JPS6048401A - Waste-heat recovering steam generator - Google Patents
Waste-heat recovering steam generatorInfo
- Publication number
- JPS6048401A JPS6048401A JP15326683A JP15326683A JPS6048401A JP S6048401 A JPS6048401 A JP S6048401A JP 15326683 A JP15326683 A JP 15326683A JP 15326683 A JP15326683 A JP 15326683A JP S6048401 A JPS6048401 A JP S6048401A
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- compressor
- steam
- heat
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Processing Of Solid Wastes (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、JIP熱回収蒸気発生装置に係見特に蒸留塔
などの留出ガスを凝縮液化する際に発生する熱を回収し
て低圧の蒸気を発生させ、これを圧縮機で昇圧して蒸留
塔などの生産装置の熱源に再使用するのに好適な排熱回
収蒸気発生装置に関するものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a JIP heat recovery steam generator, and in particular recovers the heat generated when condensing and liquefying distillate gas in a distillation column, etc. to produce low-pressure steam. The present invention relates to an exhaust heat recovery steam generator suitable for generating gas, pressurizing it with a compressor, and reusing it as a heat source for production equipment such as a distillation column.
まず、従来の排熱回収蒸気発生装置を第filを参照し
て説明する。First, a conventional exhaust heat recovery steam generation device will be explained with reference to No. fil.
第1図は、従来の排熱回収蒸気発生装置の略示断面図お
よび系統図である。FIG. 1 is a schematic cross-sectional view and system diagram of a conventional exhaust heat recovery steam generator.
図において、10は蒸留塔で、飽和蒸気を熱源として用
い、排気ガスに係る留出ガスを排出する生産装置aの一
例である。lは蒸発器で、密閉容器内に伝熱管群2を備
え、伝熱管群の周囲に水3を流通させるよう構成されて
いる。4,5は仕切室である。7は圧縮機、8は、その
圧縮機を駆動するモータで、6,9.11は各機器を接
続する配管でLり、矢印はガス等の流れを云す家σ)で
九ムこのような構成の排熱回収蒸気発生装置の作用を説
明する。In the figure, numeral 10 denotes a distillation column, which is an example of a production apparatus a that uses saturated steam as a heat source and discharges distillate gas related to exhaust gas. Reference numeral 1 denotes an evaporator, which includes a group of heat transfer tubes 2 in a closed container and is configured to circulate water 3 around the group of heat transfer tubes. 4 and 5 are partition rooms. 7 is the compressor, 8 is the motor that drives the compressor, 6, 9.11 is the pipe that connects each device, and the arrow indicates the flow of gas, etc. The operation of the exhaust heat recovery steam generator having the following configuration will be explained.
蒸留q:xoから排出される留出ガスは、配管11を経
て蒸発器1の吸入口4aから仕切室4へ流入し、伝熱管
群2を流通する過程で、水3と熱交換し熱を奪われて凝
縮液化し、仕切室5がら吐出口5aを経てドレーン12
となって排出される。The distillate gas discharged from the distillation q:xo flows into the partition chamber 4 from the inlet 4a of the evaporator 1 via the pipe 11, and in the process of flowing through the heat transfer tube group 2, it exchanges heat with the water 3 and loses heat. It is taken away, condensed and liquefied, and is drained from the partition chamber 5 through the discharge port 5a to the drain 12.
and is discharged.
留出ガスから熱をとった水2は熱水となシ沸1i1 L
。The water 2 that takes heat from the distillate gas becomes hot water.
.
て低圧の蒸気13を発生する。低圧の蒸気13は配管6
を経て圧縮機7に吸引され、必要な圧力まで昇圧された
飽和蒸気となって配管9を通p1蒸留塔10へ流入して
蒸留塔10の加熱源として使用される。to generate low-pressure steam 13. Low pressure steam 13 is connected to pipe 6
The vapor is sucked into the compressor 7 through the pump, becomes saturated vapor that is pressurized to the required pressure, flows into the p1 distillation column 10 through the pipe 9, and is used as a heating source for the distillation column 10.
