JPS6048456A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS6048456A
JPS6048456A JP15583483A JP15583483A JPS6048456A JP S6048456 A JPS6048456 A JP S6048456A JP 15583483 A JP15583483 A JP 15583483A JP 15583483 A JP15583483 A JP 15583483A JP S6048456 A JPS6048456 A JP S6048456A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heat
heat pump
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15583483A
Other languages
Japanese (ja)
Inventor
裕二 向井
和生 中谷
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15583483A priority Critical patent/JPS6048456A/en
Publication of JPS6048456A publication Critical patent/JPS6048456A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業−I−の利用分野 本発明は非共沸混合冷媒を用い、ザイクル内を循環する
冷媒濃度を変化させることにより能力制御を行う熱ポン
プ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of Industry-I- The present invention relates to a heat pump device that uses a non-azeotropic mixed refrigerant and performs capacity control by changing the concentration of refrigerant circulating in a cycle.

従来例の構成とその問題点 従来熱ポンプ装置の優れた能力制御方式として、冷媒循
環量を圧縮機の回転数を変化させることにより変えるイ
ンバータ一方式がある。しかし、この方式には高価なイ
ンバーター回路が必要となりコストが高くなるという欠
点がある0又、熱ポンプ装置を冷暖房型空調機として使
用する場合、冷房時の能力に合わせて装置の設計を行う
と暖房時には能力が不足してし捷うという問題点がある
Conventional Structure and Problems One of the superior performance control methods for conventional heat pump devices is an inverter type that changes the amount of refrigerant circulation by changing the rotational speed of the compressor. However, this method has the disadvantage of requiring an expensive inverter circuit and increasing costs.Also, when using a heat pump device as a heating/cooling type air conditioner, the device must be designed according to its cooling capacity. There is a problem that during heating, the capacity is insufficient and the system is interrupted.

そこで近年、冷媒に非共沸混合冷媒を用いザイクル内を
循環する冷媒の濃度を変えることにより能力制御を行う
熱ポンプ装置が提案されている。
Therefore, in recent years, a heat pump device has been proposed that uses a non-azeotropic mixed refrigerant as the refrigerant and performs capacity control by changing the concentration of the refrigerant circulating in the cycle.

これは、圧縮機吸込部の冷媒蒸気の比容積が混合冷媒中
の低沸点成分濃度の大小によりそれぞれ小及び犬となり
、圧縮機の同一回転数でも冷媒の循環量を変化させるこ
とができるだめである。すなわち、熱ポンプ装置の能力
を増大する場合にはザイクル内に低沸点成分濃度の高い
冷媒を、又能力を低下させる場合には低沸点成分濃度の
低い冷媒を循環させれば良い。′ 非共沸混合冷媒を用いて能力変化を杓う熱ポンプ装置全
冷暖房型空調機として使用した従来例を第1図に示す。
This is because the specific volume of refrigerant vapor in the compressor suction section varies depending on the concentration of low boiling point components in the mixed refrigerant, and the circulating amount of refrigerant can be changed even at the same rotation speed of the compressor. be. That is, when increasing the capacity of the heat pump device, a refrigerant with a high concentration of low boiling point components may be circulated within the cycle, and when decreasing the capacity, a refrigerant with a low concentration of low boiling point components may be circulated. Figure 1 shows a conventional example of a heat pump device that uses a non-azeotropic mixed refrigerant to control capacity changes and is used as a full heating and cooling type air conditioner.

以上の様に構成されだ熱ポンプ装置について、その動作
を説明する。先ず暖房時には開閉yf13を閉としてお
き、圧縮機1から吐出され/ζ冷媒蒸気は四方弁2を介
して利用側熱交換器3内で凝縮し暖房効果を発揮した後
、逆止弁5.気液分離器6、暖房用絞り装置7を通り、
熱源側熱交換器9で周囲から熱を奪って蒸発し、四方弁
2を経て圧縮機1へ戻る。
The operation of the heat pump device configured as described above will be explained. First, during heating, the open/close switch yf13 is closed, and the refrigerant vapor discharged from the compressor 1 is condensed in the user-side heat exchanger 3 via the four-way valve 2 to exert a heating effect, and then the check valve 5. Passes through a gas-liquid separator 6, a heating throttle device 7,
The heat source side heat exchanger 9 removes heat from the surroundings, evaporates it, and returns to the compressor 1 via the four-way valve 2.

