JPS6048449B2 - Method for producing γ-dicalcium silicate powder with large surface area - Google Patents

Method for producing γ-dicalcium silicate powder with large surface area

Info

Publication number
JPS6048449B2
JPS6048449B2 JP3259077A JP3259077A JPS6048449B2 JP S6048449 B2 JPS6048449 B2 JP S6048449B2 JP 3259077 A JP3259077 A JP 3259077A JP 3259077 A JP3259077 A JP 3259077A JP S6048449 B2 JPS6048449 B2 JP S6048449B2
Authority
JP
Japan
Prior art keywords
parts
weight
chloride
oxide
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3259077A
Other languages
Japanese (ja)
Other versions
JPS53117696A (en
Inventor
友雄 塩原
稔 宮本
宣男 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP3259077A priority Critical patent/JPS6048449B2/en
Priority to CA278,940A priority patent/CA1083781A/en
Priority to US05/799,131 priority patent/US4118227A/en
Priority to AU25350/77A priority patent/AU508028B2/en
Priority to FR7715776A priority patent/FR2352748A1/en
Priority to ES459084A priority patent/ES459084A1/en
Priority to GB21862/77A priority patent/GB1573519A/en
Priority to NLAANVRAGE7705710,A priority patent/NL182795C/en
Priority to DE2723452A priority patent/DE2723452C3/en
Priority to IT23957/77A priority patent/IT1078994B/en
Publication of JPS53117696A publication Critical patent/JPS53117696A/en
Publication of JPS6048449B2 publication Critical patent/JPS6048449B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】 本発明は表面積の大きいγ−珪酸2石灰粉末の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing γ-dicalcium silicate powder having a large surface area.

珪酸2石灰はCa。Dicalcium silicate is Ca.

SIO。の分子式を有する化合物であり、セメントの成
分として、これまで研究されてきた。珪酸2石灰には4
種類の変態即ちα、α′、βおよびγ型の4種類がある
とされているが、このうちγ型の珪酸2石灰(以下γ−
C。
S.I.O. It is a compound with the molecular formula of, and has been studied as a component of cement. 4 for dicalcium silicate
It is said that there are four types of metamorphosis, namely α, α', β and γ types, among which γ type dicalcium silicate (hereinafter γ-
C.

Sと略記する)は水硬性を有さないのてセメントとして
は好ましくないものとされた。従つてγ−C。Sの生成
防止について、多くの研究がなされてきた。本発明者は
γ−C。sか塩素含有樹脂の安定剤とヨして有効てある
ことを見出し、その製造方法を発見して特願昭51−6
0407号にて出願した。本発明者はさらに検討の結果
γ−C。Sはその表面積が大きいほど遊離塩素の捕捉能
力が大きくなり、塩素含有樹脂の安定剤としてより効果
的であiることを見出した。従つて本発明の目的は表面
積の大きいγ−C2Sの製造方法を提供することにある
(abbreviated as S) does not have hydraulic properties and was considered undesirable as cement. Therefore γ-C. Many studies have been conducted on preventing the generation of S. The inventor is γ-C. He discovered that it was effective as a stabilizer for chlorine-containing resins, discovered a method for producing it, and filed a patent application in 1984-6.
The application was filed under No. 0407. As a result of further study, the present inventors found γ-C. It has been found that the larger the surface area of S, the greater its ability to capture free chlorine, making it more effective as a stabilizer for chlorine-containing resins. Therefore, an object of the present invention is to provide a method for producing γ-C2S having a large surface area.

即ち本発明の要旨は、焼成後に酸化カルシウムとして1
00重量部と酸化珪素として42.3重量部〜53.6
重量部を含むべき組成物にアルカリ金属又はアルカリ土
類金属の塩化物を添加して得られた混台物を焼成し、冷
却することを特徴とする表面積の大きいγ一珪酸2石灰
粉末の製造方法及び焼成後に酸化カルシウムとして1叩
重量部と酸化珪素として42.3重量部〜53.6重量
部を含むべき組成物に、酸化チタンとして0.5重量部
〜15重量部及びアルカリ金属もしくはアルカリ土類金
属の酸化物を添加して得られた混合物を焼成し冷却する
ことを特徴とする表面積の大きいγ一珪酸2石灰粉末の
製造方法に有する。
That is, the gist of the present invention is that 1 as calcium oxide after calcination.
00 parts by weight and 42.3 parts by weight to 53.6 parts by weight as silicon oxide
Production of γ-monosilicate dilime powder with a large surface area, characterized in that a mixture obtained by adding an alkali metal or alkaline earth metal chloride to a composition containing the following parts by weight is calcined and cooled. After the method and calcination, the composition should contain 1 part by weight of calcium oxide and 42.3 to 53.6 parts by weight of silicon oxide, and 0.5 to 15 parts by weight of titanium oxide and an alkali metal or alkali. A method for producing γ monosilicate dilime powder having a large surface area, which comprises firing and cooling a mixture obtained by adding an earth metal oxide.

