JPS597261B2 - TV Jiyounga Zouno Sen-Aid Kaizen Cairo - Google Patents

TV Jiyounga Zouno Sen-Aid Kaizen Cairo

Info

Publication number
JPS597261B2
JPS597261B2 JP50145302A JP14530275A JPS597261B2 JP S597261 B2 JPS597261 B2 JP S597261B2 JP 50145302 A JP50145302 A JP 50145302A JP 14530275 A JP14530275 A JP 14530275A JP S597261 B2 JPS597261 B2 JP S597261B2
Authority
JP
Japan
Prior art keywords
signal
circuit
scanning speed
video signal
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50145302A
Other languages
Japanese (ja)
Other versions
JPS5268319A (en
Inventor
欽也 真貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP50145302A priority Critical patent/JPS597261B2/en
Publication of JPS5268319A publication Critical patent/JPS5268319A/en
Publication of JPS597261B2 publication Critical patent/JPS597261B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Picture Signal Circuits (AREA)
  • Details Of Television Scanning (AREA)

Description

【発明の詳細な説明】 テレビジョン受像機で画像を映出させる場合、輝度の高
い部分では受像管のビーム電流が増加するためにビーム
のスポットサイズが大きくなシ鮮鋭度が低下してしまう
DETAILED DESCRIPTION OF THE INVENTION When displaying an image on a television receiver, the beam current of the picture tube increases in areas with high brightness, resulting in a decrease in sharpness due to the large beam spot size.

特に第1図Aに示すように水平方向の輪郭部分1や同図
Bに示すように線の部分2では、本来の映像信号は第2
図Aに示すように黒レベルと白レベルの間で急峻に変化
するが、受像機の伝送系の周波数特性のため高域成分が
減衰するので信号は同図Bに示すようになまつて水平方
向の鮮鋭度は一層低下してしまう。そこで、鮮鋭度の低
下を補償する方法として、第2図Bの映像信号50から
同図CVc示すような2次微分信号SBを得、これを信
号50に加えて同図Dに示すような立上わ及び立下わの
急峻な映像信号Scを得、これを受像管に供給する方法
がある。しかしこの方法では、信号のピークの部分でビ
ーム電流がより増加するので、ビームのスポットサイズ
は一層大きくなわ、この結果鮮鋭度はそれ程改善されな
い。また別な方法として、第3図Aの映像信号50をそ
のまま受像管に供給するとともに、この映像信号50を
微分して同図Bに示すような信号SAを得、これを例え
ば主偏向コイルとは別に設けた補助偏向コイルに供給し
て水平偏向磁界を同図Cに示すように補正し、これによ
りスクリーン上でのビームの走査速度を同図Dに示すよ
うに変調する方法がある。
In particular, in the horizontal contour portion 1 as shown in FIG. 1A and the line portion 2 as shown in FIG. 1B, the original video signal is
As shown in Figure A, there is a sharp change between the black level and the white level, but due to the frequency characteristics of the receiver's transmission system, the high-frequency components are attenuated, so the signal becomes sloppy and horizontal as shown in Figure B. The directional sharpness is further reduced. Therefore, as a method of compensating for the decrease in sharpness, a second differential signal SB as shown in FIG. 2B is obtained from the video signal 50 shown in FIG. There is a method of obtaining a video signal Sc with steep upper and lower edges and supplying it to a picture tube. However, in this method, since the beam current is increased more at the peak of the signal, the beam spot size is larger, resulting in less improvement in sharpness. Another method is to supply the video signal 50 shown in FIG. 3A to the picture tube as it is, differentiate this video signal 50 to obtain a signal SA shown in FIG. There is a method in which the horizontal deflection magnetic field is corrected as shown in Figure C by supplying it to a separately provided auxiliary deflection coil, thereby modulating the scanning speed of the beam on the screen as shown in Figure D.