次に冷房時には四方弁2を切り替え更に開閉弁13を開
とし、圧縮機1から吐出された冷媒蒸気を四方弁2を介
して熱源側熱交換器の内で放熱凝縮させ、逆止弁8を通
して気液分離器6へ導く。
Next, during cooling, the four-way valve 2 is switched to open the on-off valve 13, and the refrigerant vapor discharged from the compressor 1 is released and condensed in the heat source side heat exchanger via the four-way valve 2, and then passes through the check valve 8. It is led to the gas-liquid separator 6.

ここで冷媒は低沸点成分濃度の高い蒸気と濃度の低い液
とに分離され、蒸気は気液分離器6の上部と冷媒容器1
0とを結ぶ導管11を通って冷媒容器10へと流れる。
Here, the refrigerant is separated into vapor with a high concentration of low boiling point components and liquid with a low concentration, and the vapor is separated between the upper part of the gas-liquid separator 6 and the refrigerant container 1.
The refrigerant flows into the refrigerant container 10 through a conduit 11 that connects the refrigerant to the refrigerant container 10.

又、液は冷房用絞り装置4を通り、そのうち多くの冷媒
は利用側熱交換器3内で、蒸発し冷房効果を発揮した後
四方弁2を経て圧縮機1へ戻るが、一部の冷媒は開閉弁
13を通過しバイパス管12を通って冷媒容器10と熱
交換する熱交換器14で冷媒容器10を冷却し圧縮機1
へ戻る。
In addition, the liquid passes through the cooling throttling device 4, and most of the refrigerant evaporates in the user-side heat exchanger 3 and returns to the compressor 1 via the four-way valve 2 after exerting a cooling effect. The refrigerant container 10 is cooled by the heat exchanger 14 which passes through the on-off valve 13 and passes through the bypass pipe 12 to exchange heat with the refrigerant container 10, and then the compressor 1
Return to

そのため、冷房時には気液分離器6で分離された低沸点
成分濃度の高い冷媒蒸気は冷媒容器10内で凝縮して溜
寸り、サイクル内を循環する冷媒一方、暖房時にも冷媒
容器10内には低沸点成分濃度の高い蒸気が充満してい
るが、冷媒容器10が冷却されていないため蒸気は凝縮
せず、従ってサイクル内全循環する冷媒の濃度は充填し
た濃度にほぼ等しい。その結果として、非共沸混合冷媒
を用い第1図の様に回路を構成することによって、冷房
時に比べて暖房時の能力を高くすることができる。
Therefore, during cooling, the refrigerant vapor with a high concentration of low-boiling components separated by the gas-liquid separator 6 condenses and accumulates in the refrigerant container 10, and while the refrigerant circulates in the cycle, it also flows into the refrigerant container 10 during heating. is filled with vapor having a high concentration of low boiling point components, but since the refrigerant container 10 is not cooled, the vapor does not condense, and therefore the concentration of the refrigerant that circulates throughout the cycle is approximately equal to the filled concentration. As a result, by configuring the circuit as shown in FIG. 1 using a non-azeotropic mixed refrigerant, the performance during heating can be made higher than during cooling.

しかし、上記構成では、冷房時と暖房時に能力差を持た
せることはできるものの、各々の場合の負荷の変動に応
じた適切な能力を発揮することは困難であり、能力制御
に優れているとはいい難い。
However, with the above configuration, although it is possible to provide a difference in capacity between cooling and heating, it is difficult to demonstrate the appropriate capacity in response to load fluctuations in each case, and it is difficult to achieve an appropriate capacity in response to load fluctuations in each case. Yes, it's difficult.

発明の目的 そこで本発明は、例えば冷暖房型空調機に適用した場合
には、冷房時や暖房時にかかわらず、高価なインバータ
ー回路を用いることなく負荷に応じた能力を発揮し制御
することのできる熱ポンプ装置を提供することである。
Purpose of the Invention The present invention, when applied to a cooling/heating type air conditioner, for example, provides a heat generating system that can exert and control the capacity according to the load without using an expensive inverter circuit, regardless of whether it is used for cooling or heating. An object of the present invention is to provide a pump device.

発明の構成 本発明は利用側熱交換器配管と熱源側熱交換器配管の両
方に対して熱交換可能な冷媒容器を構成要素として熱ポ
ンプを形成している。
Structure of the Invention The present invention forms a heat pump using a refrigerant container as a component that can exchange heat with both the heat exchanger piping on the user side and the heat exchanger piping on the heat source side.