本発明においては酢化カルシウムと酸化珪素とを含むも
のを原料として使用する。
In the present invention, a material containing calcium acetate and silicon oxide is used as a raw material.

酸化カルシウムおよび酸化珪素そのものの他に揮発性成
分を含んでいるものであつてもよい。ここで揮発性成分
とは焼成する温度において揮発する性質を有するもので
あつて、例えば水、炭酸ガス等があげられる。従つて酸
化カルシウムを含むものとしては酸化カルシウムCaO
の他に例えば水酸化カルシウムCa(0H)。、炭酸カ
ルシウムCacO3等があげられ、又酸化珪素を含むも
のとしては酸化珪素SIO。の他に例えば珪酸H。Si
O3等があげられる。そして酸化カルシウムを含むもの
と酸化珪素を含むものとは、焼成後において酸化カルシ
ウム100−重量部に対して酸化珪素が42.踵量部〜
53.6重量部含まれることになる量的割合で混合され
て組成物になされるのである。γ一珪酸2石灰は酸化カ
ルシウムと酸化珪素のモル比(理論値)が2:1のであ
るから原料として上記のモル比が得られる.’組成物を
用いるのが最も好ましいが酸化珪素は約21%不足する
ものであつてもよく、従つて重量比ては酸化カルシウム
100重量部に対して酸化珪素42.3重量部〜53.
6重量部の範囲となるのであり、本発明においては、焼
成後において上記範囲の酸3化カルシウムと酸化珪素を
与える組成物が用いられるのである。本発明においては
前記組成物にアルカリ金属又はアルカリ土類金属の塩化
物が添加され均一に混合されて混合物となされる。
It may contain volatile components in addition to calcium oxide and silicon oxide itself. The volatile components herein are those that have the property of volatilizing at the firing temperature, and include, for example, water, carbon dioxide, and the like. Therefore, as a substance containing calcium oxide, calcium oxide CaO
In addition, for example, calcium hydroxide Ca (0H). , calcium carbonate CacO3, and silicon oxide SIO. In addition, for example, silicic acid H. Si
Examples include O3. In the case of those containing calcium oxide and those containing silicon oxide, the silicon oxide content is 42.0 parts by weight per 100 parts by weight of calcium oxide after firing. Heel volume ~
The composition is mixed in a quantitative proportion of 53.6 parts by weight. Since γ monosilicate dicalcium has a molar ratio (theoretical value) of calcium oxide and silicon oxide of 2:1, the above molar ratio can be obtained as a raw material. Although it is most preferable to use a composition containing 100 parts by weight of silicon oxide, the silicon oxide composition may be deficient by about 21%, so that the weight ratio is 42.3 parts by weight to 53.3 parts by weight of silicon oxide to 100 parts by weight of calcium oxide.
6 parts by weight, and in the present invention, a composition that provides calcium trioxide and silicon oxide within the above range after firing is used. In the present invention, an alkali metal or alkaline earth metal chloride is added to the composition and mixed uniformly to form a mixture.

4 アルカリ金属又はアルカリ土類金属の塩化物としては、
例えは塩化ナトリウム、塩化カリウム、塩化リチウム、
塩化カルシウム、塩化マグネシウム等があげられ、特に
塩化カルシウムと塩化マグネシウムが好適に使用される
4. Chlorides of alkali metals or alkaline earth metals include:
Examples are sodium chloride, potassium chloride, lithium chloride,
Examples include calcium chloride and magnesium chloride, with calcium chloride and magnesium chloride being particularly preferred.

