JPS6048952A - Preparation of dimethylhexamethylenediamene - Google Patents

Preparation of dimethylhexamethylenediamene

Info

Publication number
JPS6048952A
JPS6048952A JP58156276A JP15627683A JPS6048952A JP S6048952 A JPS6048952 A JP S6048952A JP 58156276 A JP58156276 A JP 58156276A JP 15627683 A JP15627683 A JP 15627683A JP S6048952 A JPS6048952 A JP S6048952A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
raney
dimethyladiponitrile
dmhmd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58156276A
Other languages
Japanese (ja)
Inventor
Shigeru Tashiro
茂 田代
Toshio Shimizu
俊雄 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58156276A priority Critical patent/JPS6048952A/en
Publication of JPS6048952A publication Critical patent/JPS6048952A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as a raw material for agricultural chemicals, drugs, and transparent nylon in high yield in high selectivity, by hydrogenating dimethyladiponitrile by the use of a Raney coable catalyst, carrying out purification easily. CONSTITUTION:Dimethyladiponitrile is hydrogenated at 80-160 deg.C at 20kg/cm<2>G H2 hyrogen partial pressure for >=1hr by the use of water slurry of a Raney cobalt catalyst obtained by developing a Raney cobalt alloy in NaOH, catalyst is separated from the reaction solution by a filter, and high-purity dimethylhexamethylenediamine is purified by distillation, etc.

Description

【発明の詳細な説明】 本発明は、ジメチルアジポニ)リル(以下DMADNと
略す)を水素添加し、高収率、高選択率でジメチルへキ
サメチレンジアミン(以下DMHMDと略す)を製造す
る方法に関するものである。
Detailed Description of the Invention The present invention is a method for hydrogenating dimethyladiponilyl (hereinafter referred to as DMADN) to produce dimethylhexamethylene diamine (hereinafter referred to as DMHMD) with high yield and high selectivity. It is related to.

DMHMDは、農薬、医薬の原料として有用であるほか
、透明ナイロンの原料として重要な物質である。
DMHMD is useful as a raw material for agricultural chemicals and medicines, and is also an important substance as a raw material for transparent nylon.

DMADNからDMI(MDを製造する従来技術として
は、DMADNをラネーニッケルの存在下で水素添加し
て製造する方法[Tetrahedren 1ette
r。
A conventional technique for producing DMI (MD) from DMADN is a method in which DMADN is hydrogenated in the presence of Raney nickel [Tetrahedren 1ette].
r.

1970 P−3791〜4〕が提案されているが、こ
の製法は詳細な説明がなく単にラネーニッケルを用い水
素添加を行うと記載されているだけであり詳細な製法は
分らないが、反応収率はDMHMDで56%、ジメチル
へキサメチレンイミン(以下D M HM Iと略す)
で9%と記載されておシ、反応収率からでは、工業的な
製造法としては十分なものとはいいがだい。
1970 P-3791-4] has been proposed, but there is no detailed explanation of this production method, and it is only stated that hydrogenation is carried out using Raney nickel, so the detailed production method is not known, but the reaction yield is 56% in DMHMD, dimethylhexamethyleneimine (hereinafter abbreviated as DMHMI)
Although the reaction yield is stated as 9%, it is not sufficient for an industrial production method.

本発明者らは、DM)IMDの収率が高収率で且つ工業
的に容易に実施しうる方法を開発すべく鋭意研究を重ね
た結果、実質的に無溶媒下で、ラネーコノ々ルト触媒を
用いて水素添加することで、極めて高収率で容易にDM
HMDを製造しうることを見出した。
The present inventors have conducted intensive research to develop a method that can achieve a high yield of DM)IMD and can be easily implemented industrially. DM can be easily produced in extremely high yield by hydrogenation using
We have discovered that it is possible to manufacture HMDs.

本発明は、DMHMDの収率が高収率で、且つ工業的に
有利なりMHMI)の製造する方法を提供することを目
的とするものである。
An object of the present invention is to provide a method for producing MHMI in which the yield of DMHMD is high and is industrially advantageous.

