JPS6048124A - Process for removing oxides of nitrogen - Google Patents

Process for removing oxides of nitrogen

Info

Publication number
JPS6048124A
JPS6048124A JP58155383A JP15538383A JPS6048124A JP S6048124 A JPS6048124 A JP S6048124A JP 58155383 A JP58155383 A JP 58155383A JP 15538383 A JP15538383 A JP 15538383A JP S6048124 A JPS6048124 A JP S6048124A
Authority
JP
Japan
Prior art keywords
oxide
sulphate
metal
catalyst
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58155383A
Other languages
Japanese (ja)
Inventor
Kazumitsu Abe
一允 安倍
Tadao Nakatsuji
忠夫 仲辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP58155383A priority Critical patent/JPS6048124A/en
Publication of JPS6048124A publication Critical patent/JPS6048124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To prevent decrease of decomposing capacity for NOX even in the absence of SOX, by using catalyst supporting vanadium pentoxide on titanium dioxide carrier and contd. metal sulphate. CONSTITUTION:Catalyst prepd. by allowing to support vanadium pentoxide on titanium dioxide carrier and incorporating metal sulphate such as nickel sulphate, manganese sulphate, cobalt sulphate, etc. of further >= one kinds of tungsten trioxide and molybdenum trioxide, is preferred. Nickel sulphate is most preferred among metal sulphates. Suitable compsn. is 70-99wt% titanium dioxide, 0.1-10wt% vanadium pentoxide, 0-15wt% >= one kinds of tungsten oxide and molybdenum trioxide, and 0.1-5wt% metal sulphate. Metal sulphates are incorporated by kneading or impregnation, but is must be calcined in the final stage.

Description

【発明の詳細な説明】 本発明は、煙道ガスおよび硝酸プラントテールガスの如
き工秦排ガスに含有されている窒素物除去方法に関する
。 丈に詳しくは該排ガスの内でSOxを含有しない排
ガス中のglLl酸素物除去方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing nitrogenous substances contained in industrial flue gas such as flue gas and nitric acid plant tail gas. More specifically, the present invention relates to a method for removing glLl oxygen substances from exhaust gas that does not contain SOx.

近年上述のような工業排ガス中の窒素酸化物多く試みら
れている。−酸化炭素、炭化水素、水素等を還元ガスと
して使用するとき、それらが処理ガス中の酸素と反応す
るため、多量の還元ガスを必要とするだけでなく、多量
の発熱、アンモニアの副生を伴う等欠点があるため普通
には、これらの欠点を有しないアンモニアを還元ガスと
して使用し、窒素酸化物と選択的に反応させる方法が試
みられてbる。
In recent years, many attempts have been made to eliminate nitrogen oxides from industrial exhaust gas as mentioned above. - When carbon oxide, hydrocarbons, hydrogen, etc. are used as reducing gases, they react with oxygen in the process gas, so not only do they require a large amount of reducing gas, but they also generate a large amount of heat and produce ammonia as a by-product. Since there are disadvantages such as the accompanying disadvantages, a method is generally attempted in which ammonia, which does not have these disadvantages, is used as a reducing gas and reacted selectively with nitrogen oxides.

本発明はアンモニアを還元ガスとして窒素酸化物を水と
窒素に還元して無害化するすぐれた吉シ玉 愈身を提供するものである。 アンモニアを還元ガスと
する振触遥元決において使用される触媒として白金など
の貴金属がよく知られている。(USP2.975.0
22) しかしながら貴会民触媒は高価なうえ、N20等を副生
する現象を招き、さらに排ガス中の硫黄酸化物による被
毒を受ける等の欠点を有する。 又責企腐触媒の欠点を
Wりものとして種々の卑金属系触媒が提案されている。
The present invention provides an excellent mercury that uses ammonia as a reducing gas to reduce nitrogen oxides to water and nitrogen, rendering them harmless. Precious metals such as platinum are well known as catalysts used in shikihara genketsu, which uses ammonia as the reducing gas. (USP2.975.0
22) However, your catalyst is expensive, causes the phenomenon of by-products such as N20, and has disadvantages such as being poisoned by sulfur oxides in exhaust gas. In addition, various base metal catalysts have been proposed to overcome the drawbacks of rotten catalysts.