この場合、留出ガスは水蒸気と浴剤として用いられたト
リクレンなどが、=、−1れた多成分系の排気ガスであ
り、その留出ガスの凝縮温度と凝縮熱量の関係を第2図
を参照しで説明する。In this case, the distillate gas is a multicomponent exhaust gas containing water vapor and trichlene used as a bath agent, and the relationship between the condensation temperature and the heat of condensation of the distillate gas is shown in Figure 2. Please refer to and explain.
第2図は、留出ガスのんl線温度と凝縮熱量の関係を示
す線図であシ、横軸に留出ガス凝縮温度Tをとり、縦軸
に凝縮熱量Qをとっている。ΔTld温度差を示す。FIG. 2 is a diagram showing the relationship between the linear temperature of distillate gas and the amount of heat of condensation, with the horizontal axis representing the distillate gas condensation temperature T and the vertical axis representing the amount of condensation heat Q. ΔTld indicates temperature difference.
蒸留塔10から排気されたときの留出ガス温度はrJ、
Noで示され、約95〜100Cである。留出ガスが水
と熱交換し完全に凝縮する温度はT2で示され、約80
〜8!II’−1?ある。蒸留塔10が加熱源として必
要とする飽和蒸気温度はT、で示され、104Cである
。このように、必要な飽和蒸気温度T、と凝縮温度T2
との温朋差ΔTが大きいので、外圧のだめの動力も大き
く、圧縮機も2段圧縮が必要となる。したがって大きな
初期投資が必要で、かつ省エネルギー効果も少ないとい
う問題があった。The distillate gas temperature when exhausted from the distillation column 10 is rJ,
It is indicated by No and is about 95-100C. The temperature at which the distillate gas exchanges heat with water and completely condenses is indicated by T2, and is approximately 80
~8! II'-1? be. The saturated steam temperature required by the distillation column 10 as a heating source is indicated by T, and is 104C. In this way, the required saturated steam temperature T and condensation temperature T2
Since the temperature difference ΔT is large, the power of the external pressure reservoir is also large, and the compressor requires two-stage compression. Therefore, there were problems in that a large initial investment was required and the energy saving effect was small.
本発明は、従来技術の問題点を解決するためになされた
もので、排気ガスを凝me、化する際の熱の回収につい
て、低温まで効率よく熱回収ができ、初」υ」投資の回
収が早く省エネルギー効果の大きい排熱回収蒸気発生装
置を提供することを、その目的としている。The present invention was made in order to solve the problems of the conventional technology, and is capable of efficiently recovering heat down to low temperatures when condensing exhaust gas. The purpose of this invention is to provide a waste heat recovery steam generator that is quick and has a large energy-saving effect.
本発明に係る排熱回収蒸気発生装置の構成は、飽和蒸気
を熱源として用いる生産装置からの排気ガスを伝熱管群
に導入し、水と熱交換して蒸気を発生せしめる蒸発器ど
、その蒸気を吸引、圧縮して飽和蒸気を吐出する圧縮機
と、これらを接続する配管とからなる排熱回収蒸気発生
装置において、前記蒸発器を、@記生産装置uの排気ガ
ス排出側からみて第2#、発器、第1#発器の順に分離
して配設し、第1蒸発器で発生した蒸気を吸引、圧縮す
る第1圧縮機と、その第1圧縮機の吐出蒸気と第2蒸発
器で発生した蒸気とを吸引、圧縮する第2圧縮機とを配
設したものである。The exhaust heat recovery steam generation device according to the present invention has a structure that includes an evaporator that introduces exhaust gas from a production device that uses saturated steam as a heat source into a group of heat transfer tubes, and generates steam by exchanging heat with water. In an exhaust heat recovery steam generation device that includes a compressor that sucks in and compresses saturated steam and discharges saturated steam, and piping that connects these, the evaporator is located at the second A first compressor that sucks and compresses the steam generated in the first evaporator, and a first compressor that sucks and compresses the steam generated in the first evaporator, and a second evaporator that combines the discharged steam of the first compressor and the second evaporator. It is equipped with a second compressor that sucks and compresses the steam generated in the container.
