JPS6048946B2 - television receiver - Google Patents
television receiverInfo
- Publication number
- JPS6048946B2 JPS6048946B2 JP6296877A JP6296877A JPS6048946B2 JP S6048946 B2 JPS6048946 B2 JP S6048946B2 JP 6296877 A JP6296877 A JP 6296877A JP 6296877 A JP6296877 A JP 6296877A JP S6048946 B2 JPS6048946 B2 JP S6048946B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- circuit
- output signal
- order
- scanning speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Transforming Electric Information Into Light Information (AREA)
- Details Of Television Scanning (AREA)
Description
【発明の詳細な説明】
テレビジョン受像機て画像を咲出させる場合、輝度の
高い部分では受像管のビーム電流が増加するためにビー
ムのスポットサイズが大きくなり鮮鋭度が低下してしま
う。DETAILED DESCRIPTION OF THE INVENTION When displaying an image on a television receiver, the beam current of the picture tube increases in areas with high brightness, resulting in a beam spot size that becomes large and a decrease in sharpness.
特に第1図Aに示すように水平方向の輪部部分1や同図
Bに示すように線の部分2ては、本来の映像信号は第2
図Aに示すように黒レベルと白レベルの間で急峻に変化
するが、受像機の伝送系の周波数特性のため高域成分が
減衰するので、信号は同図Bに示すようになまつて水平
方向の鮮鋭度は一層低下してしまう。 そこて、鮮鋭度
の低下を補償する方法として、第2図Bの映像信号50
から同図Cに示すような2次微分信号SBを得、これを
信号50に加、÷て同図Dに示すような立上り及び立下
りの急峻な映像信号Scを得、これを受像管に供給する
方法がある。 しかしながら、この方法では、信号のピ
ークの部分でビーム電流がより増加するので、ビームの
スポットサイズは一層大きくなり、そのため鮮鋭度はそ
れ程改善されない。In particular, in the horizontal ring part 1 as shown in Figure 1A and the line part 2 as shown in Figure 1B, the original video signal is
As shown in Figure A, there is a sharp change between the black level and white level, but due to the frequency characteristics of the receiver's transmission system, the high-frequency components are attenuated, so the signal becomes distorted as shown in Figure B. Horizontal sharpness is further reduced. Therefore, as a method of compensating for the decrease in sharpness, the video signal 50 shown in FIG.
From this, a second-order differential signal SB as shown in C in the figure is obtained, and this is added to the signal 50 to obtain a video signal Sc with steep rises and falls as shown in D in the figure, which is sent to the picture tube. There is a way to supply it. However, in this method, since the beam current increases more at the peak of the signal, the beam spot size becomes larger, so the sharpness is not improved as much.
また、別の方法として、第3図Aの映像信号50をそ
のまま受像管に供給するとともに、この映像信号50を
微分して同図Bに示すような信号SAを得、これを例え
ば主偏向コイルとは別に設けた補助偏向コイルに供給し
て水平偏向磁界を同図Cに示すように補正し、これによ
りスクリーン上でのビームの走査速度を同図Dに示すよ
うに変調する方法がある。As another method, the video signal 50 shown in FIG. 3A is supplied as is to the picture tube, and this video signal 50 is differentiated to obtain a signal SA shown in FIG. There is a method in which the horizontal deflection magnetic field is corrected as shown in Figure C by supplying it to a separately provided auxiliary deflection coil, thereby modulating the scanning speed of the beam on the screen as shown in Figure D.
この方法によれば、区間Taではビームの走査速度が早
くなつてスクリーン上の対応する点の発光量は減少し、
区間′几ではビームの走査速度が遅くなつてスクリーン
上の対応する点の発光量は増加するので、ビームのスポ
ットサイズを考慮するとスクリーン上の水平方向の発光
量は第3図Eに示すように変化し水平方向の鮮鋭度が改
善される。しカルながら、この方法によるときは、図か
ら明らかなように、スクリーン上の発光部分の巾が映像
信号S。According to this method, the scanning speed of the beam increases in the section Ta, and the amount of light emitted at the corresponding point on the screen decreases.