例えば、バナジン酸化物、モリブデン酸化物、タングス
テン酸化物CU、SP3.279.@84.) 、マン
ガン酸化物、鉄酸化物、バナジン酸化物およびモリブデ
ン酸化物、鉄及びマンガン酸化物(GPl 、 253
.685 )、酸化銅(USP3.524.721)、
バナジン酸化物及び銅、錫、クロム、チタン等酸化物(
特[I[l唱49−122473 ) #A酸化物およ
びまたはセリクム酸化物(特面昭49−77881 )
、クロム酸化物および錫、チタン等酸化物(特開昭50
−2668 )等である。
For example, vanadine oxide, molybdenum oxide, tungsten oxide CU, SP3.279. @84. ), manganese oxides, iron oxides, vanadium oxides and molybdenum oxides, iron and manganese oxides (GPL, 253
.. 685), copper oxide (USP 3.524.721),
Vanadine oxide and oxides of copper, tin, chromium, titanium, etc.
#A oxide and or sericum oxide (Tokumen 49-77881)
, chromium oxide and oxides of tin, titanium, etc.
-2668) etc.

そして通常これら卑金属酸化物は、公知の担体例えば活
性アルミナ等に担持され、使用されている。
These base metal oxides are usually used supported on a known carrier such as activated alumina.

しかしながら、これら触媒は、水による活性への影響、
あるL/IVi硫黄酸化物による劣化、アンモニアの選
択還元性あるいは、過剰アンモニアの分解特性に欠点を
有している。 また触媒の劣化の原因として卑金属酸化
物自身の劣化ばかりでなく、担体の熱劣化亜硫酸ガスに
よる劣化が報告されている。 (49年10月環境汚染
セミナー、テキスト、岡山大、笠岡式発表) そこでこれからの欠点を解消するためシζ種々の研究が
行われた結果、酸化チタンを主成分とする担体に遷移金
属酸化物の1種又は2種以上を担持させた触媒が開発さ
れ、工業的に実用化されている。
However, the influence of water on the activity of these catalysts,
It has drawbacks in deterioration due to certain L/IVi sulfur oxides, selective reduction of ammonia, and decomposition characteristics of excess ammonia. Furthermore, it has been reported that the cause of catalyst deterioration is not only the deterioration of the base metal oxide itself, but also deterioration due to thermal deterioration of the carrier and sulfur dioxide gas. (October 1949 Environmental Pollution Seminar, Text, Okayama University, Kasaoka Ceremony Presentation) Therefore, in order to eliminate future drawbacks, various researches were carried out, and as a result, transition metal oxides were used as a carrier mainly composed of titanium oxide. Catalysts supporting one or more of these have been developed and put into practical use industrially.

しかし排ガスの種類によっては未だ完全とは言い錐<、
特にSOxを含有しない排ガス中のNOxを除去する場
合、現在酸化チタンに酸化、(ナジクムを担持させた触
媒が使用されているが、以下の様な問題点を有している
However, depending on the type of exhaust gas, it is still far from perfect.
In particular, when removing NOx from exhaust gas that does not contain SOx, a catalyst in which titanium oxide is supported on oxidized (Nadicum) is currently used, but it has the following problems.

即ち現在実用化されている酸化チタン担体はqておシ、
これがNO+NH8+70,1−N11+HIlOとい
う反応の活性点としての働きをして有効にNOxの分解
が行われている。
That is, the titanium oxide supports currently in practical use are
This serves as an active site for the reaction NO+NH8+70,1-N11+HIlO, and NOx is effectively decomposed.