そしてその使用量は特に限定されるものではないが、使
用量が少なすぎると得られたγ−C。S粉末の表面積が
小さく又多すぎると同じように得られたγ−C。s粉末
の表面積が小さくなる傾向があり、又塩化物が吸湿して
粒子が凝集するようになり特に塩化マグネシウムを多量
添加した際には得られたγ−C2Sが微粉末化しにくく
なる傾向を示すので、上記塩化物の添加量は焼成後に酸
化カルシウム100重量部とフ酸化珪素42.3〜53
.腫量部とを与える組成物に対し0.7〜4鍾量部用い
られるのが好ましく、より好ましくは2.8〜3腫量部
である。本発明においては上述の混合物は焼成されるの
であるが、焼成温度は一般に1000℃以上である・が
、より完全に、表面積の大きいγ−C。
Although the amount used is not particularly limited, γ-C obtained when the amount used is too small. The same γ-C was obtained when the surface area of the S powder was small and too large. The surface area of the s powder tends to become smaller, and the chloride absorbs moisture and the particles tend to aggregate, making it difficult for the obtained γ-C2S to become a fine powder, especially when a large amount of magnesium chloride is added. Therefore, the amount of chloride added is 100 parts by weight of calcium oxide and 42.3 to 53 parts by weight of silicon fluoride after firing.
.. It is preferable to use 0.7 to 4 parts of the tumor, more preferably 2.8 to 3 parts of the tumor. In the present invention, the above-mentioned mixture is calcined, and the calcining temperature is generally 1000° C. or higher.

s微粉末を得るには1200〜1450℃で焼成するの
がより好ましい。又焼成時間もなんら限定されるもので
はなく、上記混合物が完全にγ−C2Sになるように設
定されればよいが一般には1〜3時間で充分であ゛る。
そして焼成には電気炉、重油炉、ガス炉等が任意に使用
しうる。次に焼成された混合物は、これを自然放冷する
と焼成物は固化の過程で自然に微粉末化され、表面積が
大きく、均一かつ微細なγ−C2S粉末が得られる。又
前述の混合物に焼成後に於て酸化チタンを与えるものを
添加し、以下同様にして、焼成、冷却することにより表
面積が大きく、均一かつ微細なγ−C。
In order to obtain a fine powder, it is more preferable to sinter at a temperature of 1200 to 1450°C. Further, the firing time is not limited at all, and may be set so that the mixture is completely converted to γ-C2S, but generally 1 to 3 hours is sufficient.
For firing, an electric furnace, a heavy oil furnace, a gas furnace, etc. can be arbitrarily used. Next, when the fired mixture is allowed to cool naturally, the fired mixture is naturally pulverized during the solidification process, and a uniform and fine γ-C2S powder with a large surface area is obtained. Further, by adding a substance that gives titanium oxide after firing to the above-mentioned mixture, and then firing and cooling in the same manner, a uniform and fine γ-C with a large surface area can be obtained.

s粉末が得られる。この際、酸化チタンを与えるものは
揮発性成分を含むものであつてよく、焼成の際に、即ち
約1000゜C以上の温度で酸化チタンを生成するもの
であればよく、例えば水酸化チタンT1(0H)。
s powder is obtained. At this time, the material that provides titanium oxide may contain volatile components, and may be any material that produces titanium oxide during firing, that is, at a temperature of about 1000°C or higher, for example, titanium hydroxide T1. (0H).

等でもよい。従つて酸化チタンとしては、ルチル型およ
びアナターゼ型のチタニア顔料や、金紅石の粉末がその
まま使用でき、又水酸化チタン、酸化チタン・一水和物
H。TIO。等も使用できるが焼成中になるべく高純度
の酸化チタンを生成するものが好ましい。前記酸化チタ
ンを与えるものは前述の混合物中の酸化カルシウム10
腫量部に対して酸化チタンとして0.5〜15重量部が
添加されるがより好ましくは0.5〜5重量部であり、
前述の混合物中において酸化カルシウムに対する酸化珪
素の比率が小さくなるに従い、酸化チタンの量をより多
くにするのが好ましい。
etc. Therefore, as titanium oxide, rutile-type and anatase-type titania pigments, and powder of redstone can be used as they are, as well as titanium hydroxide and titanium oxide monohydrate H. TIO. It is preferable to use a method that produces as high a purity titanium oxide as possible during firing. The titanium oxide is provided by calcium oxide 10 in the aforementioned mixture.
0.5 to 15 parts by weight of titanium oxide is added to the tumor area, more preferably 0.5 to 5 parts by weight,
As the ratio of silicon oxide to calcium oxide decreases in the aforementioned mixture, it is preferred to increase the amount of titanium oxide.