In section 1, the scanning speed of the beam slows down and the amount of light emitted at the corresponding point on the screen increases, so considering the spot size of the beam, the amount of light emitted in the horizontal direction on the screen is as shown in Figure 3E. horizontal sharpness is improved. However, when using this method, as is clear from the figure, the width of the light emitting part on the screen is the video signal S.
の時間巾に対応せず細くなつてしまうという欠点がある
。これに対して、映像信号の波形を補正し、併せて走査
速度変調用信号の波形を工夫することにより、第3図に
示すような方法の欠点をなくすとともに鮮鋭度を一層改
善するようにした方法がある。これは、第4図に示すよ
うに、もとの映像信号SOに対して、このもとの映像信
号S。The disadvantage is that it does not correspond to the time span of , and becomes thin. In response to this, by correcting the waveform of the video signal and at the same time devising the waveform of the scanning speed modulation signal, we have eliminated the drawbacks of the method shown in Figure 3 and further improved the sharpness. There is a way. As shown in FIG. 4, this is the original video signal S with respect to the original video signal SO.
を微分処理することにより形成した補正用信号を合成し
て、もとの映像信号S。に比べて白信号の幅を広くした
映像出力信号S,を得、この映像出力信号Spを受像管
に供給して電子ビームを密度変調し、一方、もとの映像
信号SOを微分処理することにより、映像出力信号Sp
の立上り部及び立下り部において、互いに極性が逆でし
かもその正及び負のピークの位置が立上り部の始点及び
立下り部の終.点寄りの位置にくるような信号Svを得
、この信号Svを走査速度変調用信号として受像管のス
クリーン上における電子ビームの走査速度を変調するも
のである。このようにすると、時間の経過に対する電子
ビこームのスクリーン上での水平方向の走査位置は第4
図の線4で示すようになり、スクリーン上の水平方向に
おける発光分布は同図の線5で示すようになる。The correction signals formed by differential processing are combined to generate the original video signal S. Obtain a video output signal S, with a white signal width wider than that of , and supply this video output signal Sp to a picture tube to density-modulate the electron beam, while differentially processing the original video signal SO. Accordingly, the video output signal Sp
In the rising and falling parts, the polarities are opposite to each other, and the positions of the positive and negative peaks are the starting point of the rising part and the end of the falling part. A signal Sv that appears at a dotted position is obtained, and this signal Sv is used as a scanning speed modulation signal to modulate the scanning speed of the electron beam on the screen of the picture tube. In this way, the horizontal scanning position of the electron beam on the screen with respect to the passage of time is the fourth
The light emission distribution in the horizontal direction on the screen becomes as shown by line 4 in the figure, and the light emission distribution in the horizontal direction on the screen becomes as shown by line 5 in the figure.