なお付記すると、本発明は、次のような考え方でなされ
たものである。It should be noted that the present invention was made based on the following idea.
蒸留塔などから排出される留出ガスは多成分系の蒸気で
、一般的に留出ガスを一定圧条件下におくと、冷却温贋
と冷却熱量の関係は第2図に示すようになる。この特性
に看目し、留出ガスの熱回収を2段に分け、址ず留出ガ
スを′1゛oからIfl−まで冷却してQlの熱量を回
収し、低圧蒸気を発生さぜ、次にT2まで冷却しQ2の
熱量を回収して低圧の蒸気を発生させ、Q2の熱量の分
を第一圧縮機でT2からT+まで昇圧し、Ql十Q2の
熱量分を第2圧縮機でT、まで昇圧させる。このように
2段に分けて熱回収して昇圧すると、第2図から明らか
なように、排熱回収熱量の中QまたけΔ゛1゛!分の昇
圧で済み、全熱量をT2まで冷却して11収し、31分
昇圧する従来方式にくらべ、動力tよ、QlをΔT2分
昇圧する動力分が少なくてすむことになp、大巾な動力
が節約できるものである。The distillate gas discharged from a distillation column is a multi-component vapor, and generally when the distillate gas is kept under constant pressure conditions, the relationship between cooling temperature and cooling heat amount is as shown in Figure 2. . In view of this characteristic, the heat recovery of the distillate gas is divided into two stages, the distillate gas is cooled from '1゛o to Ifl-, the amount of heat of Ql is recovered, and low-pressure steam is generated. Next, it is cooled to T2, and the heat amount of Q2 is recovered to generate low-pressure steam. Increase the pressure to T. In this way, when heat is recovered in two stages and the pressure is increased, as is clear from Fig. 2, the amount of heat recovered from the exhaust heat is increased by Δ゛1゛! Compared to the conventional method, which cools the total amount of heat to T2, recovers 11 minutes, and increases the pressure for 31 minutes, the power required to increase the pressure of Ql by ΔT2 is reduced. This saves a lot of power.
〔発明の実施例」
以下、不発ψ」の一実施例を先の第2図にあわせ第3図
を参照して説明する。[Embodiments of the Invention] Hereinafter, an embodiment of the non-explosion ψ will be described with reference to FIG. 3 along with FIG. 2 above.
第3図は、本発明の一実施例に係るvト熱回収蒸気発生
装置の略示断面図および系統図である。図において第1
図と同一符号のものは従来技術と同等部分を示し、矢印
はガス等の流れを示している。FIG. 3 is a schematic cross-sectional view and system diagram of a heat recovery steam generator according to an embodiment of the present invention. In the figure, the first
The same reference numerals as those in the figure indicate parts equivalent to those in the prior art, and arrows indicate the flow of gas, etc.
図において、20は第1蒸発器で、密閉容器21内に伝
熱管群22を備えており伝熱管群の周囲に水3′を流通
させるよう構成されている。In the figure, reference numeral 20 denotes a first evaporator, which includes a heat exchanger tube group 22 in a closed container 21 and is configured to circulate water 3' around the heat exchanger tube group.
24.25は仕切室である。27は第1圧縮機、28は
、その圧縮機を駆動するモータである。24.25 is a partition room. 27 is a first compressor, and 28 is a motor that drives the compressor.
26は、第1蒸発器で発生する低圧の蒸気13′を第1
圧縮機へ埼くための配管である。26 transfers the low pressure steam 13' generated in the first evaporator to the first evaporator.