実施例の説明 以下本発明の一実施例につき、第2図に沿って説明する
。なお、第1図と同一構成要素には同−査号を付してい
る1、第2図は本発明の熱ポンプ装置を冷暖房型空調機
に適用した一実施例における概略構成図である。第2図
において、1〜11は第1図と同じ構成要素であり、1
6,16.17は開閉弁、18は利用側熱交換器配管に
並列に設けられたバイパス管、19は熱源側熱交換器配
管に並列に設けられたバイパス管、2oはバイパス管1
8の途中にあって冷媒容器10と熱交換を行う熱交換器
、21はバイパス管19の途中にあって冷媒容器10と
熱交換を行う熱交換器である。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. Note that FIGS. 1 and 2, in which the same components as in FIG. 1 are designated with the same symbol, are schematic configuration diagrams of an embodiment in which the heat pump device of the present invention is applied to a heating/cooling type air conditioner. In Figure 2, 1 to 11 are the same components as in Figure 1, and 1 to 11 are the same components as in Figure 1.
6, 16, 17 are on-off valves, 18 is a bypass pipe provided in parallel to the heat exchanger piping on the user side, 19 is a bypass pipe provided in parallel to the heat exchanger piping on the heat source side, 2o is bypass pipe 1
8 is a heat exchanger that exchanges heat with the refrigerant container 10 , and 21 is a heat exchanger that is located in the middle of the bypass pipe 19 and exchanges heat with the refrigerant container 10 .

以上の様に構成された熱ポンプについて以下その動作を
説明する。先ず、通常の暖房時には開閉弁15,16.
17を閉じておき、冷媒は圧縮機1、四方弁2.利用側
熱交換器3.逆止弁6.気液分離器6.暖房用絞り装置
7.熱源側熱交換器9、四方弁2と循環し圧縮機1へ戻
り、利用側熱交換器3で放熱し熱源側熱交換器9で吸熱
を行う。
The operation of the heat pump configured as described above will be explained below. First, during normal heating, the on-off valves 15, 16.
17 is closed, and the refrigerant is supplied to the compressor 1, four-way valve 2. User side heat exchanger 3. Check valve6. Gas-liquid separator6. Heating diaphragm device7. It circulates through the heat source side heat exchanger 9 and the four-way valve 2, returns to the compressor 1, radiates heat in the usage side heat exchanger 3, and absorbs heat in the heat source side heat exchanger 9.

又、通常の冷房時には四方弁2金切り替え、開閉弁15
,16.17を閉じておき、冷媒は圧縮機1、四方弁2
.熱源側熱交換器9.逆止弁8.気液分離器6.冷房用
絞り装置4.利用側熱交換器3、四方弁2.圧縮機1へ
と循環し、熱源側熱交換器9で放熱、利用側熱交換器3
で吸熱を行う。
In addition, during normal cooling, there is a four-way valve 2-metal switch, an on-off valve 15
, 16 and 17 are closed, and the refrigerant is supplied to compressor 1 and four-way valve 2.
.. Heat source side heat exchanger9. Check valve8. Gas-liquid separator6. Cooling throttle device4. User-side heat exchanger 3, four-way valve 2. The heat is circulated to the compressor 1, radiated by the heat source side heat exchanger 9, and then transferred to the user side heat exchanger 3.
Endotherm is carried out with.

次に、負荷の変動に応じて能力を制御する場合には次の
動作を行う1.先ず暖房時に能力を低下させる場合、す
なわちサイクル内の低沸点成分濃度を減少させる場合に
は、開閉弁15及び17を開。
Next, when controlling capacity according to load fluctuations, perform the following operations: 1. First, when reducing the capacity during heating, that is, when reducing the concentration of low boiling point components in the cycle, open the on-off valves 15 and 17.

16を閉とし、気液分離器6で分離された低沸点成分濃
度の高い蒸気を導管11を通じて冷媒容器1Q内へ導く
。この時開閉弁17が開いているため、暖房用絞り装置
7を通過した冷媒の多くはa点からb点へと流れるが、
一部はa点で分岐し、バイパス管19を通って熱交換器
21内で吸熱蒸発し、冷媒容器10を冷却し点すで合流
する。そのため、冷媒容器10内に充満した低沸点成分
濃度の高い蒸気が凝縮し溜められる。こうしてサイクル
内を循環する低沸点成分濃度を低下させることができ、
負荷に合った所定の濃度に達した時に開閉弁15.17
’i閉じれば良い。
16 is closed, and the vapor with a high concentration of low boiling point components separated by the gas-liquid separator 6 is guided into the refrigerant container 1Q through the conduit 11. At this time, since the on-off valve 17 is open, most of the refrigerant that has passed through the heating throttle device 7 flows from point a to point b.
A portion branches off at point a, passes through the bypass pipe 19, evaporates endothermally within the heat exchanger 21, cools the refrigerant container 10, and merges at the point. Therefore, the vapor with a high concentration of low boiling point components filling the refrigerant container 10 is condensed and stored. In this way, the concentration of low boiling point components circulating within the cycle can be reduced,
Open/close valve 15.17 when a predetermined concentration suitable for the load is reached.
'i just close it.