即ち、第5図に示すように、映像出力信号Spの裾の立
上り時点X,において走査速度変調4用信号Svが急激
に立上るのでここでビームの走査速度は急激に早くなつ
て、ビームの位置は図の点Y1にただちに到達し、この
点Y1までは発光量が抑えられる。そして、走査速度変
調用信号Svが正の最大値から徐々に小さくなるにつれ
ビームの走査速度は漸次遅くなり、映像出力信号Spの
立上り部の各時点、,X3,X.においてはビームの位
置は点Y2,Y3,Y4にくる。一方、映像出力信号S
pの立下り部ではこれと全く対称的になる。従つて、映
像出力信号Spにより電子ビームが密度変調されかつ走
査速度変調用信号Svによりビームのスクリーン上にお
ける走査速度が変調されることは、あたかも、図の破線
で示すようフな立上り及び立下り急峻な映像信号SRに
より電子ビームが密度変調されかつビームのスクリーン
上における走査速度は何ら変調されないときと等しくな
り、スクリーン上での水平方向の発光分布は図の線5で
示すようになる。これから明らかなゝように、鮮鋭度が
一層改善されるとともに、発光部分の巾がもとの映像信
号Sさの立上りの中間点から立下りの中間点までの時間
に対応するものとなつて、第3図に示した方法のように
細くなつてしまうことはない。そころで、もとの映像信
号SOに比べて白信号の幅を広くした映像出力信号Sp
を得るには、もとの映像信号S。That is, as shown in FIG. 5, the scanning speed modulation 4 signal Sv suddenly rises at the rising edge point X of the video output signal Sp, so the scanning speed of the beam suddenly increases, and the beam The position immediately reaches point Y1 in the figure, and the amount of light emission is suppressed up to this point Y1. As the scanning speed modulation signal Sv gradually decreases from its maximum positive value, the scanning speed of the beam gradually slows down, and at each point in time of the rising edge of the video output signal Sp, , X3, X. , the beam positions are at points Y2, Y3, and Y4. On the other hand, the video output signal S
The falling part of p is completely symmetrical to this. Therefore, the fact that the electron beam is density-modulated by the video output signal Sp and the scanning speed of the beam on the screen is modulated by the scanning speed modulation signal Sv is as if the rising and falling edges are normal as shown by the broken line in the figure. The density of the electron beam is modulated by the steep video signal SR, and the scanning speed of the beam on the screen becomes equal to that when no modulation is performed, and the horizontal light emission distribution on the screen becomes as shown by line 5 in the figure. As is clear from this, the sharpness is further improved, and the width of the light emitting portion corresponds to the time from the midpoint of the rise to the midpoint of the fall of the original video signal S. Unlike the method shown in FIG. 3, it does not become thinner. At this point, a video output signal Sp with a wider white signal width than the original video signal SO
To obtain the original video signal S.
に対して、その1次の微分信号のみならず2次以上の微
分信号をもそれぞれ極性及びレベルを選定して合成する
必要がある。また、走査速度変調用信号Svとしてその
正及び負のピークの位置が映像出力信号Spの立上り部
の始点及び立下り部の終点により近づいた急峻な立上り
のものを得るには、映像信号S。の1次の微分信号に対
して2次以上の微分信号をそれぞれ極性及びレベルを選
定して合成する必要がある。この発明は、簡単な構成に
より、2次以上の微分信号をも利用して上述のような映
像出力信号SP及び走査速度変調用信号Svを容易に形
成することができるようにしたものである。第6図はそ
の一例で、10は映像増幅器、11は受像管で、受像管
11において、12はカソード、13は水平及び垂直の
偏向手段、14はこれと別の走査速度変調用偏向手段で
ある。However, it is necessary to select the polarity and level and synthesize not only the first-order differential signal but also the second-order and higher-order differential signals. Furthermore, in order to obtain a scanning speed modulation signal Sv with a steep rise in which the positions of its positive and negative peaks are closer to the start point of the rising portion and the end point of the falling portion of the video output signal Sp, the video signal S. It is necessary to select the polarity and level and synthesize the second-order or higher-order differential signals with respect to the first-order differential signal. The present invention enables the above-described video output signal SP and scanning speed modulation signal Sv to be easily formed by using a second-order or higher-order differential signal with a simple configuration. FIG. 6 shows an example of this, where 10 is an image amplifier, 11 is a picture tube, in the picture tube 11, 12 is a cathode, 13 is horizontal and vertical deflection means, and 14 is another deflection means for scanning speed modulation. be.
この走査速度変調用偏向手段14は、例えば管11のネ
ック部内に2枚の静電偏向板を水平方向に対向して配置
して構成することがてきる。そして、映像増幅器10を
通じて取り出されるもとの映像信号S。This scanning speed modulation deflection means 14 can be constructed, for example, by arranging two electrostatic deflection plates in the neck portion of the tube 11 so as to face each other in the horizontal direction. Then, the original video signal S is extracted through the video amplifier 10.