This is the piping that connects to the compressor.
30は第2#発器で、密閉容器31内に伝熱管IR−3
2を備えておシ、その伝熱管!1t、の周囲Vc水3を
流通させるよう構成されている。34.35は仕I)]
案である。37は第2圧縮機、38は、その圧縮機を1
駆動するモータである。36&よ、第2蒸発器で発生す
る蒸気13と第1圧縮磯27で圧縮された吐出蒸気とを
第2圧縮機37へ導くための配管である。40は第2S
発器内の蒸発圧力調節器で、41は、蒸発圧力調節器4
0の信号で開閉する蒸発圧力制御器で、配管36に装着
されている。9′は第1圧縮機27の吐出蒸気を第2蒸
発器30へ導く配管、9は第2圧縮機37の吐出蒸気、
すなわち飽和蒸気を蒸留塔IOへ導く配管である。30 is a second # generator, which has a heat exchanger tube IR-3 in a closed container 31.
2, that heat transfer tube! It is configured to circulate around Vc water 3 of 1t. 34.35 is service I)]
It's a proposal. 37 is the second compressor, 38 is the compressor 1
It is a driving motor. 36&, is a pipe for guiding the steam 13 generated in the second evaporator and the discharged steam compressed in the first compressor 27 to the second compressor 37. 40 is the second S
An evaporation pressure regulator in the generator, 41 is an evaporation pressure regulator 4
This is an evaporation pressure controller that opens and closes with a signal of 0, and is attached to the pipe 36. 9' is a pipe that guides the steam discharged from the first compressor 27 to the second evaporator 30; 9 is the steam discharged from the second compressor 37;
That is, it is a pipe that guides saturated steam to the distillation column IO.
前記蒸発器は、蒸留塔10の留出ガス排出側からみて第
2蒸発器30.第1蒸発器20の順に配設芒れ、第1蒸
発器20に併設して第1圧縮機27、第2蒸発器30に
併設して第2圧縮機37が配設されている。The evaporator is a second evaporator 30. viewed from the distillate gas discharge side of the distillation column 10. The first evaporator 20 is arranged in this order, a first compressor 27 is arranged next to the first evaporator 20, and a second compressor 37 is arranged next to the second evaporator 30.
次に、このように構成された排熱回収蒸気発生装置の作
用を説明する。Next, the operation of the exhaust heat recovery steam generator configured as described above will be explained.
蒸留J!:10から排出される留出ガスは、配管IJを
紅で第2蒸発器30の吸入口34aから仕切室34へ流
入し、伝熱管群32を流通する過程で水3と熱交換する
。第2蒸発器30内の圧力が蒸発圧力調節器40で一定
に制御されることによp、熱水3が蒸発圧力の飽和温度
に保持されるため、留出ガスは伝熱管32内で一定温度
まで冷却され、留出ガスの一部は凝縮液化する。この凝
縮の際に発する潜熱は水3に回収され、水3は熱水とな
り蒸気13を発生する。Distilled J! The distillate gas discharged from the pipe IJ flows into the partition chamber 34 from the suction port 34a of the second evaporator 30, and exchanges heat with the water 3 while flowing through the heat exchanger tube group 32. Since the pressure in the second evaporator 30 is controlled to be constant by the evaporation pressure regulator 40, the hot water 3 is maintained at the saturation temperature of the evaporation pressure, so the distillate gas is kept constant in the heat transfer tube 32. A portion of the distillate gas is condensed and liquefied. The latent heat generated during this condensation is recovered by the water 3, and the water 3 turns into hot water and generates steam 13.
