JPS6048526B2 - Butene polymer purification method - Google Patents

Butene polymer purification method

Info

Publication number
JPS6048526B2
JPS6048526B2 JP9623876A JP9623876A JPS6048526B2 JP S6048526 B2 JPS6048526 B2 JP S6048526B2 JP 9623876 A JP9623876 A JP 9623876A JP 9623876 A JP9623876 A JP 9623876A JP S6048526 B2 JPS6048526 B2 JP S6048526B2
Authority
JP
Japan
Prior art keywords
aqueous solution
polymerization
solution
catalyst
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9623876A
Other languages
Japanese (ja)
Other versions
JPS5322583A (en
Inventor
昌明 浅井
康夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP9623876A priority Critical patent/JPS6048526B2/en
Publication of JPS5322583A publication Critical patent/JPS5322583A/en
Publication of JPS6048526B2 publication Critical patent/JPS6048526B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はフリデルクラフト型触媒によりブテン類を重合
して液状又は半固体のブテン重合体(一般にポリブテン
と称する)を得る際、該重合体に含まれる触媒の除去を
目的としてなされたブテン重合体の精製方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves the removal of the catalyst contained in the polymer when a liquid or semi-solid butene polymer (generally referred to as polybutene) is obtained by polymerizing butenes using a Friedel-Crafts type catalyst. The present invention relates to a method for purifying butene polymers.

該重合体に前記触媒が含まれるとブテン重合体製品は着
色して劣化し易く、品質、性能試験に不合格となつて用
途が制限され、殊に一度着色すると脱色が困難となるた
め重合反応終了後の段階で触媒の除去か必要とされ、各
方面に於て研究されて様々な報告がなされておる状況に
ある。
If the catalyst is contained in the polymer, the butene polymer product will be easily colored and deteriorated, failing quality and performance tests, and its uses will be limited.In particular, once colored, it will be difficult to decolor, so the polymerization reaction will be delayed. It is necessary to remove the catalyst at the stage after completion of the process, and this situation has been studied in various fields and various reports have been made.

例えば、従来紹介されている除去方法には、沈降法、吸
着法、枦過法等の物理的除去法、或は塩酸、硫酸等の水
溶液、アルコール類、ゲット類、エーテル類等の有機薬
品、アンモニアガス、更にアンモニア水、水酸化ナトリ
ウム、水酸化カルシウム等のアルカリ性水溶液等による
化学的除去法があるが、これらの方法は何れも次の如き
欠点を有して更に改善が要望される。
For example, conventional removal methods include physical removal methods such as sedimentation, adsorption, and filtration methods, aqueous solutions such as hydrochloric acid and sulfuric acid, organic chemicals such as alcohols, get compounds, and ethers, There are chemical removal methods using ammonia gas, ammonia water, alkaline aqueous solutions such as sodium hydroxide, calcium hydroxide, etc., but all of these methods have the following drawbacks, and further improvements are desired.

即ち、(1)は沈降分離法による時は沈降槽に沈澱した
触媒残渣が連続的または一定時間毎に抜き出されるが抜
き出される際、一定量の重合体および未反応物が系外に
排出されて損失となり、又抜き出された触媒残渣はその
処理を慎重に行なう必要があるので操作が煩しく、更に
この方法は、単独にて触媒の完全除去が望めないので、
他の物理的方法又は化学的方法との結合による実施が避
けられない。
In other words, in (1), when using the sedimentation separation method, the catalyst residue that has settled in the sedimentation tank is extracted continuously or at regular intervals, but when it is extracted, a certain amount of polymer and unreacted substances are discharged from the system. In addition, the removed catalyst residue must be carefully disposed of, making the operation cumbersome.Furthermore, this method cannot hope to completely remove the catalyst by itself.
Implementation in combination with other physical or chemical methods is unavoidable.