上記目的を達成した本発明のDMHMDを製造する方法
は、ジメチルアジポニトリルをラネーコ・マルト触媒の
存在下で、水素添加することを特徴とするものである。
The method for producing DMHMD of the present invention, which achieves the above object, is characterized by hydrogenating dimethyladiponitrile in the presence of a Laneco Malto catalyst.

以下、更に詳しく本発明を説明する。The present invention will be explained in more detail below.

本発明において、触媒はラネーコノ々ルト触媒を用いる
ことが必要である。ラネーコ・セルト触媒としては、例
えば、ラネーコノ々ルト合金をNaOHで展開したもの
を用いることが出来る。
In the present invention, it is necessary to use a Raney-Connolt catalyst as the catalyst. As the Raneyco-Cert catalyst, for example, a Raneyco-Cert alloy developed with NaOH can be used.

触媒量としては、仕込みDMADNに対して重量比で0
.004以上用いればよ(,0,004以下では反応が
進まない。触媒量のト限としては制限がないが、触媒コ
スト及び攪拌上からおのずと制限される。
The amount of catalyst is 0 in weight ratio to the charged DMADN.
.. If the amount is 0.004 or more, the reaction will not proceed.If the amount is less than 0.004, the reaction will not proceed.There is no limit to the amount of catalyst, but it is naturally limited due to catalyst cost and stirring.

本発明は原料であるDMADNとラネーコノ々ルト触媒
とからなる実質的に無溶媒の液組成で水素添加反応を行
うことができる。
In the present invention, a hydrogenation reaction can be carried out using a substantially solvent-free liquid composition consisting of DMADN as a raw material and a Raney-Connolt catalyst.

反応温度としては、80℃〜160℃の範囲で行うこと
が好ましい。80℃以下では反応は進まず、160℃以
上では反応収率が低下する。
The reaction temperature is preferably 80°C to 160°C. At temperatures below 80°C, the reaction does not proceed, and at temperatures above 160°C, the reaction yield decreases.

反応圧力は、はぼ水素分圧からなり、分圧としては、2
0 K17cm” G以−ヒ必要である。20 Kg/
cyt”G以下の場合反応が進まない。
The reaction pressure consists of approximately hydrogen partial pressure, and the partial pressure is 2
0 K17cm" G is required. 20 Kg/
cyt"G or less, the reaction does not proceed.

反応時間としては、触媒量、反応温度、反応圧力によっ
て決まるが、通常1時間以上あればよい。
The reaction time is determined depending on the amount of catalyst, reaction temperature, and reaction pressure, but usually one hour or more is sufficient.

反応液の攪拌としては、触媒が反応液中に均一に分散す
る攪拌であればよい。
The reaction solution may be stirred as long as it disperses the catalyst uniformly in the reaction solution.

反応方法としては、原料を一度に仕込みDMADNを消
費するまで反応を行う回分式か、原料を連続で仕込み、
生成物を連続で抜き出す連続方式等がある。
The reaction method is either a batch method in which the raw materials are charged at once and the reaction is carried out until DMADN is consumed, or a batch method in which the raw materials are continuously charged and the reaction is carried out until the DMADN is consumed.
There are continuous methods that continuously extract the product.

反応液からDMHMDを得る方法としては、常法によっ
て行うことができる。例えば、反応液からフィルター等
で触媒を分離した後、蒸留で精製し、高純度のDMHM
Dを得る方法である。
DMHMD can be obtained from the reaction solution by a conventional method. For example, after separating the catalyst from the reaction solution using a filter, etc., it is purified by distillation to obtain high-purity DMHM.
This is the method to obtain D.

以上詳述した如く、本発明の適用によシ、1)高収率で
DMHMDを得ることができる。2)副生成物がほとん
ど生成されないし、又、反応液は実質的に反応主生成物
のみであるので、DMHMDの精製が極めて容易に行う
ことができる。などの効果がもたらされた。
As detailed above, by applying the present invention, 1) DMHMD can be obtained in high yield. 2) Since almost no by-products are produced and the reaction solution is essentially only the main reaction product, DMHMD can be purified very easily. Effects such as this were brought about.