前述の混合物および酸化チタンを与えるものが添加され
て得られた混合物はよく攪拌されて均一に分散されるの
が好ましい。
It is preferable that the mixture obtained by adding the above-mentioned mixture and the material providing titanium oxide is thoroughly stirred to be uniformly dispersed.

従つて酸化カルシウム、酸化珪素、および酸化チタン等
を与えるものbやアルカリ金属又はアルカリ土類金属の
塩化物はあらかじめ微細な粉末となされたものを使用す
るのが好ましい。又前述の混合物および酸化チタンを与
えるものが添加されて得られた混合物中には揮発性成分
以1外に若干その他の金属酸化物が不純物として混入し
ても許容される。
Therefore, it is preferable to use substances b that provide calcium oxide, silicon oxide, titanium oxide, etc., and chlorides of alkali metals or alkaline earth metals, which have been previously made into fine powders. In addition to the volatile components, some other metal oxides may be mixed in as impurities in the mixture obtained by adding the above-mentioned mixture and a substance that provides titanium oxide.

許容される金属酸化物の量は、その種類により異なるが
、一般に酸化カルシウムと酸化珪素および酸化チタンの
総量の0.5%以下である。しかし酸化チタンが添加さ
れない際には、不純物として含まれる酸化鉄、酸化アル
ミニウムおよび酸化マグネシウム等は得られたγ−C。
The amount of metal oxide allowed varies depending on the type of metal oxide, but is generally 0.5% or less of the total amount of calcium oxide, silicon oxide, and titanium oxide. However, when titanium oxide is not added, iron oxide, aluminum oxide, magnesium oxide, etc. contained as impurities are contained in the obtained γ-C.

s粉末の粒径を大きくかつ不揃いにしたりα′−C。S
やβ一C。Sを生成するように働くので好ましくなく、
.従つて酸化鉄、酸化アルミニウムおよび酸化マグネシ
ウムの混入量はできるだけ少量にされるのが好ましい。
本発明の製造方法は上述の如きであり、焼成後に酸化カ
ルシウムと酸化珪素を含むべき組成物にアルカリ金属又
はアルカリ土類金属の塩化物を添加して焼成、冷却して
γ−C。
α'-C by making the particle size of the s powder large and irregular. S
and β-C. It is undesirable because it works to generate S.
.. Therefore, it is preferable that the amounts of iron oxide, aluminum oxide, and magnesium oxide mixed are kept as small as possible.
The manufacturing method of the present invention is as described above, and after calcination, an alkali metal or alkaline earth metal chloride is added to a composition that should contain calcium oxide and silicon oxide, followed by calcination and cooling to produce γ-C.

sの微粉末を製造するのであるから、粒径が40μ以下
という非常に小さくかつ均一てあり又表面か凹凸を有し
ており表面積の非常に大きなγ−C。sの微粉末を得る
ことができるのである。又酸化チタンを添加することに
より、酸化珪素の比率が酸化カルシウムに対して2:1
より小さくなつても完全にγ−C2Sに変換てき、混合
物中に酸化鉄、酸化アルミニウム又は、酸化マグネシウ
ムが含まれていてもその含有量が0.5重量%以下なら
ば、その悪影響を抑制することができるのである。又生
成されたγ−C。
Since we are producing fine powder of γ-C, the particle size is very small and uniform, less than 40μ, and the surface is uneven and has a very large surface area. It is possible to obtain a fine powder of s. Also, by adding titanium oxide, the ratio of silicon oxide to calcium oxide is 2:1.
Even if it becomes smaller, it is completely converted to γ-C2S, and even if the mixture contains iron oxide, aluminum oxide, or magnesium oxide, if the content is 0.5% by weight or less, its adverse effects are suppressed. It is possible. Also produced γ-C.

Sは冷却時に自然に粉粋され微粒子になるので、生成物
を機械的に粉粋しなくても均一粒度の粉細とすることが
てきるのてあ (る。さらに本発明によつて得られるγ
−C。
Since S is naturally pulverized into fine particles when cooled, it is possible to make the product into a fine powder with a uniform particle size without mechanically pulverizing the product. γ
-C.