この方法によれば、区間Taではビームの走査速度が早
〈なつてスクリーン上の対応する点の発光量は減少し、
区間Tbではビームの走査速度が遅<なつてスクリーン
上の対応する点の発光量は増加するので、ビームのスポ
ットサイズを考慮するとスクリーン上の水平方向の発光
量は第3図Eに示すように変化し水平方向の鮮鋭度が改
善される。しかしながら、この方法によるときは、図か
ら明らかなように、スクリーン上の発光部分の巾が映像
信号50の時間巾に対応せず細〈なつてしまうという欠
点がある。
According to this method, the scanning speed of the beam increases in the section Ta, and the amount of light emitted at the corresponding point on the screen decreases.
In section Tb, the scanning speed of the beam is slow and the amount of light emitted at the corresponding point on the screen increases, so considering the spot size of the beam, the amount of light emitted in the horizontal direction on the screen is as shown in Figure 3E. horizontal sharpness is improved. However, as is clear from the figure, this method has the disadvantage that the width of the light-emitting portion on the screen does not correspond to the time width of the video signal 50 and becomes narrow.

本発明はこの点にかんがみ、陰極線管のスクリーン上に
おける電子ビームの走査速度を変調することによV)鮮
鋭度を改答するが、その走査速度変調用信号の波形を工
夫することにより第3図に示すような方法の欠点をなく
したものである。
In view of this point, the present invention improves (V) sharpness by modulating the scanning speed of the electron beam on the screen of the cathode ray tube. This eliminates the drawbacks of the method shown in the figure.

以下、その具体例を第4図以下について説明しよう。第
4図は走査速度変調用信号を水平偏向信号に重畳して水
平偏向コイルに供給する場合の例で、映像検波回路3よ
りも映像信号を第1映像増幅器4及び第2映像増幅器5
を通じて陰極線管6のカソードに供給して電子ビームを
密度変調する。
Hereinafter, a specific example of this will be explained with reference to FIG. 4 and subsequent figures. FIG. 4 shows an example in which the scanning speed modulation signal is superimposed on the horizontal deflection signal and supplied to the horizontal deflection coil.
The electron beam is supplied to the cathode of the cathode ray tube 6 through the electron beam to density-modulate the electron beam.

1方、第1映像増幅器4よりの映像信号SO(第6図、
第1図のA)を微分回路7に供給して微分し、その微分
信号SA(第6図、第r図のB)を合成器8に供給し、
またこの微分信号SAを同極性化回路9に供給して信号
SAのうちの映像信号SOlの立下りに対応する部分を
極性反転して同極性化された信号SD(第6図、第7図
のC)を得、これをさらに微分回路10に供給して微分
し、その微分信号SE(第6図、第7図のD)を合成器
8に供給して微分信号SAと合成し、合成器8より、2
映像信号SOの立上bと立下りとでは極性が異なり、そ
の正のピーク及び負のピークの位置が微分信号SAのそ
れよりも映像信号SOの低レベル側に移され、しかもそ
の振幅が映像信号SOのレベルに応じて変わる信号SF
(第6図、第r図のE)2を得る。
On the other hand, the video signal SO from the first video amplifier 4 (Fig. 6,
A) in FIG. 1 is supplied to the differentiating circuit 7 for differentiation, and the differentiated signal SA (B in FIG. 6, FIG. r) is supplied to the synthesizer 8,
Further, this differential signal SA is supplied to the polarization circuit 9, and the polarity of the portion of the signal SA corresponding to the falling edge of the video signal SOl is inverted, resulting in a signal SD having the same polarity (FIGS. 6 and 7). C) is further supplied to the differentiating circuit 10 for differentiation, and the differentiated signal SE (D in FIGS. 6 and 7) is supplied to the synthesizer 8 to be combined with the differentiated signal SA. From vessel 8, 2
The polarity is different between the rising edge b and the falling edge of the video signal SO, and the positions of the positive and negative peaks are shifted to the lower level side of the video signal SO than those of the differential signal SA, and the amplitude is different from that of the video signal SO. Signal SF that changes depending on the level of signal SO
(E in Fig. 6, Fig. r) 2 is obtained.