(2)他の物理的方法である吸着法、ろ適法に於ては、
使用する白土等が触媒残渣、触媒コンJフレックス、油
分等に蔽われてその後の処理に多くの手間と費用を要す
るのみでなく、白土はその能力を低下する。又これらの
吸着法、ろ適法による時は重合液中の未反応のブテン類
が残存触媒により重合し発熱昇温して製品への悪影響が
避けら・れない。(3)又化学的方法に於て重合液を水
洗浄したり、酸洗いする方法に於ては、塩化アルミニウ
ム触媒使用の場合塩化水素の発生による、装置、機器の
腐蝕、損傷が避けられず、(4)有機薬品による時は該
薬品が重合液中に残溜して製品の品質に悪影響を及ほす
のみでなく、重合体を分離して得られた回収未反応物を
重合工程に戻す場合触媒毒となつて重合反応を阻害する
。(5)アンモニアガスを重合液中に吹込む方法に於て
は残存触媒が失活するので前記の様な昇温は避けられる
が、アンモニアと塩化アルミニウム触媒とがコンプレッ
クスを生成し、この生成物の除去に沈降法と吸着法又は
ろ過法との結台処理を必要とするため、物理的方法に伴
なう前述欠点が避けられなくなつて、白土表面に形成さ
れるコンプレックス層は圧力損失を増大して連続運転を
困難にする。(6)塩基性水溶液を使用する方法にも各
種あるが何れも満足すべきものは見当らず、例えはアン
モニア水を使用する方法に於ては、その一部が循環使用
する未反応物流に随伴して触媒毒となり、水酸化カルシ
ウム水溶液を使用する方法に於ては触媒の中和除去作用
に乏しく好ましい結果は得られない。(7)なお苛性ア
ルカリ水溶液を使用する従来法は、重合液に該水溶液を
作用して生ずる水酸化アルミニウムを沈降、除去する方
法であるため、先づ重合液を沈澱槽に導いて一応触媒の
一部を沈降分離させ、次でアルカリ洗浄を施し水酸化ア
ルミニウムとして沈降分離し、更に沈降困難な水酸化ア
ルミニウムの粒子を白土層を通うして除去する等の複雑
な処理により行なわれている状況にある。然るに本発明
方法は同じ苛性アルカリを使用して行なう方法であるが
、従来法に比べて至極簡単に行ないえて優れた効果が得
られ、殊に沈降分離又は/及び吸着分離等の方法を必要
としないことは驚くべき成果であつて、その要旨とする
ところは、フリーデルクラフト型触媒を用いてブテン類
を重合して得られる触媒を含む重合液を、苛性アルカリ
水溶液に接触させて含有触媒を中和、失活し、生ずる中
和生成物を前記の水溶液中に溶解.し、次で該水溶液を
分離して得られる重合液を水洗する方法に於て、前記の
接触に供する苛性アルカリ水溶液のアルカリ濃度を、前
記の中和、失活、溶解後にPHIO以上を維持するため
に必要な濃度ならしめると共に該水溶液の重合液に対す
る容・積比を112以上ならしめることを特徴とするブ
テン重合体の精製方法であつて、以下その詳細について
説明する。本発明に於てブテン類とは、イソブテン、ブ
テンー1、ブテンー2をいゝ、これらはエチレン製造時
に得られるC。
(2) In other physical methods such as adsorption and filtration methods,
The white clay used is covered with catalyst residue, catalyst con J flex, oil, etc., which not only requires a lot of effort and expense for subsequent treatment, but also reduces its performance. Furthermore, when these adsorption methods and filtration methods are used, unreacted butenes in the polymerization solution are polymerized by the remaining catalyst, resulting in exothermic temperature rise, which inevitably has an adverse effect on the product. (3) In addition, in chemical methods in which the polymerization solution is washed with water or pickled, corrosion and damage to equipment and equipment due to the generation of hydrogen chloride cannot be avoided when aluminum chloride catalysts are used. (4) When organic chemicals are used, the chemicals not only remain in the polymerization solution and adversely affect the quality of the product, but also the recovered unreacted materials obtained by separating the polymer are returned to the polymerization process. In some cases, it becomes a catalyst poison and inhibits the polymerization reaction. (5) In the method of blowing ammonia gas into the polymerization solution, the remaining catalyst is deactivated, so the temperature increase as described above can be avoided, but ammonia and aluminum chloride catalyst form a complex, and this product Removal of the clay requires a combination of sedimentation, adsorption, or filtration, so the above-mentioned drawbacks associated with physical methods are unavoidable, and the complex layer formed on the surface of the clay has a high pressure drop. increases, making continuous operation difficult. (6) There are various methods that use basic aqueous solutions, but none of them are satisfactory. For example, in the method that uses ammonia water, a part of it accompanies the unreacted flow that is recycled. In the method using an aqueous calcium hydroxide solution, the neutralization and removal effect of the catalyst is poor and favorable results cannot be obtained. (7) In the conventional method using a caustic alkaline aqueous solution, the aqueous solution is applied to the polymerization solution to precipitate and remove the resulting aluminum hydroxide. This is done through complicated processing, such as separating a portion by sedimentation, then washing with alkaline to separate it as aluminum hydroxide, and then removing the aluminum hydroxide particles, which are difficult to sediment, by passing through a layer of clay. It is in. However, although the method of the present invention is carried out using the same caustic alkali, it is much easier to carry out than the conventional method and has superior effects, and in particular does not require methods such as sedimentation separation and/or adsorption separation. This is a surprising result, and its gist is that a polymerization solution containing a catalyst obtained by polymerizing butenes using a Friedel-Crafts type catalyst is brought into contact with an aqueous caustic solution to remove the catalyst. Neutralization, deactivation, and dissolving the resulting neutralized product in the above aqueous solution. Then, in the method of separating the aqueous solution and washing the obtained polymerization liquid with water, the alkaline concentration of the caustic alkali aqueous solution subjected to the above-mentioned contact is maintained at PHIO or more after the above-mentioned neutralization, deactivation, and dissolution. The method for purifying a butene polymer is characterized in that the aqueous solution is brought to the necessary concentration and the volume-to-volume ratio of the aqueous solution to the polymerization solution is 112 or more, and the details thereof will be described below. In the present invention, butenes refer to isobutene, butene-1, and butene-2, which are carbon atoms obtained during ethylene production.

留分(別称:B−B留分)中にブテン類としてブタン類
と共に含まれる。工業的には、かゝる留分が原料に供さ
れるため留分中のブタン類及び未反応のブテン類が重合
溶媒として作用するので、該留分を原料に供して行なう
重合反応には溶剤、稀釈剤を加えることなく行えて便利
である。フリーデルクラフト型触媒としては塩化アルミ
ニウム(AICI。
It is contained as butenes together with butanes in the fraction (also known as B-B fraction). Industrially, such a fraction is used as a raw material, and the butanes and unreacted butenes in the distillate act as a polymerization solvent, so it is difficult to perform a polymerization reaction using this fraction as a raw material. It is convenient because it can be done without adding solvents or diluents. A Friedel-Crafts type catalyst is aluminum chloride (AICI).