ち112蒸発器30の伝熱管群32内で凝縮しなかった
留出ガスと、液化したドレーンとの気液混合ガス12′
は第2蒸発器の仕切室35から吐出口35aを酢て第1
蒸発器20に導入され、第1蒸発器20の吸入口24a
から仕切室24を経て伝熱管群22へ流通する。Gas-liquid mixed gas 12' of distillate gas that did not condense in the heat exchanger tube group 32 of the evaporator 30 and liquefied drain;
The discharge port 35a is passed from the partition chamber 35 of the second evaporator to the first evaporator.
Introduced into the evaporator 20, the suction port 24a of the first evaporator 20
The heat exchanger passes through the partition chamber 24 to the heat exchanger tube group 22 .
一方、第1蒸発器20の内圧は、第1圧縮機270作用
によシ、第2蒸発器30の内圧より低く保たれているた
め、水3′の温度も低く、留出カスはさらに冷却され、
そのほとんどが凝縮液化してドレーノエ2となシ仕切室
25から吐出口25aを社で装置外へ排出される。この
際、残りの留出ガスが凝縮するときに発する潜熱さ、第
2蒸兄器30で凝縮したドレーンの冷却による顕熱とが
水3′に回収され、水3′は熱水となυ蒸発し、低圧の
蒸気13′を発生する。低圧の蒸気13’il:配管2
6から第1圧縮機27に吸引され圧縮され、第1圧縮機
27の吐出蒸気は配管9′で第2A発器30内の蒸気1
3発生部へ導入される。第2蒸発器30で発生した低圧
蒸気13と、第1圧縮機27の吐出蒸気とは、配管36
を経て第2圧縮機37に吸引され圧縮されて、所定の圧
力の飽和蒸気となる。その高温高圧の飽第1]蒸気は、
配管9を1孔て蒸留塔10へ流入して蒸留塔10の加熱
源どして使用される。On the other hand, the internal pressure of the first evaporator 20 is kept lower than the internal pressure of the second evaporator 30 by the action of the first compressor 270, so the temperature of the water 3' is also low and the distillate is further cooled. is,
Most of it is condensed and liquefied and becomes the drain 2 and is discharged from the partition chamber 25 to the outside of the apparatus through the discharge port 25a. At this time, the latent heat generated when the remaining distillate gas condenses and the sensible heat due to cooling of the condensed drain in the second steamer 30 are recovered into water 3', and water 3' becomes hot water. It evaporates and generates low pressure steam 13'. Low pressure steam 13'il: Piping 2
6 is sucked into the first compressor 27 and compressed, and the discharged steam from the first compressor 27 is transferred to the steam 1 in the second A generator 30 through the pipe 9'.
3. Introduced to the generation part. The low pressure steam 13 generated in the second evaporator 30 and the discharge steam of the first compressor 27 are connected to a pipe 36
The vapor is sucked into the second compressor 37 and compressed to become saturated vapor at a predetermined pressure. The high temperature and high pressure steam is
It flows into the distillation column 10 through one hole in the pipe 9 and is used as a heating source for the distillation column 10.
以」−の作用と、その効果を、先の第2図を参照して酸
4明すれば次のとおりである。The action and effect of this acid are explained below with reference to FIG. 2.
蒸留塔10から排出された約95〜100tl?の温j
屍T。の留出ガスは、第2蒸発器30で約90Cの温I
L ’f rまで凝縮されQlの熱量を水3が回収して
蒸気13(ill−発生させる。次に、第1.f発器2
0で約80〜85rの温度T21で冷却して凝縮液の1
゛レ一ン12表なp、水3′がQ2の熱量を回収して低
圧の蒸気13′を発生させる。Q2の熱量の分を第1圧
縮機27でT2からTI−fでる。Approximately 95 to 100 tl discharged from distillation column 10? The temperature of
Corpse T. The distillate gas is heated to a temperature of about 90C in the second evaporator 30.
The water 3 recovers the heat quantity of Ql condensed to L'fr and generates steam 13 (ill-). Next, the 1st.f generator 2
1 of the condensate by cooling at a temperature T21 of about 80-85r at 0.