しかしながら該SO7はSOxを含まない排ガス中にお
ってはガス流れによって機械的忙ガス中に飛散し、その
結果活性点が減少して時間と共にNOx分解能が低下す
る欠点を有している。尚、SOxを含有する排ガスを処
理する場合は排ガス中のSOxとりわけSOsが触媒中
に含まれたSO?と吸着平衡関係をとるため上記の如き
活性低下は認められなho SOxを含有しない排ガス中で上記の如き現象が発生す
るのはNH,の酸化分解が始まる350℃を越えた温度
でとりわけ著しく認められる。
However, in exhaust gas that does not contain SOx, the SO7 is scattered into the mechanical gas by the gas flow, resulting in a decrease in active sites and a drawback that the NOx resolution deteriorates over time. In addition, when treating exhaust gas containing SOx, the SOx in the exhaust gas, especially SOs, is the SOx contained in the catalyst. The above-mentioned decrease in activity is not observed due to the adsorption equilibrium relationship with NH.The phenomenon described above occurs in exhaust gas that does not contain SOx, especially at temperatures above 350°C, where oxidative decomposition of NH begins. It will be done.

そこで本発明者等は種々研究の結果SOxを含有しない
排ガスに使用してもNOx分解能力が時間が経過しても
殆ど低下しないNOx除去方法を見出し本発明を完成し
た。
As a result of various studies, the inventors of the present invention have found a method for removing NOx in which the NOx decomposition ability hardly decreases over time even when used with exhaust gas that does not contain SOx, and have completed the present invention.

本発明に係る方法は酸化チタン担体に酸化パナジクムを
担持した触媒忙金jtI硫酸塩、例えば硫酸ニッケル、
硫酸マンガン、硫酸コパルllFヲ含有させたもの、あ
るいは更にこれらに酸化タングステン、酸化モリブデン
の1種以上を含有させたものを触媒として使用する方法
である。
The method according to the present invention uses a catalytic metal jtI sulfate, such as nickel sulfate, containing panadicum oxide supported on a titanium oxide carrier.
In this method, a catalyst containing manganese sulfate or copal sulfate, or a catalyst containing at least one of tungsten oxide and molybdenum oxide is used.

この際金属硫酸塩の内、特KM酸ニッケルが有効である
Among metal sulfates, nickel KM acid is particularly effective in this case.

上記触媒の各成分の割合は以下に示す範囲が好適である
The proportions of each component in the catalyst are preferably within the ranges shown below.

酸化チタンを主成分とする担体が酸化チタン換算で70
〜99重量%、酸化パナジクムが0.1〜10重1%、
酸化タングステン、酸化モリブデンの1種以上が0−1
5重量%、金属硫酸塩がO,1〜5重量%の範囲である
The carrier whose main component is titanium oxide is 70% in terms of titanium oxide.
~99% by weight, panadicum oxide 0.1-10% by weight,
One or more of tungsten oxide and molybdenum oxide is 0-1
5% by weight, and metal sulfates range from 1 to 5% by weight.

金属硫酸塩を含有させる方法としては、触媒調製方法が
(1)混練方法の時、酸化パナジクムもしくはメタバナ
ジン酸1ンモニクム等の前駆体、酸化タングステン、酸
化モリブデンもしくはタングステン酸アンモニウム、モ
リブデン酸アンモニウム等の前駆体と金属硫酸塩、およ
び酸化チタンを混練し、押出法、造粒法等によシ所定の
形状に成形し焼成する。
When the catalyst preparation method is (1) kneading method, the metal sulfate can be incorporated using a precursor such as panazicum oxide or monomonicum metavanadate, a precursor such as tungsten oxide, molybdenum oxide, ammonium tungstate, ammonium molybdate, etc. The body, metal sulfate, and titanium oxide are kneaded, formed into a predetermined shape by extrusion, granulation, etc., and fired.

(2)含浸方法の時、酸化チタンを押出法、造粒法等に
より所定の形状に成形し、焼成したものを上記した酸化
バナジクム、酸化タングステンもしくけ酸化モリブデン
の前駆体と金属硫酸塩を溶解させた溶液中に含浸させ、
乾燥焼成する。
(2) In the impregnation method, titanium oxide is formed into a predetermined shape by extrusion method, granulation method, etc., and the fired product is dissolved in the vanadium oxide, tungsten oxide, or molybdenum oxide precursor and metal sulfate. impregnated in a solution of
Dry and fire.

これらが代表的方法であるが、その他一般の触媒調製法
が適用出来ることはざうまでもない。
Although these are typical methods, it goes without saying that other general catalyst preparation methods can be applied.