)、塩化鉄(FeCl3)等の金属ハロゲン化物、或は
Ξ弗化硼素等が例示されるが工業的には専らAlCl3
が使用されるので以下この塩化物を例にとつて記述する
。又塩化アルミニウムはブテン類に対して0.01〜1
重量%の割合で用いられるが、0.05〜0.5重量%
での使用が好ましい。重合は−70〜+1000C)好
ましくは−10〜 +50゜Cの温度の下に重合系を液
相に保持するに必要な圧力下で行なわれ、C。留分中て
重合して得られるブテン重合体は分子量が200〜30
00)常温で液状ないし半固体のものであつて、留分中
ブタン類および未反応のブテン類と共に重合液として重
合反応器より取出されて触媒除去処理に付されるが、重
合時ブテン類の重合転化率をあまり上げると重合液の粘
度が上昇して触媒除去が困難となるので重合体濃度を2
0〜80%程度として触媒除去処理に付すことが好まし
い。かくして得られた重合液は重合反応器から取出され
ると直ちに攪拌機付容器に移されて次の要領で苛性アル
カリの水溶液により処理される。本発明に於て苛性アル
カリ (NaOH又はKOH)を、以下単にアルカリと
も称え又苛性アルカリ水溶液をアルカリ水溶液又は単に
水溶液とも称える。
), metal halides such as iron chloride (FeCl3), or boron fluoride, but industrially AlCl3
is used, so this chloride will be described below as an example. Also, aluminum chloride has a ratio of 0.01 to 1 for butenes.
It is used in a proportion of 0.05 to 0.5% by weight.
Preferably used in The polymerization is carried out at a temperature of -70 to +1000°C, preferably from -10 to +50°C, and under pressure necessary to maintain the polymerization system in the liquid phase. The butene polymer obtained by polymerization in the fraction has a molecular weight of 200 to 30.
00) It is liquid or semi-solid at room temperature, and is taken out from the polymerization reactor as a polymerization liquid along with butanes and unreacted butenes in the distillate and subjected to catalyst removal treatment, but the butenes are removed during polymerization. If the polymerization conversion rate is increased too much, the viscosity of the polymerization solution will increase, making it difficult to remove the catalyst.
It is preferable to subject the catalyst removal treatment to about 0 to 80%. Immediately after the polymerization solution thus obtained is taken out of the polymerization reactor, it is transferred to a container equipped with a stirrer and treated with an aqueous solution of caustic alkali in the following manner. In the present invention, caustic alkali (NaOH or KOH) is hereinafter simply referred to as alkali, and aqueous caustic alkaline solution is also referred to as aqueous alkaline solution or simply aqueous solution.

重合液との接触に供するアルカリ水溶液のアルカリ濃度
と所要液量は、触媒の中和、失活に要するアルカリ量、
と中和生成物を溶解した時に維持するPH値を知ればよ
く、中和と失活に要するアルカリ量は理論値であり、又
前記PH値に於ける水酸化アルミニウムの溶解度を知れ
ば中和、失活により発生する水酸化アルミニウムの全部
を溶解するに必要なアルカリ水溶液の必要最小容積量と
、該最小容積量のアルカリ水溶液を前記PH値に維持す
るに必要なアルカリ量とが容易に算出される。
The alkaline concentration and required amount of the alkaline aqueous solution to be brought into contact with the polymerization solution are determined by the amount of alkali required for neutralizing and deactivating the catalyst,
All you need to know is the pH value to be maintained when the neutralized product is dissolved, and the amount of alkali required for neutralization and deactivation is a theoretical value.Also, if you know the solubility of aluminum hydroxide at the above pH value, neutralization is possible. , the required minimum volume of alkaline aqueous solution necessary to dissolve all of the aluminum hydroxide generated by deactivation and the alkali amount required to maintain the minimum volume of alkaline aqueous solution at the above pH value can be easily calculated. be done.

然しながら芸に重要なことは、かくして得られる計算量
丈では本発明目的は達成されないということてある。そ
れはかく計算して得られるアルカリ水溶液量は必ずしも
重合液との分離要件をそなえないからである。今水酸化
アルミニウムの溶解度に及ぼすPH値の影響と、水溶液
と重合液の分離性について述べてみると、例えは原料C
However, what is important for art is that the object of the present invention cannot be achieved with the amount of calculation obtained in this way. This is because the amount of alkaline aqueous solution obtained by such calculation does not necessarily meet the requirements for separation from the polymerization liquid. Now let's talk about the influence of the pH value on the solubility of aluminum hydroxide and the separability of the aqueous solution and polymerization solution.
.

留分に対し0.4Qw%のAICI。触媒を使用した場
合、得られる中和生成物A1 (0H)。の量は重合液
に対して0.24W%であるが、この中和生成物を常温
で溶解させるために必要なアルカリ水溶液量を、該水溶
液に対するA1(0H)。のPH別溶解度により求める
と、PH9の場合は重合液の約5.5倍の容積量を必要
として膨大な水量消費と、装置の大型化と、攪拌電力量
の浪費と、薬剤の無駄が避けられず、これに対しPH差
が僅か1大きくなつた丈で中和生成物の溶解度が10倍
に増加して使用水量を1110即ち重合液量の約5.5
倍容積量に減少しうるが、更にPH値を大きくし溶解度
を増大して使用水量を減少させようとすると、アルカリ
水溶液は重合液と乳濁液を形成して分離てきなくなる。
この場合の例を上記と同じ重合液につきPHl3のアル
カリ水溶液を使用して示すと、該水溶液の所要量はAl
(0H)3の溶解度から重合液の1127唯容積量あ
れば足りることがわかり、一見結構の様に思われるが、
両液は攪拌により乳濁液を形成し分離不能となつて精製
目的が達せられない。本発明者達はか)る問題の解決に
つき試験研究の結果、アルカリ水溶液を、そのPH値に
拘らず、重合液の112倍容積量以上を用いると、換言
すれはアルカリ水溶液の重合液に対する容積比を112
以上にして用いると、静置により両液が容易に分離する
ことを見出し、又この容積比で用いると重合液中の中和
生成物が良く水溶液中に移行することを確めて本発明を
なしたものである。
AICI of 0.4Qw% for the fraction. If a catalyst is used, the resulting neutralization product A1 (0H). The amount of alkaline aqueous solution is 0.24W% based on the polymerization solution, and the amount of alkaline aqueous solution necessary to dissolve this neutralized product at room temperature is A1 (0H) based on the aqueous solution. If the pH is 9, the volume of the polymerization solution is about 5.5 times that of the polymerization solution, which leads to the consumption of a huge amount of water, the increase in the size of the equipment, the waste of electric power for stirring, and the waste of chemicals. On the other hand, when the pH difference increased by only 1, the solubility of the neutralized product increased tenfold, reducing the amount of water used to 1110, or about 5.5 of the amount of polymerization solution.
However, if an attempt is made to further increase the pH value to increase solubility and thereby reduce the amount of water used, the alkaline aqueous solution forms an emulsion with the polymerization solution and cannot be separated.
An example of this case is shown using an alkaline aqueous solution of PHL3 for the same polymerization solution as above, and the required amount of the aqueous solution is Al
From the solubility of (0H)3, it was found that only 1127 volume of the polymerization solution was sufficient, which at first glance seems to be sufficient.
Both liquids form an emulsion upon stirring and cannot be separated, making it impossible to achieve the purpose of purification. The inventors of the present invention have conducted research to solve this problem, and have found that if an aqueous alkaline solution is used at least 112 times the volume of the polymerization solution, regardless of its pH value, the volume of the alkali aqueous solution relative to the polymerization solution is ratio to 112
When used in the above manner, it was discovered that both liquids were easily separated by standing, and it was also confirmed that when used at this volume ratio, the neutralized product in the polymerization liquid migrated well into the aqueous solution. This is what was done.