Water 3' recovers the heat of Q2 and generates low-pressure steam 13'. The amount of heat of Q2 is outputted from T2 by the first compressor 27 as TI-f.
(−のように2段に分けて熱回収をはかり昇圧させると
、第2図かられかるように、排熱回収熱量の中、Qlた
けΔIII、分の昇圧ですみ、従来技術のように全熱量
−をT2まで冷却して回収し、31分列圧する方式にく
らべ、圧縮機の動力は、Qlを412分昇圧する動力分
が少なくてすむことにな、り大rlコな動力が節約でき
る。す〃わら、排熱1i’1収で発生した蒸気を低圧か
ら全皿荷ノ1−する従来方式にくらべ、全蒸気量の6〜
7割をL因■]圧から所定の圧力址で昇圧し、残りの4
〜3割を低圧から昇圧することになるため、圧縮機の消
費動力は3〜4割節減できることになる。(If heat recovery is divided into two stages as shown in Figure 2 and the pressure is increased, the pressure will only increase by the amount of Ql, ΔIII, out of the amount of heat recovered from the exhaust heat, as shown in Figure 2. Compared to the method of cooling and recovering the amount of heat to T2 and increasing the pressure by 31 minutes, the power of the compressor is less than the power required to increase the pressure of Ql by 412 minutes, and a large amount of power can be saved. Compared to the conventional method in which the steam generated by exhaust heat 1i'1 is generated from low pressure, the total amount of steam is reduced by 6~
70% of the pressure is raised from the L factor ■] pressure at a specified pressure point, and the remaining
Since ~30% of the pressure is increased from low pressure, the power consumption of the compressor can be reduced by 30~40%.
次に、本発明の他の実施例を第4図を参照して説明する
。Next, another embodiment of the present invention will be described with reference to FIG.
第4図は、本発明の他の実施例に係る排熱回収蒸気発生
装置の略示断面図および系統図である。FIG. 4 is a schematic sectional view and system diagram of an exhaust heat recovery steam generation device according to another embodiment of the present invention.
図において第3図と同−祠号のものは先の例と同等部分
であるから説明を省略する。In the figure, the parts with the same numbers as those in FIG. 3 are the same parts as in the previous example, so their explanation will be omitted.
本例の基本構成は、先の第3図の実施ρりと同一である
が、第1圧縮機27から第2蒸発器30へ導く配管9“
が、第2蒸発器30の伝熱管群32の下部31aに接続
されている。The basic configuration of this example is the same as the implementation shown in FIG.
is connected to the lower part 31a of the heat exchanger tube group 32 of the second evaporator 30.
このように構成すると、第1圧縮機27の吐出蒸気を第
2蒸発器30の伝熱管群32の下部へ吹き込むので、伝
熱管群32周りの水3が攪拌され、水3の蒸発が促進さ
れる。したがって熱交換する留出ガスのIAA度との差
が少なくなり、よシ高い温度で蒸発するだめ、圧m機の
消費動力がさらに小さくてすむものである。With this configuration, the discharged steam of the first compressor 27 is blown into the lower part of the heat exchanger tube group 32 of the second evaporator 30, so the water 3 around the heat exchanger tube group 32 is stirred, and the evaporation of the water 3 is promoted. Ru. Therefore, the difference between the IAA degree of the distillate gas to be heat exchanged is reduced, and since the distillate gas is evaporated at a higher temperature, the power consumption of the pressurizer can be further reduced.
なお、前記の実施例では、飽和蒸気を熱源として用いJ
JP気ガスを排出する生産装置として蒸留塔の騙りを説
明したが、本発明は、蒸留塔のみに限らす、回等の効果
を期待できる生産装置に適用する範囲−c″汎用的なも
のである。Note that in the above embodiment, saturated steam was used as the heat source.
Although the use of a distillation column as a production device for discharging JP gas has been explained, the present invention is not limited to a distillation column, but is applicable to production devices that can be expected to have effects such as circulation. be.