(第8図A)を1次微分回路21に供給して微分し、1
次微分信号SA(同図B)を得る。この1次微分信号S
Aは極性反転回路26を有する同極性化回路27に供給
して、信号SAのうちの映像信号S。の立下り部に対応
する部分を極性反転して同極性化された信号SD(同図
C)を得る。5
そして、この同極性化された信号SDを第1の系統に属
する2次微分回路22Dに供給して微分し、2次微分信
号SD。(Fig. 8A) is supplied to the first-order differentiator circuit 21 and differentiated.
A second differential signal SA (B in the same figure) is obtained. This first-order differential signal S
A is supplied to a polarization circuit 27 having a polarity inversion circuit 26, and is a video signal S of the signal SA. By inverting the polarity of the portion corresponding to the falling edge of , a signal SD having the same polarity (C in the figure) is obtained. 5. Then, the signal SD having the same polarity is supplied to the second-order differentiation circuit 22D belonging to the first system and differentiated to obtain a second-order differentiation signal SD.
(同図D)を得る。さらに、必要に応じて、2次微分信
号SD。を3次微分回路23Dに供給して微分し、3次
微分信号SD。l(同図E)を得、この3次微分信号S
D。を4次微分回路24Dに供給して微分し、4次微分
信号SD。を得る、・・・・・・というように順次高次
の微分信号を得る。一方、1次微分信号SA(同図B)
を第2の系1統に属する2次微分回路22Aに供給して
微分し、2次微分信号SA。(D in the same figure) is obtained. Furthermore, if necessary, a second-order differential signal SD. is supplied to the third-order differential circuit 23D and differentiated to obtain a third-order differential signal SD. l (E in the same figure) is obtained, and this third-order differential signal S
D. is supplied to the fourth-order differential circuit 24D and differentiated to obtain a fourth-order differential signal SD. Then, higher-order differential signals are obtained in sequence. On the other hand, the first differential signal SA (B in the same figure)
is supplied to the second-order differentiation circuit 22A belonging to the second system 1 and differentiated, thereby producing a second-order differentiation signal SA.
(同図F)を得る。さらに、必要に応じて、2次微分信
号SA。を3次微分回路23Aに供給して微分し、3次
微分信号SA。(同図G)を得、この3次微分信号SA
3を4次微一分回路24Aに供給して微分し、4次微分
信号SA,を得る、・・・・・・というように順次高次
の微分信号を得る。そして、第1のマトリックス回路2
8において、もとの映像信号SOと、同極性化回路27
の出力信号SDと、第1の系統に属する奇数次微分回路
の各出力信号即ち3次微分回路23D)5次微分回路2
5D・・・・・・の出力信号SD3,SD,,・・・・
・・と、第2の系統に属する偶数次微分回路の各出力信
号即ち2次微分回路22A、4次微分回路24A・・・
・・・の出力信号SA2,SA4,・・・・・・とを、
それぞれそのままの極性で所定のレベル比で加算するこ
とにより、マトリックス回路28より、上述の白信号の
幅が広くされた映像出力信号S,(第8図H)を得る。(Figure F) is obtained. Furthermore, if necessary, the second-order differential signal SA. is supplied to the third-order differentiation circuit 23A and differentiated to produce a third-order differential signal SA. (G in the same figure) is obtained, and this third-order differential signal SA
3 is supplied to the fourth-order differential circuit 24A and differentiated to obtain the fourth-order differential signal SA, . . . . And the first matrix circuit 2
8, the original video signal SO and the same polarization circuit 27
output signal SD and each output signal of the odd-order differentiator circuit belonging to the first system, that is, the third-order differentiator circuit 23D) the fifth-order differentiator circuit 2
5D... output signal SD3, SD,,...