前記PHlOのアルカリ水溶液使用の場合、Al(0H
)。
In the case of using the alkaline aqueous solution of PHLO, Al(0H
).

の溶解に必要な水溶液量は重合液の5.5倍の容積量て
あり、又PHl3のアルカリ水溶液使用の場合は重合液
量の112冗倍容積量であつて、両者は共に同量のAl
(0H)。の溶解に必要な、アルカJり水溶液の最小
量であるが前者の場合は攪拌後静置により分離でき後者
の場合にできないのは、前者の容積量(5.5倍)が重
合液量の112倍容積量以上なることにより理解される
。使用水量の有効適切な節減は、接触に供するアルカリ
水溶液のアルカリ濃度を接触前適切に調整しておくこと
によりなしえられるが、あまり濃いアルカリ水溶液は装
置を腐蝕するのみてなく、アルカリ重合液中に残存し、
水洗工程の負担となつて徒に精費を増大する。
The amount of aqueous solution required for dissolving is 5.5 times the volume of the polymerization solution, and when using an alkaline aqueous solution of PHL3, the volume is 112 times the volume of the polymerization solution.
(0H). The minimum amount of alkali aqueous solution required for dissolution is in the former case, which can be separated by stirring and standing still, but in the latter case, it cannot be separated because the volume of the former (5.5 times) is the volume of the polymerization liquid. It is understood that the volume is 112 times or more. An effective and appropriate reduction in the amount of water used can be achieved by appropriately adjusting the alkaline concentration of the alkaline aqueous solution used for contacting, but too concentrated alkaline aqueous solution will not only corrode the equipment but also cause damage to the alkaline polymerization solution. remains in
This becomes a burden on the washing process and unnecessarily increases the expense.

よつて接触に供するアルカリ水溶液のアルカリ濃度は1
0w%以下であることが好ましく、又触媒(AlCl3
)を中和、失活し、中和生成物の溶解後PHII〜12
を維持する様に予め調整しておくと共に、アルカリ水溶
液の重合液に対する容積比を112〜2としておくこと
が好ましい。実施例1 イソブチレン36w%含むC4留分800ccを約13
゜Cに冷却して攪拌装置、温度計およびジャケット付の
ガラス製11のオートクレーブに入れ、次いで、該オー
トクレーブ中に分子量約300のポリブテン中に分散さ
せた塩化アルミニウム0.50ダを圧入して、13゜C
で1.時間重合反応を行つた後、得られた重合液700
ccを苛性ソーダ0.731ダを含む水溶液700cc
のはいつた攪拌装置付きガラス製の21オートクレーブ
中に移して5分間攪拌した。
Therefore, the alkaline concentration of the alkaline aqueous solution used for contact is 1
It is preferably 0 w% or less, and the catalyst (AlCl3
), and after dissolving the neutralized product, PHII ~ 12
It is preferable to adjust the volume ratio of the alkaline aqueous solution to the polymerization liquid in the range of 112 to 2 in advance. Example 1 800cc of C4 fraction containing 36w% of isobutylene was
The mixture was cooled to °C and placed in a glass 11 autoclave equipped with a stirrer, a thermometer and a jacket, and then 0.50 da of aluminum chloride dispersed in polybutene having a molecular weight of about 300 was press-fitted into the autoclave. 13°C
So 1. After carrying out the polymerization reaction for a period of time, the obtained polymerization liquid 700
cc = 700cc of aqueous solution containing 0.731 da of caustic soda
The mixture was transferred to a glass 21 autoclave equipped with a stirrer and stirred for 5 minutes.

攪拌後、約5分間、静置したところ、水溶液は下層とな
り重合液は上層に透明となつて水溶液から完全に分離し
た。又下層に分離した水溶液のPHは12であつた。次
で下層の水溶液を分液し、オートクレーブに700cc
の水を圧入して、5分間攪拌後5分間静置してから分液
した。
After stirring, the mixture was allowed to stand for about 5 minutes, and the aqueous solution became a lower layer, and the polymerization liquid became a transparent upper layer, completely separated from the aqueous solution. The pH of the aqueous solution separated into the lower layer was 12. Next, separate the lower layer aqueous solution and put 700cc into an autoclave.
of water was injected under pressure, stirred for 5 minutes, allowed to stand for 5 minutes, and then separated.

かく水洗して得られた重合液を水銀柱10rrLImの
減圧に保ちながら120゜Cで1時間加熱して未反応の
C,留分や軽質ポリブテンを除去し、平均分子量900
の精製された液状ポリブテン160gを得た。又このポ
リブテンの品質は、色相試験、A1含量、C1含量、N
a含量の各分析試験に合格しその結果は第1表々記の通
りであつた。本例はアルカリ水溶液の容積比が1:1、
分離水溶液のPHが12であつて、前者が11鍜上、後
者が10以上の場合の例を示す。
The polymerization solution obtained by washing with water was heated at 120°C for 1 hour while maintaining a reduced pressure of 10rr LIm of mercury to remove unreacted C, fractions and light polybutene, and the average molecular weight was 900.
160 g of purified liquid polybutene was obtained. The quality of this polybutene is determined by hue test, A1 content, C1 content, N
It passed each analytical test for the a content, and the results were as shown in Table 1. In this example, the volume ratio of the alkaline aqueous solution is 1:1,
An example will be shown in which the pH of the separated aqueous solution is 12, the former is 11 or more, and the latter is 10 or more.