以下、本発明を実施例によシ更に詳細に説明する。Hereinafter, the present invention will be explained in more detail using examples.

実施例1 圧力計、安全弁、ガス抜き弁、ガス供給弁、及び攪拌機
付ステンレス製の内容積100ccC)オートクレーブ
(以下単にオートクレーブと略す)に、市販のラネーコ
/?ルト合金(Co : AI重量比=50:50)を
NaOHで展開した後水洗して得られたラネーコ・々ル
ト触媒の水スラリーo、s y (ラネーコ/々ルトo
、25y、水o、ss y )とDM)IMD 40 
Pを仕込んだ後オートクレーブ内の空気を最初窒素、次
いで水素で置換し水素を45 K17cm”G まで導
入した。(尚、水素ガスは150 K17cm”G に
充填されたぜンベより定圧弁を経由して反応圧力が一定
になる様に供給される。)次にヒーターで加熱して昇温
し、同時に攪拌機によって反応器内を回転数11000
RPで攪拌した。昇温開始後約25分で設定温度140
℃に到達したので反応開始とした。反応中は温度、圧力
を保持する様に調整しなから水添を行った。反応開始後
、2時間経過した時点で水素の供給を停止しオートクレ
ーブを冷却し反応を停止した。反応終了後、反応液の重
量測定、ガスクロマトグラフでの分析結果から、反応成
績HDMADN の転化率”?’100%、DMHMD
17)選 5− 収率で91.2%、DMHMIの選択率で8.4係であ
った。
Example 1 A commercially available Laneco/? Aqueous slurry o, sy (Raneco/Alto catalyst) obtained by developing Ruto alloy (Co:AI weight ratio = 50:50) with NaOH and washing with water
, 25y, water o, ss y) and DM) IMD 40
After charging P, the air in the autoclave was first replaced with nitrogen, then with hydrogen, and hydrogen was introduced to 45 K17 cm"G. (The reaction pressure is kept constant.) Next, the temperature is raised by heating with a heater, and at the same time the inside of the reactor is rotated at a rotation speed of 11,000 using a stirrer.
Stir with RP. The set temperature reaches 140 in about 25 minutes after the temperature rise starts.
When the temperature reached ℃, the reaction was started. During the reaction, hydrogenation was carried out while adjusting the temperature and pressure to be maintained. Two hours after the start of the reaction, the supply of hydrogen was stopped, the autoclave was cooled, and the reaction was stopped. After the completion of the reaction, the reaction results were determined from the weight measurement of the reaction solution and the analysis results using a gas chromatograph: conversion rate of HDMADN was 100%, DMHMD.
17) Selection 5- The yield was 91.2%, and the selectivity for DMHMI was 8.4.

実施例2 実施例1のラネーコノ々ルト触媒の水スラリー〇、8y
から2.11 (ラネーコノモルト1.OF、水1.1
1 )に変更する以外は全て実施例1と同様に水素添加
反応を行ったところ反応成績はDMADNの転化率で1
00%、DMHMDの選択率で91.0%、DMHMI
の選択率で8.5幅であった。
Example 2 Water slurry of Raneyconort catalyst of Example 1〇, 8y
From 2.11 (Raneikonomolt 1.OF, water 1.1
1) The hydrogenation reaction was carried out in the same manner as in Example 1 except for the following changes.The reaction result was 1 in terms of conversion rate of DMADN.
00%, DMHMD selectivity 91.0%, DMHMI
The selectivity was 8.5.

実施例3 水素添加反応温度を140℃から150℃へ、反応時間
を2時間から30分に変更する以外は実施例2と同様に
水素添加反応を行ったところ反応成績はDMADNの転
化率で100%、DMHMDの選択率で91.1係、D
MHMIの選択率で8.3%であった。
Example 3 A hydrogenation reaction was carried out in the same manner as in Example 2, except that the hydrogenation reaction temperature was changed from 140°C to 150°C and the reaction time was changed from 2 hours to 30 minutes. The reaction result was 100 in terms of conversion rate of DMADN. %, selectivity of DMHMD is 91.1%, D
The selectivity of MHMI was 8.3%.