次に暖房時に能力を向上させる場合、すなわちサイクル
内の低沸点成分濃度を増大させる場合には開閉弁15及
び16を開、17を閉とし利用側熱交換器3を通る高温
冷媒の一部を0点で分岐し、バイパス管18を経て熱交
換器2oへ導いてd点で合流させる。この操作を行うこ
とにより、冷媒容器10が加熱され中に溜1つでいる低
沸点成分濃度の高い液を蒸発させ導管11全通して気液
分離器6へ、すなわちサイクル内へ導入することができ
る。その後サイクル内の濃度が負荷に合った所定の濃度
に達した時開閉弁15.16を閉じる。
Next, when improving the capacity during heating, that is, when increasing the concentration of low-boiling components in the cycle, open the on-off valves 15 and 16 and close the valve 17 to remove a portion of the high-temperature refrigerant passing through the heat exchanger 3 on the user side. It branches at point 0, leads to heat exchanger 2o via bypass pipe 18, and joins at point d. By performing this operation, the refrigerant container 10 is heated, and the liquid with a high concentration of low-boiling components contained in the refrigerant container 10 is evaporated and introduced through the conduit 11 into the gas-liquid separator 6, that is, into the cycle. can. Thereafter, when the concentration in the cycle reaches a predetermined concentration suitable for the load, the on-off valves 15 and 16 are closed.

又、冷房時は、サイクル内の低沸点成分濃度を減少させ
能力を低下させる場合には開閉弁17を閉じ15と16
を暖房時と同様に操作し、逆にサイクル内の低沸点成分
濃度を増大させ能力を高める場合には開閉弁16を閉じ
15と17を暖房時と同様に操作すれば良い。
Also, during cooling, if the concentration of low boiling point components in the cycle is to be reduced and the capacity is to be reduced, the on-off valves 17 are closed and the valves 15 and 16 are closed.
is operated in the same manner as during heating, and conversely, when increasing the concentration of low boiling point components in the cycle to enhance the capacity, the on-off valve 16 may be closed and 15 and 17 may be operated in the same manner as during heating.

尚、本実施例では低沸点成分濃度の高い蒸気と低い液と
を分離するために気液分離器を用いているヵ1、つれは
特定。形式によりAヶい。又、本実施例では気液分離器
を暖房時、冷房時共に高圧側になる熱交換器の出口と冷
媒の通過する絞り装置との間に設けたが、気液分離器の
位置はこれに限るものではなく、高圧側熱交換器の途中
であっても、あるいはザイクルの中間圧力であっても良
い。すなわち、冷媒容器の冷媒出入口部がザイクルのど
の位置にあってもかまわない。
Note that in this example, a gas-liquid separator is used to separate vapor with a high concentration of low boiling point components from liquid with a low concentration. A size depending on the format. Furthermore, in this embodiment, the gas-liquid separator was installed between the outlet of the heat exchanger, which is on the high-pressure side during both heating and cooling, and the throttling device through which the refrigerant passes. The pressure is not limited to this, and it may be in the middle of the high-pressure side heat exchanger or at an intermediate pressure in the cycle. That is, it does not matter where the refrigerant inlet/outlet portion of the refrigerant container is located in the cycle.

更に本実施例では、利用側熱交換器配管c(−cと並列
に熱交換器20を、又、熱源側熱交換器配管a −bと
並列に熱交換器21を設けているが、本発明はこの回路
に限るものではなく、冷媒容器が利用側熱交換器配管と
熱源側熱交換器配管の両方と熱交換可能な回路で、かつ
非共沸混合冷媒を使用するものが本発明の範囲にあるも
のである。
Furthermore, in this embodiment, a heat exchanger 20 is provided in parallel with the user side heat exchanger piping c (-c), and a heat exchanger 21 is provided in parallel with the heat source side heat exchanger piping a-b. The invention is not limited to this circuit, but the present invention includes a circuit in which the refrigerant container can exchange heat with both the heat exchanger piping on the user side and the heat exchanger piping on the heat source side, and in which a non-azeotropic mixed refrigerant is used. It is within the range.