なおアルカリ溶液の容積比とは苛性ソーダ水溶液量の重
合液量に対する容積比であり、又分離水溶液のPHとは
本例に明らかな如く攪拌により中和、失活、溶解後、下
層に分離して得られる水溶液のことであつて以下各例共
同じである。
The volume ratio of the alkaline solution is the volume ratio of the amount of the caustic soda aqueous solution to the amount of the polymerization solution, and the pH of the separated aqueous solution is the volume ratio of the amount of the aqueous solution of caustic soda to the amount of the polymerized solution. It refers to the aqueous solution obtained, and the same applies to each example below.

実施例2 実施例1と同様に重合して得られた重合液700ccを
、苛性ソーダ0.479ダを含む水溶液700ccのは
いつた攪拌装置付ガラス製21オートクレーブに移し、
実施例1と同様に攪拌して静置したところ、重合液は実
施例1と同様に分離して、下層に得られた水溶液のPH
は11であつた。
Example 2 700 cc of the polymerization solution obtained by polymerization in the same manner as in Example 1 was transferred to a glass 21 autoclave equipped with a stirring device and containing 700 cc of an aqueous solution containing 0.479 da of caustic soda.
When stirred and left to stand in the same manner as in Example 1, the polymerization liquid was separated in the same manner as in Example 1, and the PH of the aqueous solution obtained in the lower layer was
It was 11.

以後、実施例1と同様に行つて平均分子量900の液状
ポリブテン160yを得た。
Thereafter, the same procedure as in Example 1 was carried out to obtain liquid polybutene 160y having an average molecular weight of 900.

又このポリブテンの品質は第1表々記の通りであり、合
格品であ1つた。なお本例はアルカリ水溶液の容積比が
1:1、分離水溶液のPHが11であつて前者が112
以上、後者が10以上の場合の例を示す。
Moreover, the quality of this polybutene was as shown in the first table, and one of the products passed the test. In this example, the volume ratio of the alkaline aqueous solution is 1:1, the pH of the separated aqueous solution is 11, and the former is 112.
An example in which the latter is 10 or more is shown above.

比較例1 実施例1と同様に重合して得られた重合液700ccを
苛性ソーダ0.452ダを含む水溶液700ccのはい
つた攪拌装置付ガラス製21オートクレーブに移し実施
例1と同様に攪拌して静置したところ、重合液は実施例
1と同様に分離して、下層に得られた水溶液のPHは9
であつた。
Comparative Example 1 700 cc of the polymerization solution obtained by polymerization in the same manner as in Example 1 was transferred to a glass 21 autoclave equipped with a stirring device containing 700 cc of an aqueous solution containing 0.452 d of caustic soda, and stirred in the same manner as in Example 1. When left to stand still, the polymerization liquid was separated in the same manner as in Example 1, and the pH of the aqueous solution obtained in the lower layer was 9.
It was hot.

以下実施例1と同様に行つて、平均分子量900の液状
ポリブテン160ダを得た。
Thereafter, the same procedure as in Example 1 was carried out to obtain 160 Da of liquid polybutene having an average molecular weight of 900.

又このポリブテンは、第1表々記の品質をそなえた、不
合格品であつた。なお本例はアルカリ水溶液の容積比が
112より大きくても、分離水溶液のPHが10より小
さいと合格品の得られないとを示す一例である。
Moreover, this polybutene had the quality listed in the first table and was a rejected product. Note that this example shows that even if the volume ratio of the alkaline aqueous solution is greater than 112, if the pH of the separated aqueous solution is less than 10, a passing product cannot be obtained.

実施例3 実施例1と同様に重合して得られた重合液700.cc
を、苛性ソーダ0.591ダを含む水溶液350ccの
はいつた攪拌装置付ガラス製21オートクレーブに移し
、実施例1と同様に攪拌して静置したところ、重合液は
実施例1と同様に上層に分離し、下層に得られた水溶液
のPHは12であつた。
Example 3 Polymerization solution 700.0% obtained by polymerization in the same manner as in Example 1. cc
was transferred to a glass 21 autoclave equipped with a stirrer and containing 350 cc of an aqueous solution containing 0.591 Da of caustic soda, stirred in the same manner as in Example 1, and allowed to stand still. As in Example 1, the polymerization liquid formed in the upper layer. The pH of the aqueous solution obtained as the lower layer after separation was 12.

以後、実施例1と同様に行つて、平均分子量900の液
状ポリブテン160yを得た。又このポリブテンの品質
は第1表々記の通りであり、合格品であつた。なお本例
はアルカリ水溶液の容積比が112であ・り、分離水溶
液のPHが12であつて、前者が112以上、後者が1
0以上の場合の例を示す。
Thereafter, the same procedure as in Example 1 was carried out to obtain liquid polybutene 160y having an average molecular weight of 900. The quality of this polybutene was as shown in the first table, and it was a passed product. In this example, the volume ratio of the alkaline aqueous solution is 112, the pH of the separated aqueous solution is 12, the former is 112 or more, and the latter is 1.
An example of the case of 0 or more is shown.

実施例4 実施例1と同様に重合して得られた重合液700ccを
苛性ソーダ0.465ダを含む水溶液350ccのはい
つた攪拌装置付ガラス製21?オートクレーブに移し、
実施例1と同様に攪拌、静置したところ、重合液は実施
例1と同様に上層に分離し、下層に得られ水溶液のPH
は11であつた。
Example 4 700 cc of the polymerization solution obtained by polymerization in the same manner as in Example 1 was added to 350 cc of an aqueous solution containing 0.465 d of caustic soda in a glass 21mm tube equipped with a stirrer. Transfer to autoclave
When stirred and left to stand in the same manner as in Example 1, the polymerization liquid was separated into an upper layer as in Example 1, and the pH of the aqueous solution obtained in the lower layer was
It was 11.