S粉末は表面積が非常に大きいので、遊離の塩化水素の
杆捉作用が強く、従つて塩素含有樹脂の安定剤としてと
くに優れた性質を有するのである。次に実施例をあげて
、本発明の製造方法を説明する。
Since S powder has a very large surface area, it has a strong scavenging effect on free hydrogen chloride, and therefore has particularly excellent properties as a stabilizer for chlorine-containing resins. Next, the manufacturing method of the present invention will be explained with reference to Examples.

なお以下単に「部」とあるのは「重量部」を意味する。
又粒度分布は光透過式粒度分布測定装置(セイシン企業
社製)で測定し、比表面積はソルプトメーター(パーキ
ン・エルマー社製)でBET法により測定した。
Note that the term "parts" hereinafter simply means "parts by weight."
Further, the particle size distribution was measured using a light transmission type particle size distribution analyzer (manufactured by Seishin Enterprise Co., Ltd.), and the specific surface area was measured by the BET method using a sorbtometer (manufactured by Perkin-Elmer Co., Ltd.).

さらに塩素含有樹脂対する安定性能の測定は、塩化ビニ
ル樹脂(重合度1050)100部に対し得られたγ−
C2S粉末5部を添加し、よく混合し、得られた混合物
を使用して、JISK6723(熱安定性試験)に準拠
して、200℃のオイルバス中でコンゴーレツド試験紙
が青変するまでの時間を測定することにより測定した。
実施例1〜3 珪石粉34J部と炭酸カルシウム116.1部(CaO
換算で65.1部)とからなる組成物に塩化カルシウム
を所定量(実施例1は5部、実施例2はm部、実施例3
は2識)添加し、攪拌混合して混合物を得た。
Furthermore, the stability performance against chlorine-containing resins was measured using γ-
Add 5 parts of C2S powder, mix well, and use the resulting mixture to measure the time it takes for Congo red test paper to turn blue in an oil bath at 200°C according to JIS K6723 (thermal stability test). It was measured by measuring.
Examples 1 to 3 34 J parts of silica powder and 116.1 parts of calcium carbonate (CaO
65.1 parts in terms of conversion) and a predetermined amount of calcium chloride (5 parts in Example 1, m parts in Example 2, m parts in Example 3).
(2) was added and stirred and mixed to obtain a mixture.

得られた混合物を電気炉に供給して、約1300℃で2
時間焼成した。
The obtained mixture was supplied to an electric furnace and heated at about 1300°C for 2
Baked for an hour.

焼成後直ちに焼成物を炉外に取り出し空冷したところ、
焼成物は冷却途中に自然に粉砕され白色粉末になつた。
得られた白色粉末を湿式フルイにかけて数ミクロン以下
の極く微細な粉末粒子を除いたのち、X線回折により測
定したところ、その測定値は純粋なγ−C2Sと一致す
るものであつた。又電子顕微鏡で観察したところ表面に
凹凸があり、平均粒径は約15ミクロンフで、粒子の大
部分は5 〜30ミクロンであつた。又、得られたγ−
C。sの比表面積と安定性能(コンゴーレツド試験紙が
青変するまでの時間)を測定し第1表に示した。後述す
る比較例と比較してγ−C。sの表面積が大きくなり、
安定性能が5向上していることがわかる。実施例4、5 珪石粉34.織と炭酸カルシウム116.1部(CaO
換算で65.1部)と酸化チタン0.46部とからなる
組成物に塩化マグネシウムを所定量(実施例4は50部
、実施例5は■部)添加し、攪拌混合して混合物を得た
Immediately after firing, the fired product was taken out of the furnace and cooled in the air.
The fired product was naturally crushed into white powder during cooling.
The obtained white powder was passed through a wet sieve to remove extremely fine powder particles of several microns or less, and then measured by X-ray diffraction, and the measured values were consistent with pure γ-C2S. Further, when observed with an electron microscope, the surface was uneven, and the average particle size was about 15 microns, with most of the particles ranging from 5 to 30 microns. Also, the obtained γ-
C. The specific surface area and stability performance (time until Congo Red test paper turns blue) of S were measured and shown in Table 1. γ-C in comparison with a comparative example described below. The surface area of s increases,
It can be seen that the stability performance has improved by 5. Examples 4 and 5 Silica powder 34. 116.1 parts of calcium carbonate (CaO
A predetermined amount of magnesium chloride (50 parts for Example 4, ■ parts for Example 5) was added to a composition consisting of 65.1 parts (converted in terms of 65.1 parts) and 0.46 parts of titanium oxide, and the mixture was stirred and mixed to obtain a mixture. Ta.