. . . and each output signal of the even-order differentiation circuit belonging to the second system, that is, the second-order differentiation circuit 22A, the fourth-order differentiation circuit 24A, etc.
...'s output signals SA2, SA4, ......,
By adding them at a predetermined level ratio with their polarities unchanged, the matrix circuit 28 obtains the video output signal S, (FIG. 8H) in which the width of the above-mentioned white signal is widened.
′一方、第2のマトリックス回路29において、1次
微分回路21の出力信号SAと、第1の系統に属する偶
数次微分回路の各出力信号即ち2次微分回路22D、4
次微分回路24D・・・・・・の出力信号SD2,SD
。'Meanwhile, in the second matrix circuit 29, the output signal SA of the first-order differentiator 21 and each output signal of the even-order differentiator circuit belonging to the first system, that is, the second-order differentiator circuits 22D, 4
Output signals SD2, SD of the order differentiating circuit 24D...
.
,・・・ ・・・と、第2の系統に属する奇数 ι次微
分回路の各出力信号即ち3次微分回路23A)5次微分
回路25A・・・・・・の出力信号SA3,SA5,・
・・・・・とを、それぞれそのままの極性で所定レベル
比で加算することにより、このマトリックス川路29よ
り、上述の、正及び負のピーク位置が快像出力信号Sp
の立上り部の始点及び立下り部の終点により近づいた急
峻な立上りの走査速度変凋用信号Sv(第8図I)を得
る。そして、映像出力信号Spを受像管11のカソード
12に供給して電子ビームを密度変調し、走査速度変調
用信号Svを走査速度変調用偏向手段14の互いに対向
する2枚の静電偏向板間に供給して管11のスクリーン
上における電子ビームの走査速度を変調する。, . . . and the respective output signals of the odd ι order differentiating circuits belonging to the second system, that is, the output signals SA3, SA5, .
By adding .
A scanning speed variation signal Sv (FIG. 8I) with a steep rise approaching the start point of the rising portion and the end point of the falling portion of is obtained. Then, the video output signal Sp is supplied to the cathode 12 of the picture tube 11 to density-modulate the electron beam, and the scanning speed modulation signal Sv is sent between the two mutually opposing electrostatic deflection plates of the scanning speed modulation deflection means 14. is supplied to modulate the scanning speed of the electron beam on the screen of the tube 11.
なお、走査速度変調偏向手段14は、第7図に示すよう
に受像管11の電子銃の例えば集束電極を特殊に形成す
ることにより構成することもできる。The scanning speed modulation deflection means 14 can also be constructed by specially forming, for example, a focusing electrode of the electron gun of the picture tube 11, as shown in FIG.
即ち、第7図は管11のネック部内の電子銃を示すもの
で、カソード30、制御電極31、加速電極32、第1
陽極33、集束電極34及び第2陽極35が順次同じ軸
心上に配列されている。That is, FIG. 7 shows the electron gun inside the neck of the tube 11, which includes a cathode 30, a control electrode 31, an accelerating electrode 32, a first
An anode 33, a focusing electrode 34, and a second anode 35 are sequentially arranged on the same axis.
そして、集束電極34を、1つの同筒体をその中間部に
おいて水平面と直交するも管軸と斜めに交わる平面によ
つて切断したような形状を有するように分割された2個
の電極部34A及ひ34Bにて構成し、電極部34A及
び34Bにはそれぞれ零Vないし数KVの集束電圧を供
給するとともに、これに重量して両電極部34A及ひ3
4B間上に上述の走査速度変調用信号Svを供給する。
従つて、集束電極34の位置て信号Svによつて水平方
向の電界が発生し、これによりビーム36が水平方向に
偏向されてスクリーン上においてビーム36の走査速度
が変調される。また、水平偏向コイルを走査速度変調用
偏向手段に兼用させ、水平偏向信号に対して上述の走査
速度変調用信号を合成したものをこれに供給してもよい
。Then, the focusing electrode 34 is divided into two electrode parts 34A having a shape similar to that of a single cylindrical body cut by a plane that is orthogonal to the horizontal plane at the middle part and diagonal to the tube axis. A focusing voltage of zero V to several KV is supplied to each of the electrode parts 34A and 34B, and both electrode parts 34A and 34B are connected by weight.