以後、実施例1と同様に行つて、平均分子量900の液
状ポリブテン160gを得た。
Thereafter, the same procedure as in Example 1 was carried out to obtain 160 g of liquid polybutene having an average molecular weight of 900.

又このポリブテンは、第1表々記の品質のもので合格品
であつた。なお本例はアルカリ水溶液の容積比が112
であり、分離水溶液のPHが11であつて、前者が11
2以上、後者が10以上の場合の例を示す。
Moreover, this polybutene had the quality shown in the first table and was a passed product. In this example, the volume ratio of the alkaline aqueous solution is 112.
, the pH of the separated aqueous solution is 11, and the former is 11
An example where the number is 2 or more and the latter is 10 or more will be shown.

比較例2 実施例1と同様に重合して得られた重合液700ccを
、苛性ソーダ0.452yを含む水溶液350ccのは
いつた攪拌装置付ガラス製21)オートクレーブに移し
て、実施例1と同様に攪拌して静置したところ、重合液
は実施例1と同様に上層に分離して下層に得られた水溶
液のPHは9であつた。
Comparative Example 2 700 cc of the polymerization solution obtained by polymerization in the same manner as in Example 1 was transferred to a glass autoclave equipped with a stirrer and containing 350 cc of an aqueous solution containing 0.452 y of caustic soda. When the mixture was stirred and left to stand, the polymerization liquid was separated into an upper layer as in Example 1, and the pH of the aqueous solution obtained in the lower layer was 9.

以後、実施例1と同様に行つて、平均分子量900の液
状ポリブテン160yを得た。
Thereafter, the same procedure as in Example 1 was carried out to obtain liquid polybutene 160y having an average molecular weight of 900.

又このポリブテンは第1表々記の品質をそなえた不合格
品であつた。なお本例はアルカリ水溶液の容積比が11
2であつても、分離水溶液のPHが10より小さいと合
格品の得られないことを示す一例である。
Moreover, this polybutene was a rejected product that had the quality listed in the first table. In this example, the volume ratio of the alkaline aqueous solution is 11.
This is an example showing that even if the pH value of the separated aqueous solution is 2, if the pH of the separated aqueous solution is less than 10, a passing product cannot be obtained.

実施例5 実施例1と同様に重合して得られた重合液700ccを
苛性ソーダ1.011yを含む水溶液1400ccのは
いつた攪拌装置付ガラス製31オートクレーブに移し、
実施例1と同様に攪拌して静置したところ、重合液は実
施例1と同様に上層に分離して下層に得られた水溶液の
PHは12であつた。
Example 5 700 cc of the polymerization solution obtained by polymerization in the same manner as in Example 1 was transferred to a glass 31 autoclave equipped with a stirring device and containing 1400 cc of an aqueous solution containing 1.011 y of caustic soda.
When the mixture was stirred and left to stand in the same manner as in Example 1, the polymerization liquid was separated into an upper layer as in Example 1, and the pH of the aqueous solution obtained in the lower layer was 12.

以後、実施例1と同様に行つて、平均分子量900の液
状ポリブテン160yを得た。又このポリブテンの品質
は第1表々記の通りであり合格品であつた。なお本例は
アルカリ水溶液の容積比が2であり、分離水溶液のPH
が12であつて、前者が112以上、後者が10以上の
場合の例を示す。
Thereafter, the same procedure as in Example 1 was carried out to obtain liquid polybutene 160y having an average molecular weight of 900. The quality of this polybutene was as shown in the first table, and it was an acceptable product. In this example, the volume ratio of the alkaline aqueous solution is 2, and the PH of the separated aqueous solution is
is 12, the former is 112 or more, and the latter is 10 or more.

実施例6 実施例1と同様に重合して得られた重合液700ccを
苛性ソーダ0.457yを含む水溶液1400ccのは
いつた攪拌装置付ガラス製31オートクレーブに移し、
実施例1と同様に攪拌して静置したところ、重合液は実
施例1と同様に上層に分離し、下層に得られた水溶液の
PHは10であつた。
Example 6 700 cc of the polymerization solution obtained by polymerization in the same manner as in Example 1 was transferred to a glass 31 autoclave equipped with a stirring device and containing 1400 cc of an aqueous solution containing 0.457 y of caustic soda.
When stirred and left to stand in the same manner as in Example 1, the polymerization liquid was separated into an upper layer as in Example 1, and the pH of the aqueous solution obtained in the lower layer was 10.

以後、実施例1と同様に行つて、平均分子量900の液
状ポリブテン160ダを得た。又このポリブテンの品質
は第1表々記の通りであり、合格品であつた。なお本例
はアルカリ水溶液の容積比が2、分離水溶液のPHが1
0てあつて、前者がIP以上、後者が10以上の場合の
例を示す。
Thereafter, the same procedure as in Example 1 was carried out to obtain 160 da of liquid polybutene with an average molecular weight of 900. The quality of this polybutene was as shown in the first table, and it was a passed product. In this example, the volume ratio of the alkaline aqueous solution is 2, and the pH of the separated aqueous solution is 1.
0, the former is equal to or greater than IP, and the latter is equal to or greater than 10.

比較例3 実施例1と同様に重合して得られた重合液700ccを
苛性ソーダ0.452yを含む水溶液1400ccのは
いつた撹拌装置付ガラス製31オートクレーブに移し、
実施例1と同様に攪拌して静置したところ、重合液は実
施例1と同様に上層に分離し、下層に得られた水溶液の
PHは9であつた。
Comparative Example 3 700 cc of the polymerization solution obtained by polymerization in the same manner as in Example 1 was transferred to a glass 31 autoclave equipped with a stirring device and containing 1400 cc of an aqueous solution containing 0.452 y of caustic soda.
When the mixture was stirred and left to stand in the same manner as in Example 1, the polymerization liquid was separated into an upper layer as in Example 1, and the pH of the aqueous solution obtained in the lower layer was 9.

以下、実施例1と同様に行つて、平均分子量900の液
状ポリブテン160yを得た。
Thereafter, the same procedure as in Example 1 was carried out to obtain liquid polybutene 160y having an average molecular weight of 900.