そしてこの信号SFを非直線回路で構成された補正回路
11に供給して振幅が映像信号SOのレベルにかかわら
ずほぼ一定な信号SG(第6図、第7図のF)を得、こ
れを走査速度変調用信号として合成器12に供給する。
一方、映3像検波回路3の出力を同期信号分離回路13
に供給して水平及び垂直の同期信号を取出し、水平同期
信号を水平偏向及び高圧発生回路14に供給して水平偏
向信号及び高圧出力を得、水平偏向信号を合成器12に
供給して補正回路11よジの走査速度変調用信号SGを
これに重畳し、重畳された信号を水平偏向電流として主
偏向手段15の水平偏向コイルに供給し、高圧出力を陰
極線管6のアノードに供給し、また垂直同期信号を垂直
偏向回路16に供給して垂直偏向信号を得、これを主偏
向手段15の垂直偏向コイルに供給する。従つて、水平
偏向電流は第8図に卦いて線17で示すようにな力、映
像信号SOの立上勺の初めに訃いてビームの走査速度が
急激に早くなつて立上v区間に相当する巾Wの中間点ま
で到達し、この間発光量が抑えられ、中間点に到達する
とビームの走査速度は急激に遅くなつて発光量が急峻に
増加し、一方映像信号SOの立下り側ではこれと対称的
になるので、スクリーン上の水平方向に卦いて発光量は
線18で示すように変化することになb、鮮鋭度が改善
されるとともに、発光部分の巾は映像信号SOの立上り
の中間点から立下ジの中間点までの時間巾に対応するも
のとなり、第3図に示した方法のように細くなつてしま
うことはない。
This signal SF is then supplied to the correction circuit 11 composed of a non-linear circuit to obtain a signal SG (F in Figs. 6 and 7) whose amplitude is almost constant regardless of the level of the video signal SO. It is supplied to the synthesizer 12 as a scanning speed modulation signal.
On the other hand, the output of the video three-image detection circuit 3 is transferred to the synchronization signal separation circuit 13.
The horizontal synchronizing signal is supplied to the horizontal deflection and high voltage generation circuit 14 to obtain a horizontal deflection signal and a high voltage output, and the horizontal deflection signal is supplied to the combiner 12 to generate a correction circuit. A scanning speed modulation signal SG of 11 degrees is superimposed on this, the superimposed signal is supplied as a horizontal deflection current to the horizontal deflection coil of the main deflection means 15, a high voltage output is supplied to the anode of the cathode ray tube 6, and A vertical synchronization signal is supplied to the vertical deflection circuit 16 to obtain a vertical deflection signal, which is then supplied to the vertical deflection coil of the main deflection means 15. Therefore, the horizontal deflection current is as shown by line 17 in Figure 8, and at the beginning of the rising edge of the video signal SO, the scanning speed of the beam suddenly increases, which corresponds to the rising edge v period. The beam reaches the midpoint of the width W, during which time the amount of light emitted is suppressed, and when the beam reaches the halfway point, the scanning speed of the beam suddenly slows down and the amount of light emitted suddenly increases.On the other hand, on the falling side of the video signal SO, this As a result, the amount of light emitted changes in the horizontal direction on the screen as shown by line 18, and the sharpness is improved and the width of the light emitted portion changes from the rise of the video signal SO. This corresponds to the time width from the midpoint to the midpoint of the falling edge, and does not become narrow as in the method shown in FIG.

また、補正回路11により走査速度変調用信号SG(7
)振幅は映像信号SOのレベルに無関係にほぼ一定にな
されるから、走査速度の変化の状態は映像信号SOのレ
ベルに関係なく一定にな楓映像信号SOのレベルがいか
なるものであつても上述のような改善がなされる。第5
図の例は補正回路11より得られる走査速度変調用信号
SGを水平偏向信号に重畳することなく主偏向手段15
とは別の偏向手段19に供給して走査速度を変調するよ
うにした場合である。
In addition, the correction circuit 11 generates a scanning speed modulation signal SG (7
) Since the amplitude is kept almost constant regardless of the level of the video signal SO, the state of change in scanning speed is constant regardless of the level of the video signal SO. The following improvements will be made. Fifth
In the example shown in the figure, the main deflection means 15 does not superimpose the scanning speed modulation signal SG obtained from the correction circuit 11 on the horizontal deflection signal.
This is a case where the scanning speed is modulated by supplying the light to another deflecting means 19.

この偏向手段19は、主偏向手段15の手前側に}いて
管6のネツク部内に水平方向に対向して配した2枚の静
電偏向板をもつて購成でき、両偏向板間に走査速度変調
用信号SGを供給すればよい。.また、偏向手段19を
コイルで構成して、これに走査速度変調用信号SGによ
る電流を流してもよい。また、管6のネツク部内の電子
銃の例えば集束電極を特殊に購成することにより偏向手
段19としてもよい。
This deflection means 19 can be purchased with two electrostatic deflection plates disposed horizontally opposite each other in the neck of the tube 6 on the front side of the main deflection means 15, and a scanning It is sufficient to supply the speed modulation signal SG. .. Alternatively, the deflection means 19 may be constituted by a coil, through which a current based on the scanning speed modulation signal SG may be passed. Alternatively, the deflection means 19 may be provided by specially purchasing, for example, a focusing electrode of the electron gun in the neck portion of the tube 6.

