捉
され、捕捉されたものの灰分分率は44.2%と非常に
商い。これはすべて石炭を微細に粉砕したため、遠心力
および磁場の効果を有効に利用できたためで、また予め
加熱し水分を追い出すことは、粉砕を容易にし、かつ大
きな直径の粒子をなくすために必要条件である。The ash content in the coal with an ash content of 14.4 - at the entrance was captured by the strong magnetism of the intersecting iron wire of the wire mesh, and the ash content of the captured material was extremely high at 44.2%. Trade in. This is all because the coal was finely pulverized, which made it possible to effectively utilize the effects of centrifugal force and magnetic fields, and pre-heating to drive out moisture is a necessary condition to facilitate pulverization and eliminate particles with large diameters. It is.
第1図は加熱による石炭の@変・重址減少割台を示ナグ
ラフ、εt2図はす・イクロンによる分離特性を示す風
速−B′(分界のグラフである。
(ほか1名)
第 】 図
(イ)
風速
第 2 図Figure 1 is a graph showing the deformation and weight reduction of coal due to heating; (b) Wind speed Figure 2
Claims (1)
μm以下にまで粉砕し、石炭組成物質と鉱物質とを分離
することを%徴とする石炭灰分分離方法A coal ash separation method that involves pulverizing coal to particles of several tens of micrometers or less while dehumidifying it with air or the like at a temperature of 200°C or less, and separating coal constituent substances and mineral substances.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58157120A JPS6049092A (en) | 1983-08-30 | 1983-08-30 | Method for separating ash of coal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58157120A JPS6049092A (en) | 1983-08-30 | 1983-08-30 | Method for separating ash of coal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6049092A true JPS6049092A (en) | 1985-03-18 |
Family
ID=15642648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58157120A Pending JPS6049092A (en) | 1983-08-30 | 1983-08-30 | Method for separating ash of coal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6049092A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110078401A (en) * | 2019-05-15 | 2019-08-02 | 中南大学 | A kind of technique that gangue belt sintering prepares active mixed material |
CN110999753A (en) * | 2019-12-26 | 2020-04-14 | 北京林业大学 | Coal gangue-based artificial ecological matrix and preparation method thereof |
CN111495557A (en) * | 2020-04-30 | 2020-08-07 | 舒新前 | Grading, upgrading and homogenizing method of coal gangue fuel |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49107002A (en) * | 1973-01-29 | 1974-10-11 |
-
1983
- 1983-08-30 JP JP58157120A patent/JPS6049092A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49107002A (en) * | 1973-01-29 | 1974-10-11 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110078401A (en) * | 2019-05-15 | 2019-08-02 | 中南大学 | A kind of technique that gangue belt sintering prepares active mixed material |
CN110999753A (en) * | 2019-12-26 | 2020-04-14 | 北京林业大学 | Coal gangue-based artificial ecological matrix and preparation method thereof |
CN110999753B (en) * | 2019-12-26 | 2021-07-27 | 北京林业大学 | Coal gangue-based artificial ecological matrix and preparation method thereof |
CN111495557A (en) * | 2020-04-30 | 2020-08-07 | 舒新前 | Grading, upgrading and homogenizing method of coal gangue fuel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Herndon et al. | Further evidence of coal fly ash utilization in tropospheric geoengineering: Implications on human and environmental health | |
Hulett et al. | Some etching studies of the microstructure and composition of large aluminosilicate particles in fly ash from coal-burning power plants | |
Honaker et al. | Laboratory and bench-scale testing for rare earth elements | |
JP2010030885A (en) | Method for reducing unburnt carbon content in coal ash | |
Wohletz et al. | Volcanic and stratospheric dustlike particles produced by experimental water-melt interactions | |
Kushnerova et al. | Single-stage aerodynamic separation of fly ash produced after pulverized combustion of coal from the Ekibastuz basin | |
JP2004536163A (en) | Reduction of sulfur dioxide emissions from coal combustion | |
JPS6049092A (en) | Method for separating ash of coal | |
US4268271A (en) | Reduction of the fouling potential of high sodium coal | |
US11603332B2 (en) | Methods for coal combustion product (CCP) recovery and related products | |
Mattigod et al. | Scheme for density separation and identification of compound forms in size-fractionated fly ash | |
JP2017148790A (en) | Reduction method of unburnt carbon in coal ash | |
Camerani et al. | Cd speciation in biomass fly ash particles after size separation by centrifugal SPLITT | |
RU2476270C1 (en) | Line to process thermal electric power station ash-and-slag wastes | |
JPS61268351A (en) | Auxiliary filter material comprising ash of chaff and methodand apparatus for producing the same | |
JPH07155740A (en) | Treatment of coal ash | |
CN109370595B (en) | Method for applying bottom ash of agriculture and forestry biomass direct-fired power plant to cadmium pollution in-situ passivation of paddy field soil | |
Bray | Chronology of a small glacier in eastern British Columbia, Canada | |
KR101309173B1 (en) | Withdrawal method of efficiency element in fly-ash and for the same system | |
Maenhaut et al. | Long-term study of atmospheric aerosols in Cuiabá, Brazil: Multielemental composition, sources and source apportionment | |
Verma et al. | Leaching behaviour of fly ash: A review | |
CN105408460B (en) | Utilize microalgae upgrading coal dust | |
Mahotkin et al. | Waste gas treatment technology against dust in vortex apparatuses with closed water circulation | |
DE550692C (en) | Process for the simultaneous grinding and drying of hydrous fuels, especially coal | |
Glenn et al. | Liberation of pyrite from steam coals |