又このポリブテンは、第1表々記の品質を有する不合格
品であつた。なお本例はアルカリ水溶液の容積比が1ノ
2以上であつても、分離水溶液のPHが10より小さい
と合格品の得られないことを示す一例である。
Moreover, this polybutene was a rejected product having the quality listed in the first table. This example shows that even if the volume ratio of the alkaline aqueous solution is 1 to 2 or more, if the pH of the separated aqueous solution is less than 10, a passing product cannot be obtained.

比較例4 実施例1と同様に重合して得られた重合液700ccを
苛性ソータ0.452yを含む水溶液230ccのはい
つた攪拌装置付ガラス製21オートクレーブに移し実施
例1と同様に攪拌して静置したところ重合液は実施例1
と同様に上層に分離し、下層に得られた水溶液のPHは
10であつた。
Comparative Example 4 700 cc of the polymerization solution obtained by polymerization in the same manner as in Example 1 was transferred to a glass 21 autoclave equipped with a stirring device containing 230 cc of an aqueous solution containing 0.452 y of caustic sorter, and stirred in the same manner as in Example 1. When left to stand still, the polymerization solution was Example 1.
The upper layer was separated in the same manner as above, and the pH of the aqueous solution obtained in the lower layer was 10.

以後、実施例1と同様に行つて平均分子量900の液状
ポリブテン160yを得た。
Thereafter, the same procedure as in Example 1 was carried out to obtain liquid polybutene 160y having an average molecular weight of 900.

又このポリブテンは、第1表々記の品質を有する不合格
品であつた。なお、本例はアルカリ水溶液の容積比が1
’2より小さいと、分離水溶液のPHが10であつても
合格品の得られないことを示す一例である。
Moreover, this polybutene was a rejected product having the quality listed in the first table. In addition, in this example, the volume ratio of the alkaline aqueous solution is 1
This is an example showing that if it is smaller than '2, a passing product cannot be obtained even if the pH of the separated aqueous solution is 10.

比較例5 実施例1と同様に重合して得られた重合液700つCc
を苛性ソータ0.543yを含む水溶液230ccのは
いつた攪拌装置付ガラス製2eオートクレーブに移し、
実施例1と同様に攪拌して静置したところ、重合液は実
施例1と同様に上層に分離し、下層に得られた水溶液の
PHは12であつた。
Comparative Example 5 700 Cc of polymerization solution obtained by polymerization in the same manner as in Example 1
was transferred to a glass 2e autoclave equipped with a stirrer and containing 230 cc of an aqueous solution containing 0.543 y of caustic sorter.
When the mixture was stirred and left to stand in the same manner as in Example 1, the polymerization liquid was separated into an upper layer as in Example 1, and the pH of the aqueous solution obtained in the lower layer was 12.

以後、実施例1と同様に行つて平均分子量900の液状
ポリブテン160yを得た。
Thereafter, the same procedure as in Example 1 was carried out to obtain liquid polybutene 160y having an average molecular weight of 900.

又このポリブテンは、第1表々記の品質を有する不合格
品であつた。なお本例はアルカリ水溶液の容積比が11
2より小さいと、分離水溶液のPHが10以上であつて
も合格品の得られないことを示す一例である。
Moreover, this polybutene was a rejected product having the quality listed in the first table. In this example, the volume ratio of the alkaline aqueous solution is 11.
This is an example showing that if it is less than 2, a passing product cannot be obtained even if the pH of the separated aqueous solution is 10 or more.

比較例6 実施例1と同様に重合して得られた重合液700ccを
、3.56w%アンモニア水700ccのはいつた攪拌
装置付ガラス製21オートクレーブに移し実施例1と同
様に攪拌して静置したところ、重合液は実施例1と同様
に上層に分離し、下層に得られた水溶液のPHは12で
あつた。
Comparative Example 6 700 cc of the polymerization solution obtained by polymerization in the same manner as in Example 1 was transferred to a glass 21 autoclave equipped with a stirring device containing 700 cc of 3.56 w% ammonia water, stirred in the same manner as in Example 1, and allowed to stand still. When the polymerization solution was placed in the same manner as in Example 1, it was separated into an upper layer, and the pH of the aqueous solution obtained in the lower layer was 12.

以後、実施例1と同様に行つて平均分子量900の液状
ポリブテン160ダを得た。
Thereafter, the same procedure as in Example 1 was carried out to obtain 160 da of liquid polybutene having an average molecular weight of 900.

又このポリブテンは、第1表々記の品質を有する不合格
品であつた。なお、本例は苛性アルカリ以外の塩基の水
溶液によつては、仮令該水溶液の容積比が11肚1上て
あり、又分離水溶液のPHが10以上であつても合格品
の得られないことを示す一例である。
Moreover, this polybutene was a rejected product having the quality listed in the first table. In addition, in this example, when using an aqueous solution of a base other than caustic alkali, the volume ratio of the aqueous solution is 11 times higher than that of the previous example, and even if the pH of the separated aqueous solution is 10 or more, a passing product cannot be obtained. This is an example.

又本例の場合、回収した未反応C。In the case of this example, the recovered unreacted C.

留分中にアンモニアガスが95ppm存在した。比較例
7 実施例1と同様に重合して得られた重合液700ccを
、水酸化カルシウム5.67yを含む水溶液700cc
のはいつた攪拌装置付ガラス製21オートクレーブに移
し、実施例1と同様に攪拌して静置したところ、重合液
は実施例1同様に上層に分離し、下層に得られた水溶液
のPHは12であつた。
Ammonia gas was present in the fraction at 95 ppm. Comparative Example 7 700 cc of a polymerization solution obtained by polymerization in the same manner as in Example 1 was added to 700 cc of an aqueous solution containing 5.67 y of calcium hydroxide.
The polymerization solution was transferred to a glass 21 autoclave equipped with a stirrer, stirred in the same manner as in Example 1, and allowed to stand still. As in Example 1, the polymerization liquid was separated into an upper layer, and the pH of the aqueous solution obtained in the lower layer was It was 12.