第9図はその一例を示すもので、カソード20、制却電
極21、加速電極22、第1陽極23、集束電極24及
び第2陽極25が順次同じ軸心上に配列されている。そ
して、集束電極24を、1つの円筒体をその中間部に訃
いて水平面と直交するも管軸と斜めに交わる平面によつ
て切断したような形状を有するように分割?れた2個の
電極部24A及び24Bにて構成し、電極部24A及び
24Bにはそれぞれ零ないし数KVの集束電圧を供給す
るとともに、これに重畳して両電極部24A及び24B
間に上述の走査速度変調用信号SGを供給する。このよ
うにすれば、集束電極24の位置で信号SGによつて水
平方向の電界が発生し、これによシビーム26が水平方
向に偏向されるので、上述のようにスクリーン上に訃い
てビームの走査速度が変調される。上述のように本発明
によれば鮮鋭度の改善がなされるとともに発光部分の巾
が細くなつてしまうのを抑圧することができる。
FIG. 9 shows an example of this, in which a cathode 20, a suppression electrode 21, an acceleration electrode 22, a first anode 23, a focusing electrode 24, and a second anode 25 are arranged in sequence on the same axis. Then, the focusing electrode 24 is divided so that it has a shape similar to that of a single cylindrical body cut in the middle by a plane that is perpendicular to the horizontal plane but diagonal to the tube axis. A focused voltage of zero to several KV is supplied to each of the electrode parts 24A and 24B, and a focused voltage of zero to several KV is supplied to each of the electrode parts 24A and 24B.
In between, the above-mentioned scanning speed modulation signal SG is supplied. In this way, a horizontal electric field is generated by the signal SG at the position of the focusing electrode 24, and this deflects the beam 26 in the horizontal direction, so that the beam falls on the screen as described above. The scanning speed is modulated. As described above, according to the present invention, the sharpness can be improved and the narrowing of the width of the light emitting portion can be suppressed.

また非直線回路よ)なる補正回路を設けるときは走査速
度変調用信号の振幅を映像信号のレベルに関係なくほぼ
一定にすることができ、映像信号がいかなるレベルであ
つても走査速度の変調による補正が適切に働くという利
点がある。な}、本発明はカラーテレビジヨン受像機に
訃いてカラー画像を映出させる場合にも適用できるもの
で、この場合には輝度信号から上述のように走査速度変
調用信号を形成すればよい。
In addition, when a correction circuit (such as a non-linear circuit) is provided, the amplitude of the scanning speed modulation signal can be made almost constant regardless of the level of the video signal. This has the advantage that the correction works properly. The present invention can also be applied to the case where a color image is displayed on a color television receiver; in this case, the scanning speed modulation signal may be formed from the luminance signal as described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の説明のための図、第4図及び
第5図はそれぞれ本発明による鮮鋭度改善回路の一例の
系統図、第6図〜第8図はその説明のための波形図、第
9図は集束電極を走査速度変調用偏向手段とする場合の
電子銃部の断面図である。 3は映像検波回路、4及び5は第1及び第2映像増幅器
、6は陰極線管、7及び10は微分回路、9は同極性化
回路、11は補正回路、13は同期信号分離回路、14
は水平偏向及び高圧発生回路、15は主偏向手段、16
は垂直偏向回路、19は別の偏向手段である。
Figures 1 to 3 are diagrams for explaining the present invention, Figures 4 and 5 are system diagrams of an example of the sharpness improvement circuit according to the present invention, and Figures 6 to 8 are diagrams for explaining the invention. FIG. 9 is a sectional view of the electron gun section when the focusing electrode is used as the scanning speed modulation deflection means. 3 is a video detection circuit, 4 and 5 are first and second video amplifiers, 6 is a cathode ray tube, 7 and 10 are differentiating circuits, 9 is a polarization circuit, 11 is a correction circuit, 13 is a synchronization signal separation circuit, 14
15 is a horizontal deflection and high voltage generation circuit; 15 is a main deflection means; 16 is a horizontal deflection and high voltage generation circuit;
is a vertical deflection circuit, and 19 is another deflection means.