The above-mentioned scanning speed modulation signal Sv is supplied between 4B and 4B.
Therefore, a horizontal electric field is generated by the signal Sv at the position of the focusing electrode 34, which deflects the beam 36 in the horizontal direction and modulates the scanning speed of the beam 36 on the screen. Alternatively, the horizontal deflection coil may also be used as the deflection means for scanning speed modulation, and a combination of the above-mentioned scanning speed modulation signal and the horizontal deflection signal may be supplied thereto.
この発明によれば、共通の1次微分回路と、同極性化回
路と、必要数の微分回路と、2個のマトリックス回路を
設けるだけの簡単な構成により、目的とする映像出力信
号と走査速度変調用信号を容易に形成することができる
。According to this invention, the desired video output signal and scanning speed can be obtained by using a simple configuration that includes a common first-order differentiating circuit, a same polarization circuit, a necessary number of differentiating circuits, and two matrix circuits. Modulation signals can be easily formed.
なお、この発明はカラーテレビジョン受像機にも適用で
きるもので、この場合には輝度信号を上述の映像信号と
して扱えばよい。Note that the present invention can also be applied to a color television receiver, and in this case, the luminance signal may be treated as the above-mentioned video signal.
第1図〜第3図はこの発明の説明のための図、第4図及
び第5図はこの発明の前提となる方法の説明のための図
、第6図はこの発明の一例の系統図、第7図は走査速度
変調用偏向手段の一例の断面図、第8図はこの発明の説
明のための波形図である。
10は映像増幅器、11は受像管、21は1次微分回路
、27は同極性化回路、22D,23D・・・・・・は
第1の系統の2次以上の微分回路、22A,23A・・
・・・・は第2の系統の2次以上の微分回路、28及び
29は第1及び第2のマトリックス回路である。Figures 1 to 3 are diagrams for explaining this invention, Figures 4 and 5 are diagrams for explaining the method that is the premise of this invention, and Figure 6 is a system diagram of an example of this invention. , FIG. 7 is a sectional view of an example of the deflection means for scanning speed modulation, and FIG. 8 is a waveform diagram for explaining the present invention. 10 is a video amplifier, 11 is a picture tube, 21 is a first-order differentiating circuit, 27 is a polarizing circuit, 22D, 23D, . . . are second-order or higher order differentiating circuits of the first system, 22A, 23A.・
. . . are second-order or higher-order differential circuits of the second system, and 28 and 29 are first and second matrix circuits.