以後、実施例1と同様に行つて平均分子量900の液状
ポリブテン160yを得た。又このポリブテンは、第1
表々記の品質を有する不合格品であつた。なお本例の水
酸化カルシウム水溶液の容積比とフ分離水溶液のPHは
比較例6の場合と同じことを示す一例である。
Thereafter, the same procedure as in Example 1 was carried out to obtain liquid polybutene 160y having an average molecular weight of 900. Moreover, this polybutene is
The product was rejected and had the quality listed on the label. Note that the volume ratio of the calcium hydroxide aqueous solution and the pH of the separated aqueous solution in this example are an example showing that they are the same as in Comparative Example 6.

Claims (1)

【特許請求の範囲】 1 フリーデルクラフト型触媒によりブテン類を重合し
て得られる、触媒を含む重合液を、苛性アルカリ水溶液
に接触させて含有触媒を中和、失活し、生ずる中和生成
物を前記の水溶液中に溶解し、次で該水溶液を分離して
得られる重合液を水洗する方法に於て、前記の接触に供
する苛性アルカリ水溶液のアルカリ濃度を、前記の中和
、失活、溶解後にpH10以上を保持するために必要な
濃度ならしめると共に、該水溶液の重合液に対する容積
比を1/2以上ならしめることを特徴とするブテン重合
体の精製方法。 2 フリーデルクラフト型触媒が塩化アルミニウムであ
る特許請求の範囲1に記載のブテン重合体の精製方法。 3 苛性アルカリが水酸化ナトリウムである特許請求の
範囲1に記載のブテン重合体の精製方法。
[Claims] 1. A polymerization solution containing a catalyst obtained by polymerizing butenes using a Friedel-Crafts type catalyst is brought into contact with an aqueous caustic alkali solution to neutralize and deactivate the catalyst, resulting in a neutralized product. In the method of dissolving a substance in the aqueous solution and then separating the aqueous solution and washing the obtained polymerization liquid with water, the alkali concentration of the aqueous caustic alkali solution to be subjected to the contact is adjusted to the level of neutralization and deactivation described above. . A method for purifying a butene polymer, which comprises adjusting the aqueous solution to a concentration necessary to maintain a pH of 10 or higher after dissolution, and adjusting the volume ratio of the aqueous solution to the polymerization solution to 1/2 or higher. 2. The method for purifying a butene polymer according to claim 1, wherein the Friedel-Crafts type catalyst is aluminum chloride. 3. The method for purifying a butene polymer according to claim 1, wherein the caustic alkali is sodium hydroxide.
JP9623876A 1976-08-12 1976-08-12 Butene polymer purification method Expired JPS6048526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9623876A JPS6048526B2 (en) 1976-08-12 1976-08-12 Butene polymer purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9623876A JPS6048526B2 (en) 1976-08-12 1976-08-12 Butene polymer purification method

Publications (2)

Publication Number Publication Date
JPS5322583A JPS5322583A (en) 1978-03-02
JPS6048526B2 true JPS6048526B2 (en) 1985-10-28

Family

ID=14159642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9623876A Expired JPS6048526B2 (en) 1976-08-12 1976-08-12 Butene polymer purification method

Country Status (1)

Country Link
JP (1) JPS6048526B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141828U (en) * 1986-02-28 1987-09-07

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124603A (en) * 1983-12-12 1985-07-03 Idemitsu Petrochem Co Ltd Production of butylene polymer
JPS6151009A (en) * 1984-08-21 1986-03-13 Idemitsu Petrochem Co Ltd Production of polybutene
KR101293839B1 (en) * 2005-07-12 2013-08-07 바스프 에스이 Method for the production of high-grade polyisobutene
WO2007043662A1 (en) * 2005-10-13 2007-04-19 Kaneka Corporation Isobutylene polymer and method for producing same
WO2017033749A1 (en) * 2015-08-26 2017-03-02 株式会社カネカ Process for producing (meth)acryloyl-terminated polyisobutylene-based polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141828U (en) * 1986-02-28 1987-09-07

Also Published As

Publication number Publication date
JPS5322583A (en) 1978-03-02

Similar Documents

Publication Publication Date Title
US4197398A (en) Process for neutralizing and deashing polypropylene
US2929808A (en) Removal of metal contaminants in polymerization processes
EP0228287B1 (en) Removal of organic halides from hydrocarbon solvents
JPS59226011A (en) Manufacture of cis-1,4-polybutadiene
US3600463A (en) Process for producing substantially ash-free polyolefin polymers
CA1173599A (en) Deactivation of catalyst in solution process for polymerization of alpha-olefins
JPS6048526B2 (en) Butene polymer purification method
US4098990A (en) Process for the purification of low pressure polymerized polyolefin powder using recycled, anion-exchange treated water
JPH09501461A (en) Liquid and aqueous solutions of poly (vinyl methyl ether) from high-purity vinyl methyl ether monomer
US3071566A (en) Purification of ethylene-propylene copolymers
US3285989A (en) Isoprene sodium treatment process
US3646237A (en) Process for recovering isobutylene
JPH07196724A (en) Removal of catalyst in purification process of cationic polymer
KR0154363B1 (en) The process for the preparation of polybutene
US3651165A (en) Method for recovery and purification of isobutylene
US2636910A (en) Process for treating polymers produced by alkali metal catalyzed polymerizations
US3002962A (en) Polymerization diluent treatment
CN1109051C (en) Coherent method for preparing water-soluble sulfonated polymer
US3733314A (en) Purification of amorphous polyolefins
US2928817A (en) Removal of metal contaminants in polymerization processes
US2507103A (en) Treatment of contaminated naphtha
US4167619A (en) Purification of propylene polymerization product
JPH0384003A (en) Removal of residual catalyst
SU1022959A1 (en) Method of removing residues of catalyst of alkylation of aromatic hydrocarbons by olefins or for oligomerization of olefins
SU382290A1 (en) METHOD OF CLEANING POLYOLEPHINES