Claims (1)

【特許請求の範囲】[Claims] 1 入力映像信号が供給される入力端子と、上記入力端
子からの映像信号を受像管に印加する回路と、上記入力
端子に接続され上記入力映像信号に応答して上記入力映
像信号の微分波形に対応する第1の信号を得る回路と、
上記第1の信号が同極性化されさらに微分された波形に
対応する第2の信号を得る回路と、上記第1の信号と上
記第2の信号を合成して上記入力映像信号の微分波形に
対応する信号であつてそのピーク位置が上記入力映像信
号の低レベル側に移るように補正された走査速度変調用
の信号を得る回路と、上記受像管に設けられ印加される
制御信号により上記受像管のスクリーン上における電子
ビームの走査速度を変調するための手段とを有し、上記
走査速度変調用の信号を上記制御信号として上記走査速
度を変調するための手段に印加するようにしたテレビジ
ョン画像の鮮鋭度改善回路。
1. An input terminal to which an input video signal is supplied; a circuit that applies the video signal from the input terminal to the picture tube; a circuit for obtaining a corresponding first signal;
a circuit for obtaining a second signal corresponding to a waveform obtained by making the first signal the same polarity and further differentiating the same; and a circuit for synthesizing the first signal and the second signal to obtain a differentiated waveform of the input video signal. A circuit for obtaining a signal for scanning speed modulation, which is a corresponding signal and whose peak position is corrected to shift to the lower level side of the input video signal, and a control signal provided to and applied to the picture tube to control the image reception. means for modulating the scanning speed of the electron beam on the screen of the tube, wherein the signal for modulating the scanning speed is applied as the control signal to the means for modulating the scanning speed. Image sharpness improvement circuit.
JP50145302A 1975-12-05 1975-12-05 TV Jiyounga Zouno Sen-Aid Kaizen Cairo Expired JPS597261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50145302A JPS597261B2 (en) 1975-12-05 1975-12-05 TV Jiyounga Zouno Sen-Aid Kaizen Cairo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50145302A JPS597261B2 (en) 1975-12-05 1975-12-05 TV Jiyounga Zouno Sen-Aid Kaizen Cairo

Publications (2)

Publication Number Publication Date
JPS5268319A JPS5268319A (en) 1977-06-07
JPS597261B2 true JPS597261B2 (en) 1984-02-17

Family

ID=15381995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50145302A Expired JPS597261B2 (en) 1975-12-05 1975-12-05 TV Jiyounga Zouno Sen-Aid Kaizen Cairo

Country Status (1)

Country Link
JP (1) JPS597261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0124374Y2 (en) * 1984-09-12 1989-07-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0124374Y2 (en) * 1984-09-12 1989-07-24

Also Published As

Publication number Publication date
JPS5268319A (en) 1977-06-07

Similar Documents

Publication Publication Date Title
JPS5851709B2 (en) television receiver
JPS5851710B2 (en) television receiver
CA2133922C (en) Wide aspect television receiver
JPH06222726A (en) Display device
US3949166A (en) System for use in television receivers for providing improved sharpness of images
JPS581593B2 (en) TV program
JPS597261B2 (en) TV Jiyounga Zouno Sen-Aid Kaizen Cairo
JPS5838679Y2 (en) television receiver
US2163546A (en) Apparatus and method for television reception
JPH07118780B2 (en) Image quality compensation device
US2790930A (en) Color television image tube and system therefor
US5656895A (en) Display apparatus
JP3369171B2 (en) Circuit for generating dynamic focusing voltage in television equipment
JPS6048946B2 (en) television receiver
JPS63123275A (en) Outline correcting device for video
JPS62279783A (en) Contour correcting device
TW544706B (en) Electron gun, cathode-ray tube and projector
JPS6048947B2 (en) television receiver
CA2072191C (en) Display apparatus
JPS6053950B2 (en) television receiver
JPS5837164Y2 (en) tervisillon receiver
JPS6053510B2 (en) television receiver
JPS6053509B2 (en) television receiver
JP2003116019A (en) Velocity modulator
JPH07201292A (en) Sharpness improving circuit of crt display