特許出願人 旭化成工業株式会社  6−Patent applicant: Asahi Kasei Industries, Ltd. 6-

Claims (1)

【特許請求の範囲】[Claims] ジメチルアジポニトリルをラネーコノ々ルト触媒の存在
下で、水素添加することを特徴とするジメチルへキサメ
チレン・ジアミンの製造方法
A method for producing dimethylhexamethylene diamine, which comprises hydrogenating dimethyladiponitrile in the presence of a Raneyconolt catalyst.
JP58156276A 1983-08-29 1983-08-29 Preparation of dimethylhexamethylenediamene Pending JPS6048952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58156276A JPS6048952A (en) 1983-08-29 1983-08-29 Preparation of dimethylhexamethylenediamene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58156276A JPS6048952A (en) 1983-08-29 1983-08-29 Preparation of dimethylhexamethylenediamene

Publications (1)

Publication Number Publication Date
JPS6048952A true JPS6048952A (en) 1985-03-16

Family

ID=15624270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58156276A Pending JPS6048952A (en) 1983-08-29 1983-08-29 Preparation of dimethylhexamethylenediamene

Country Status (1)

Country Link
JP (1) JPS6048952A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032145A (en) * 1989-02-07 1991-01-08 W R Grace & Co Production of polyamine
US5023712A (en) * 1989-03-07 1991-06-11 Mitsubishi Denki K.K. Tracking distance-measuring equipment system with means for setting a window and means for sampling image signals at predetermined time intervals
JPH07191123A (en) * 1993-08-10 1995-07-28 Hughes Aircraft Co Tracking system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032145A (en) * 1989-02-07 1991-01-08 W R Grace & Co Production of polyamine
US5023712A (en) * 1989-03-07 1991-06-11 Mitsubishi Denki K.K. Tracking distance-measuring equipment system with means for setting a window and means for sampling image signals at predetermined time intervals
JPH07191123A (en) * 1993-08-10 1995-07-28 Hughes Aircraft Co Tracking system

Similar Documents

Publication Publication Date Title
JPH0337545B2 (en)
JPS6048952A (en) Preparation of dimethylhexamethylenediamene
JP2577405B2 (en) Method for producing 2,4,5-triamino-6-hydroxypyrimidine
JPS5925779B2 (en) Isomerization method for stereoisomeric alicyclic diamines
JPS6048953A (en) Preparation of dimethylhexamethylenediamine
JPH02180856A (en) Nitroamine
JPS61172877A (en) Production of (6r)-tetrahydro-l-biopterin
JPS6048951A (en) Preparation of dimethylhexamethylenediamine
JPH0669991B2 (en) Process for producing 3-aminomethyl-3,5,5-trimethylcyclohexylamine
JPS59163332A (en) Method for producing xylylene glycol
JPH02121946A (en) Continuous production of succinic acid
JPH06172295A (en) Production of 4,4&#39;-diaminostilbene-2,2&#39;-disulfonic acid or its salt
Wysocki et al. First Steps for the Synthesis of a New Asymmetric Flexible Tridentate Pincer Ligand Featuring a Rigid Backbone
JPS62114972A (en) Production of n-methylhomopiperazine
JPS61122252A (en) Synthesis of grycine
GB2149790A (en) Process for producing aminobenzylamines
JPS58140030A (en) Preparation of 1,9-nonanediol
CN115197146A (en) Indazole compound preparation method
SU862823A3 (en) Method of preparing 5-(4-aminobutyl)-hydantoin or mixture of 5-(4-aminobutyl)-hydantoin with 1-ureido-5-aminocapronamide
JPS6356216B2 (en)
JPH049362A (en) Production of isocyanatostyrene
JPS6183164A (en) Preparation of hydrantoin
JPS61112053A (en) Production of dihydro-beta-ionone
JPS6252733B2 (en)
JPH0775670B2 (en) Method for producing lithium phosphate catalyst