また、前記の実施例では、蒸留塔から排出される留出ガ
スの排熱を回収して発生した蒸気を昇圧し、イの蒸気を
蒸留塔に戻して再使用しているが、木兄’j’J tよ
、生産装置→排熱回収蒸気発生装置→生産装置uの循環
に限定されるものでなく、排熱回収蒸気発生装置から発
生し昇圧された蒸気を他の生産装置に転用することも可
能なものである。Furthermore, in the above embodiment, the exhaust heat of the distillate gas discharged from the distillation column is recovered, the pressure of the generated steam is increased, and the steam is returned to the distillation column for reuse. j'J t, the circulation is not limited to production equipment → exhaust heat recovery steam generator → production equipment u, but the steam generated from the exhaust heat recovery steam generator and pressurized can be diverted to other production equipment. It is also possible.
以」−述べたように、本発明によれば、排気ガスを凝縮
故化する際の熱の回収について、低温まで効率よく熱回
収ができ、初期投資の回収が早く省エネルギー効果の大
きい排熱回収蒸気発生装置を提供することができる。As described above, according to the present invention, heat can be efficiently recovered down to low temperatures when exhaust gas is condensed, and waste heat recovery can quickly recover the initial investment and has a large energy-saving effect. A steam generator can be provided.
第1図(は、従来の排熱回収蒸気発生装置の略示断面図
および系統図、第2図は、留出ガスの凝縮温度と凝縮熱
蓋の関係を示す線図、第3図は、本発明の一実施例に係
る排熱回収蒸気発生装置の略示断面図および系統図、第
4図は、本発明の他の実施例に係る排熱回収蒸気発生装
置の略示断面図および系統図である。
3.3′・・・水(熱水)、9.9’ 、9″、11゜
26.36・・・配管、10・・・蒸留塔 13.13
’・・・蒸気、20・・・第1蒸発器、30・・・第2
蒸発器、22.32・・・伝熱管群、27・・・第1圧
縮機、37第 1 図
噺 Z 図
冨 4 図
j’ z0Figure 1 is a schematic sectional view and system diagram of a conventional waste heat recovery steam generator; Figure 2 is a diagram showing the relationship between the condensation temperature of distillate gas and the condensing heat lid; Figure 3 is A schematic cross-sectional view and a system diagram of an exhaust heat recovery steam generator according to an embodiment of the present invention, FIG. 4 is a schematic cross-sectional view and a system diagram of an exhaust heat recovery steam generator according to another embodiment of the present invention. It is a diagram. 3.3'... Water (hot water), 9.9', 9'', 11°26.36... Piping, 10... Distillation column 13.13
'...steam, 20...first evaporator, 30...second
Evaporator, 22. 32... Heat exchanger tube group, 27... First compressor, 37 No. 1 Figure Z Figure 4 Figure j' z0
Claims (1)
スを伝熱管群に導入し、水と熱交換して蒸気を発生せし
める蒸発器と、その蒸気を吸引、圧縮して飽和蒸気を吐
出する圧縮機と、これらを接続する配管とからなる排熱
[U収蒸気発生装置において、前記蒸発器を、前記生産
装置の排気ガス排出側からみて第2蒸発器、第1蒸発器
の順に分離して配設し、第1蒸発器で発生した蒸気を吸
引、圧縮する第1圧縮機と、その第1圧縮機の吐出蒸気
と第2蒸発器で発生しん蒸気とを吸引、圧縮する第2圧
縮機とを配設したことを%徴とする排熱回収蒸気発生装
置。 2、特許請求の範囲第1項記載のものにおいで、第1圧
縮機の吐出側と第2蒸発器の伝熱管群の下部とを接続す
る配管を配設したものである排熱回収蒸気発生装置。[Claims] 1. An evaporator that introduces exhaust gas from a production device that uses saturated steam as a heat source into a group of heat transfer tubes and exchanges heat with water to generate steam, and an evaporator that sucks and compresses the steam. Exhaust heat consisting of a compressor that discharges saturated steam and piping that connects these [U] In the steam generation device, the evaporator is divided into a second evaporator, a first evaporator, and a second evaporator when viewed from the exhaust gas discharge side of the production device. a first compressor which is arranged separately in the order of the first evaporator and sucks and compresses the vapor generated in the first evaporator; a first compressor which sucks the discharged vapor of the first compressor and the vapor generated in the second evaporator; An exhaust heat recovery steam generation device characterized by being equipped with a second compressor for compression. 