得られた混合物を電気炉に供給して、約1350’Cで
2時間焼成した。
The resulting mixture was fed into an electric furnace and fired at about 1350'C for 2 hours.

焼成後、高温状態で炉から取り出し空冷したところ焼成
物は冷却途中に自然に粉砕され白色粉末になつた。得ら
れた粉末を実施例1と同様にして湿式フルイにかけて極
く微細な粉末粒子を除いたのち、X線回折により測定し
たところ、その測定値は純粋なγ−C。sと一致するも
のであつた。又、粉末粒子は表面に凹凸を有しており、
平均粒径は約15ミクロンで、粒子の大部分は5 〜3
0ミクロンであることがわかつた。なお、上記の如く、
γ−C。s構成成分以外の酸化チタンや、塩化マグネシ
ウム、塩化カルシウムなどの塩化物が原料中に含有され
て焼成されたにもか)わらず、焼成の結果得られる粉末
結晶が純粋なγ−C。sと一致するX線回折値を示す理
由については詳細には不明てあるが、加えられた酸化チ
タンや塩化マグネシウムなどの添加物は、焼成時におい
て、γ−C2S生成のための触媒的作用や表面積増大の
ためのなんらかの作用を行つたのち、溶融体の冷却に伴
つて、その大部分がγ−C。s結晶構造の内部には組み
入れられずその系外に排斥され、その結果、これらの添
加物は、生成したγ一C。s粒子表面に付着する様な非
常に微細な粉末2形状となつて生成粉末中に混在する状
態となり、水洗やフル.イ分けにより容易に除去される
様になるからてあると考えられる。又比表面積と安定性
能を測定し第1表に示した。
After firing, the fired product was taken out of the furnace at a high temperature and cooled in air, and the fired product spontaneously pulverized into a white powder during cooling. The obtained powder was passed through a wet sieve to remove extremely fine powder particles in the same manner as in Example 1, and then measured by X-ray diffraction, and the measured value was pure γ-C. It was consistent with s. In addition, the powder particles have unevenness on the surface,
The average particle size is approximately 15 microns, with the majority of particles being 5 to 3
It turned out to be 0 micron. Furthermore, as mentioned above,
γ-C. Even though the raw materials contain titanium oxide and chlorides such as magnesium chloride and calcium chloride other than the s-component and are fired, the powder crystals obtained as a result of firing are pure γ-C. The reason why the X-ray diffraction value matches that of After performing some action to increase the surface area, as the melt cools, most of it becomes γ-C. s are not incorporated into the crystal structure but are excluded from the system, and as a result, these additives produce γ-C. The two forms of very fine powder that adhere to the surface of the s particles are mixed in the generated powder, and when washed with water or thoroughly washed. This is thought to be because the separation makes it easier to remove. Further, the specific surface area and stability performance were measured and shown in Table 1.

2 比較例1 珪石粉34J部と炭酸カルシウム116.1部(CaO
換算て65.1部)と酸化鉄3.6部とをよく攪拌して
混合物を得た。
2 Comparative Example 1 34 J parts of silica powder and 116.1 parts of calcium carbonate (CaO
(converted to 65.1 parts) and 3.6 parts of iron oxide were thoroughly stirred to obtain a mixture.

得られた混合物を実施例1で行つたと同様にして焼成し
、焼成物を空冷した。
The resulting mixture was fired in the same manner as in Example 1, and the fired product was air cooled.

焼成物は冷却途中に自然に粉砕されたが得られた粉末は
茶色をおびていた。粉末は殆んどγ−C。
The fired product was naturally pulverized during cooling, but the resulting powder was brown in color. Most of the powder is γ-C.

sからなつていたが、粒子の表面はなめらかで、粒径は
不均一で50ミクロン以上の粒子が多く混入していた。
比較例2 珪石粉34』部と炭酸カルシウム116.1部(CaO
換算で65.1部)と酸化チタン0.46部とをよく攪
拌して混合物を得た。
s, but the surface of the particles was smooth, the particle size was uneven, and many particles of 50 microns or more were mixed in.
Comparative Example 2 34 parts of silica powder and 116.1 parts of calcium carbonate (CaO
(65.1 parts in terms of conversion) and 0.46 parts of titanium oxide were thoroughly stirred to obtain a mixture.