発明の効果 本発明により、インバーター回路の様に高価な装置を使
わずに、安価に負荷の変動に応じた適切な能力制御を行
うことができ、特に冷暖房型空調機に適用した場合その
効果は犬である。
Effects of the Invention According to the present invention, it is possible to perform appropriate capacity control in response to load fluctuations at low cost without using expensive equipment such as an inverter circuit, and the effect is particularly great when applied to air conditioning type air conditioners. It's a dog.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は非共沸混合冷媒を用いて能力制御を行う従来の
熱ポンプ装置の概略構成図、第2図は本J 発明に走る熱ポンプ装置の一実施例を示す概略構成図で
ある。 1・・・・・圧縮機、3・・・・利用側熱交換器、9・
・−熱源側熱交換器、10・・・・・冷媒容器、20,
21・・・・熱交換器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
FIG. 1 is a schematic configuration diagram of a conventional heat pump device that performs capacity control using a non-azeotropic mixed refrigerant, and FIG. 2 is a schematic configuration diagram showing an embodiment of the heat pump device according to the present invention. 1...Compressor, 3...Using side heat exchanger, 9...
・-Heat source side heat exchanger, 10... Refrigerant container, 20,
21...Heat exchanger. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、利用側熱交換器、絞り装置及び熱源側熱交換器
を環状に連結して熱ポンプサイクルを形成し、前記利用
側熱交換器の配管及び熱源側熱交換器の配管の両方と熱
交換可能な様に設けられた冷媒容器を有し、前記冷媒容
器は前記熱ポンプサイクル中に設けた気液分離器と開閉
自在に連通し、冷媒として非共沸混合冷媒を用いた熱ポ
ンプ装置。
A heat pump cycle is formed by connecting a compressor, a user-side heat exchanger, a throttling device, and a heat source-side heat exchanger in an annular manner, and the heat exchanger is connected to both the piping of the user-side heat exchanger and the piping of the heat source-side heat exchanger. A heat pump device having a refrigerant container provided so as to be exchangeable, the refrigerant container communicating with a gas-liquid separator provided in the heat pump cycle so as to be freely openable and closable, and using a non-azeotropic mixed refrigerant as a refrigerant. .
JP15583483A 1983-08-25 1983-08-25 Heat pump device Pending JPS6048456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15583483A JPS6048456A (en) 1983-08-25 1983-08-25 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15583483A JPS6048456A (en) 1983-08-25 1983-08-25 Heat pump device

Publications (1)

Publication Number Publication Date
JPS6048456A true JPS6048456A (en) 1985-03-16

Family

ID=15614514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15583483A Pending JPS6048456A (en) 1983-08-25 1983-08-25 Heat pump device

Country Status (1)

Country Link
JP (1) JPS6048456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6625360B2 (en) 1998-11-02 2003-09-23 Sumitomo Electric Industries, Ltd. Single-mode optical fibers and fabrication methods thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6625360B2 (en) 1998-11-02 2003-09-23 Sumitomo Electric Industries, Ltd. Single-mode optical fibers and fabrication methods thereof

Similar Documents

Publication Publication Date Title
JPS6048456A (en) Heat pump device
JP2000074515A (en) Air conditioner
JPS6166056A (en) Heat pump device
JPS63129253A (en) Heat pump device
JP2682729B2 (en) Refrigerant heating type air conditioner and starting method thereof
JPS6262157A (en) Heat pump device
JPS58104475A (en) Heat pump device
JPS63279062A (en) Refrigeration cycle device
JPS61276664A (en) Heat pump device
JPS6152563A (en) Heat pump type air conditioner
JPS63163737A (en) Heat pump device
JPS62237252A (en) Air conditioner
JPS586226Y2 (en) Air conditioning equipment
JPS59189257A (en) Air conditioner
JPS63156975A (en) Refrigeration cycle device
JPH02136656A (en) Cooling heating hot water feeding device and its operation method
JPS5822054Y2 (en) Kuukichiyouwaki
JPS60245965A (en) Air conditioner
JPS58138965A (en) Air-cooling hot-water supply heating apparatus
JPS60251359A (en) Air conditioner
JPS61190248A (en) Refrigeration cycle
JPS6259343A (en) Heat pump type air conditioner
JPS599459A (en) Heat pump device
JPH0464868A (en) Heat pump device
JPS6141851A (en) Air conditioner