2. The exhaust heat recovery steam generation according to claim 1, which is provided with piping connecting the discharge side of the first compressor and the lower part of the heat transfer tube group of the second evaporator. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15326683A JPS6048401A (en) | 1983-08-24 | 1983-08-24 | Waste-heat recovering steam generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15326683A JPS6048401A (en) | 1983-08-24 | 1983-08-24 | Waste-heat recovering steam generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6048401A true JPS6048401A (en) | 1985-03-16 |
JPH0413601B2 JPH0413601B2 (en) | 1992-03-10 |
Family
ID=15558695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15326683A Granted JPS6048401A (en) | 1983-08-24 | 1983-08-24 | Waste-heat recovering steam generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6048401A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5716791A (en) * | 1980-05-20 | 1982-01-28 | Escher Wyss Ag | Withdrawal of heat from aqueous carrier medium |
JPS57155069A (en) * | 1981-03-20 | 1982-09-25 | Ebara Mfg | Waste heat recovery apparatus for turbine |
-
1983
- 1983-08-24 JP JP15326683A patent/JPS6048401A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5716791A (en) * | 1980-05-20 | 1982-01-28 | Escher Wyss Ag | Withdrawal of heat from aqueous carrier medium |
JPS57155069A (en) * | 1981-03-20 | 1982-09-25 | Ebara Mfg | Waste heat recovery apparatus for turbine |
Also Published As
Publication number | Publication date |
---|---|
JPH0413601B2 (en) | 1992-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6764530B2 (en) | Exhaust heat utilization method for carbon dioxide recovery process | |
EP0933331B1 (en) | Evaporative concentration apparatus for waste water | |
JPH02306067A (en) | Absorption type freezing | |
US5169502A (en) | Installation for processing liquids | |
JPS5926184A (en) | Compressed steam-type distillation of salt water | |
JP2003055282A (en) | Apparatus for distilling alcohol | |
JPH08261600A (en) | Recovering method for exhaust heat | |
JP2021084098A (en) | Separation apparatus and method for dissimilar substances | |
US5231836A (en) | Two-stage condenser | |
JPS6048401A (en) | Waste-heat recovering steam generator | |
CN113669121B (en) | Power plant condensing system and process method | |
JPS60168582A (en) | Steam compression type water distillation apparatus | |
JPH0821209A (en) | Power generating facility by steam turbine utilising exhaust heat | |
US5209763A (en) | Method of boosting the efficiency of removing noncondensable gases from vapors | |
JPH04313302A (en) | Method for evaporating and concentrating aqueous solution containing water-soluble organic matter | |
KR940011076B1 (en) | Refrigerator | |
JPS60126549A (en) | Energy conservation type refrigerator | |
JPH0148203B2 (en) | ||
KR960010363B1 (en) | Evaporating and concentrating method of aqueous organic materials | |
JPS6321283Y2 (en) | ||
FI81967B (en) | OVER ANALYZING FOR SEPARATION OF OAKING CONDITIONERS GASER AND AONGA. | |
JPS5924086B2 (en) | vacuum evaporator | |
JPH0613081B2 (en) | High vacuum evaporator | |
SU1668723A1 (en) | Method and apparatus for producing vacuum | |
JPS5913666B2 (en) | heat pump system |