得られた混合物を実施例1で行つたと同様にして140
0℃で焼成し、焼成物を空冷した。
The resulting mixture was treated at 140 ml as in Example 1.
It was fired at 0°C and the fired product was air cooled.

焼成物は冷却途中に自然に粉砕され白色粉末が得られた
。粉末は実施例1で行つたと同様にしてγ−C。sであ
り、平均粒径は約15ミクロンで粒子の大部分は5 〜
30ミクロンであることがわかつたが粒子の表面はなめ
らかであつた。得られたγ−C。
The fired product was naturally crushed during cooling to obtain a white powder. The powder was γ-C in the same manner as in Example 1. s, the average particle size is about 15 microns, and most of the particles are 5 to
Although the particle size was found to be 30 microns, the surface of the particles was smooth. The obtained γ-C.

Claims (1)

【特許請求の範囲】 1 焼成後に酸化カルシウムとして100重量部と酸化
珪素として42.3重量部〜53.6重量部を含むべき
組成物にアルカリ金属又はアルカリ土類金属の塩化物を
添加して得られた混合物を焼成し、冷却することを特徴
とする表面積の大きいγ−珪酸2石灰粉末の製造方法。 2 塩化物が塩化カルシウムである特許請求の範囲第1
項記載の製造方法。3 塩化物が塩化マグネシウムであ
る特許請求の範囲第1項記載の製造方法。 4 塩化物の添加量が0.7重量部〜46重量部である
特許請求の範囲第1項記載の製造方法。 5 焼却温度が1000℃以上である特許請求の範囲第
1項記載の製造方法。 6 焼却温度が1200℃〜1450℃である特許請求
の範囲第5項記載の製造方法。 7 焼成後に酸化カルシウムとして100重量部と酸化
珪素として42.3重量部〜53.6重量部を含むべき
組成物に、酸化チタンとして0.5重量部〜15重量部
及びアルカリ金属もしくはアルカリ土類金属の塩化物を
添加して得られた混合物を焼成し、冷却することを特徴
とする表面積の大きいγ−珪酸2石灰粉末の製造方法。 8 塩化物が塩化カルシウムである特許請求の範囲第7
項記載の製造方法。9 塩化物が塩化マグネシウムであ
る特許請求の範囲第7項記載の製造方法。 10 塩化物の添加量が0.7重量部〜46重量部であ
る特許請求の範囲第7項記載の製造方法。 11 焼成温度が1000℃以上である特許請求の範囲
第7項記載の製造方法。 12 焼成温度が1200℃〜1450℃である特許請
求の範囲第11項記載の製造方法。
[Claims] 1. Adding an alkali metal or alkaline earth metal chloride to a composition that should contain 100 parts by weight of calcium oxide and 42.3 to 53.6 parts by weight of silicon oxide after firing. A method for producing γ-dilime silicate powder having a large surface area, which comprises firing and cooling the obtained mixture. 2 Claim 1 in which the chloride is calcium chloride
Manufacturing method described in section. 3. The manufacturing method according to claim 1, wherein the chloride is magnesium chloride. 4. The manufacturing method according to claim 1, wherein the amount of chloride added is 0.7 parts by weight to 46 parts by weight. 5. The manufacturing method according to claim 1, wherein the incineration temperature is 1000°C or higher. 6. The manufacturing method according to claim 5, wherein the incineration temperature is 1200°C to 1450°C. 7 After firing, the composition should contain 100 parts by weight as calcium oxide and 42.3 parts by weight to 53.6 parts by weight as silicon oxide, and 0.5 parts by weight to 15 parts by weight as titanium oxide and an alkali metal or alkaline earth metal. 1. A method for producing γ-dilime silicate powder having a large surface area, which comprises firing and cooling a mixture obtained by adding a metal chloride. 8 Claim 7 in which the chloride is calcium chloride
Manufacturing method described in section. 9. The manufacturing method according to claim 7, wherein the chloride is magnesium chloride. 10. The manufacturing method according to claim 7, wherein the amount of chloride added is 0.7 parts by weight to 46 parts by weight. 11. The manufacturing method according to claim 7, wherein the firing temperature is 1000°C or higher. 12. The manufacturing method according to claim 11, wherein the firing temperature is 1200°C to 1450°C.
JP3259077A 1976-05-24 1977-03-23 Method for producing γ-dicalcium silicate powder with large surface area Expired JPS6048449B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP3259077A JPS6048449B2 (en) 1977-03-23 1977-03-23 Method for producing γ-dicalcium silicate powder with large surface area
CA278,940A CA1083781A (en) 1976-05-24 1977-05-20 Process for producing dicalcium silicate powder
US05/799,131 US4118227A (en) 1976-05-24 1977-05-20 Process for producing dicalcium silicate power
AU25350/77A AU508028B2 (en) 1976-05-24 1977-05-20 Producing dicalcium silicate
FR7715776A FR2352748A1 (en) 1976-05-24 1977-05-23 PERFECTED PROCESS FOR THE PREPARATION OF CALCIUM ORTHOSILICATE POWDER
ES459084A ES459084A1 (en) 1976-05-24 1977-05-24 Process for producing dicalcium silicate power
GB21862/77A GB1573519A (en) 1976-05-24 1977-05-24 Process for preparing dicalcium silicate
NLAANVRAGE7705710,A NL182795C (en) 1976-05-24 1977-05-24 METHOD FOR PREPARING GAMMA-DICALCIUM SILICATE AND METHOD FOR MANUFACTURING PREPARATIONS CONTAINING PREPARED GAMMA-DICALCIUM SILICATE
DE2723452A DE2723452C3 (en) 1976-05-24 1977-05-24 Process for the production of fine-grained γ-dicalcium silicate
IT23957/77A IT1078994B (en) 1976-05-24 1977-05-24 PROCESS PERFECTED TO PRODUCE BICALCIC SILICATE POWDER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3259077A JPS6048449B2 (en) 1977-03-23 1977-03-23 Method for producing γ-dicalcium silicate powder with large surface area