Claims (1)
次微分回路の出力信号の上記もとの映像信号の立上り部
及び立下り部に対応する各信号部分の極性を同一にする
同極性化回路と、この同極性化回路の出力信号をもとに
順次前段の回路の出力信号を微分する第1の系統の2次
以上の微分回路と、上記1次微分回路の出力信号をもと
に順次前段の回路の出力信号を微分する第2の系統の2
以上の微分回路と、上記もとの映像信号、上記同極性化
回路の出力信号、上記第1の系統に属する奇数次微分回
路の各出力信号及び上記第2の系統に属する偶数次微分
回路の各出力信号を合成して上記もとの映像信号に比べ
て白信号の幅が広くされた映像出力信号を得る第1のマ
トリックス回路と、上記1次微分回路の出力信号、上記
第1の系統に属する偶数次微分回路の各出力信号及び上
記第2の系統に属する奇数次微分回路の各出力信号を合
成して上記映像出力信号に対応した走査速度変調用信号
を形成する第2のマトリックス回路とを有し、上記映像
出力信号が受像管に印加されるとともに、上記走査速度
変調用信号により上記受像管のスクリーン上における電
子ビームの走査速度が変調されるようになされたテレビ
ジョン受像機。1 A first-order differentiation circuit that differentiates the original video signal and this 1
Based on the same polarization circuit that makes the polarity of each signal part corresponding to the rising and falling parts of the original video signal of the output signal of the second-order differentiating circuit the same, and the output signal of this same polarization circuit, A first system of second-order or higher-order differentiating circuits that sequentially differentiates the output signals of the previous-stage circuits, and a second system that sequentially differentiates the output signals of the previous-stage circuits based on the output signals of the first-order differentiator circuits. 2
The above differentiating circuit, the original video signal, the output signal of the same polarization circuit, each output signal of the odd differentiating circuit belonging to the first system, and the even differentiating circuit belonging to the second system. a first matrix circuit that synthesizes each output signal to obtain a video output signal with a white signal wider than the original video signal; an output signal of the first-order differential circuit; and a first system. a second matrix circuit that synthesizes each output signal of the even order differential circuit belonging to the second system and each output signal of the odd order differential circuit belonging to the second system to form a scanning speed modulation signal corresponding to the video output signal; A television receiver, wherein the video output signal is applied to a picture tube, and the scanning velocity of an electron beam on the screen of the picture tube is modulated by the scanning velocity modulation signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6296877A JPS6048946B2 (en) | 1977-05-30 | 1977-05-30 | television receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6296877A JPS6048946B2 (en) | 1977-05-30 | 1977-05-30 | television receiver |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS53148227A JPS53148227A (en) | 1978-12-23 |
JPS6048946B2 true JPS6048946B2 (en) | 1985-10-30 |
Family
ID=13215637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6296877A Expired JPS6048946B2 (en) | 1977-05-30 | 1977-05-30 | television receiver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6048946B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0639721A (en) * | 1992-07-08 | 1994-02-15 | Kawasaki Heavy Ind Ltd | Abrasive water-jet nozzle and its manufacture |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4902128B2 (en) * | 2005-03-23 | 2012-03-21 | 三洋電機株式会社 | Battery case and battery |
-
1977
- 1977-05-30 JP JP6296877A patent/JPS6048946B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0639721A (en) * | 1992-07-08 | 1994-02-15 | Kawasaki Heavy Ind Ltd | Abrasive water-jet nozzle and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JPS53148227A (en) | 1978-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5851710B2 (en) | television receiver | |
JPS5851709B2 (en) | television receiver | |
US5519447A (en) | Wide aspect television receiver including a correcting waveform signal generator | |
US3949167A (en) | Image-projection system | |
JPS6048946B2 (en) | television receiver | |
JPH10293552A (en) | Automatic convergent circuit for monitor | |
US4827193A (en) | Correcting circuit of pincushion distortion | |
JPH08336062A (en) | Television receiver | |
JPH07118780B2 (en) | Image quality compensation device | |
JPS6048947B2 (en) | television receiver | |
JP3633115B2 (en) | Deflection device | |
JPS62279783A (en) | Contour correcting device | |
JPS597261B2 (en) | TV Jiyounga Zouno Sen-Aid Kaizen Cairo | |
JPS6053510B2 (en) | television receiver | |
JPS63123275A (en) | Outline correcting device for video | |
US5656895A (en) | Display apparatus | |
US5644196A (en) | Beam landing location error correction arrangement | |
US2174580A (en) | Cathode-ray tube system | |
JPH0388586A (en) | Crt type projector | |
JPS6053509B2 (en) | television receiver | |
JPS6053950B2 (en) | television receiver | |
CA2072191C (en) | Display apparatus | |
JPS59119653A (en) | Beam spot correcting device | |
JP2591779B2 (en) | CRT image quality correction circuit | |
JPH0134454Y2 (en) |