Publications (2)

Publication Number Publication Date
JPS53117696A JPS53117696A (en) 1978-10-14
JPS6048449B2 true JPS6048449B2 (en) 1985-10-28

Family

ID=12363069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3259077A Expired JPS6048449B2 (en) 1976-05-24 1977-03-23 Method for producing γ-dicalcium silicate powder with large surface area

Country Status (1)

Country Link
JP (1) JPS6048449B2 (en)

Also Published As

Publication number Publication date
JPS53117696A (en) 1978-10-14

Similar Documents

Publication Publication Date Title
JP4115451B2 (en) Silicon-titanium-mixed oxide powder produced by flame hydrolysis, its production and use
US5874056A (en) Metal tungstates and method of preparing them and their use
WO2021059325A1 (en) Molybdenum sulfide powder and method for producing same
JPH06510272A (en) Improved mixed metal oxide crystal powder and its synthesis method
JPH08337420A (en) Composite titanium compound powder and its production
JPH02184526A (en) Titanium, preparation thereof and use thereof
US2269508A (en) Zinc aluminate pigment and paint and method of making same
JP5222853B2 (en) Method for producing alkali titanate compound
US4118227A (en) Process for producing dicalcium silicate power
KR100679611B1 (en) Preparing Method for Platey ?- Alumina
JP3389642B2 (en) Method for producing low soda alumina
JPS6048449B2 (en) Method for producing γ-dicalcium silicate powder with large surface area
SU865131A3 (en) Method of producing coloured pigments based on titanium compounds
JP2852825B2 (en) Method for producing flaky potassium hexatitanate polycrystalline particles
US2290539A (en) Preparation of rutile titanium dioxide
US2479158A (en) Magnesium titanate phosphor
US1373854A (en) Refractory brick
JPS60260410A (en) Manufacture of beta-sialon powder
JP3970208B2 (en) Method for synthesizing reactive oxygen species inclusion materials
US2215737A (en) Method of making lead zirconium silicate
US3528835A (en) Preparation of colored ceramic pigments based on synthetic zircon
JPS5828205B2 (en) Manufacturing method of dicalcium silicate powder
WO2023053726A1 (en) Powder composed of calcium-titanium composite oxide particles and method for producing same
US4366257A (en) Process for producing a calcia clinker
RU2034898C1 (en) Charge for preparing of calcium-tungsten roentgen-luminophore