又本発明に係る触媒を使って排ガス中のNOxを除去す
る方法としては以下の通りである。
Further, a method for removing NOx in exhaust gas using the catalyst according to the present invention is as follows.

窒素酸化物を含有する排ガスをアンモニア共存下で上記
触媒に150℃〜500℃で接触させることにより行う
ことが出来る。
This can be carried out by bringing exhaust gas containing nitrogen oxides into contact with the above catalyst at 150°C to 500°C in the coexistence of ammonia.

以下実施例により具体的に説明する。This will be explained in detail below using examples.

なお調製された触媒の性能試験は、内径50厘のパイレ
ックスガラス管(外部を保温する)内に、見掛容量 8
6 meの触媒を充填し、下記第1表組成の混合ガスを
、空間速度15tO00Hr−” (室温換算)Kて接
触せしめ、混合ガス中の窒素酸化物除去率を測定した。
The performance test of the prepared catalyst was carried out in a Pyrex glass tube with an inner diameter of 50 mm (the outside is kept warm) with an apparent capacity of 8.
The reactor was filled with 6 me of catalyst and brought into contact with a mixed gas having the composition shown in Table 1 below at a space velocity of 15 tO00Hr-'' (room temperature equivalent) to measure the nitrogen oxide removal rate in the mixed gas.

なお窒素酸化物除去率mは次式で表わす。Note that the nitrogen oxide removal rate m is expressed by the following formula.

第 1 表 実施例1 硫酸法による酸化チタン製造工程よシ得られるメタチタ
ン酸ケーキを酸化チタンとしてIFf収シ出し、該メタ
チタン酸中に塩化バリクム(Ba C1B 、 2Hg
O) 42 fを添加し充分攪拌する。 仁のスラリー
を100tlZ時同乾燥後、600℃3時闇焼成する。
Table 1 Example 1 The metatitanic acid cake obtained from the titanium oxide manufacturing process using the sulfuric acid method was recovered as titanium oxide by IFf, and baricum chloride (Ba C1B, 2Hg) was added to the metatitanic acid.
O) Add 42 f and stir thoroughly. After drying the kernel slurry at 100 tlZ, it was baked in the dark at 600°C for 3 hours.

得られた焼成品をテンプルミルにより粉砕し、粒度を調
節した後、粉砕品を、酸化チタンを成型物約11を得た
。この成型物を100℃。
The obtained fired product was pulverized using a temple mill and the particle size was adjusted to obtain about 11 molded titanium oxide products. This molded product was heated to 100°C.

12時間乾燥徒、500℃lCて3時間焼成し酸化チタ
ン球状担体約IA’を得た。
The mixture was dried for 12 hours and then calcined at 500°C for 3 hours to obtain a titanium oxide spherical support IA'.

この担体500dを、メタタングステン酸アンモニウム
水〆液(WO,として5o96含有)280y、シェフ
酸バナジル水溶液(VBO,として2o96含有)10
0p、硫酸ニッケルとして202を11にメークアップ
: Ti01がlニア:1:91である触媒を得た。
500 d of this carrier, 280 y of ammonium metatungstate aqueous solution (WO, containing 5o96), 10 y of vanadyl chefate aqueous solution (VBO, containing 2o96)
A catalyst was obtained in which Ti01 was 1:91 by making up 202 to 11 as 0p and nickel sulfate.

脱硝率は反応温度が250℃、300℃、350tE 
Icおいて各々81.0515 93.7% 95.9
%であった。
The denitrification rate is determined at reaction temperatures of 250°C, 300°C, and 350tE.
81.0515 93.7% 95.9 respectively in Ic
%Met.

実施例2〜6 実施例1と同様の方法によシ、下記表の如き組成の触媒
を得た。
Examples 2 to 6 Catalysts having the compositions shown in the table below were obtained in the same manner as in Example 1.

実施例7 実施例1と同様に V、05 : WO,: MnSO4: Ti01 =
 1 : 7 : 2 : 90である触媒を得た。 
脱硝率は反応温度が2500、 300℃、350℃に
おいて各々74.5%。
Example 7 As in Example 1, V, 05: WO,: MnSO4: Ti01 =
A catalyst having a ratio of 1:7:2:90 was obtained.
The denitrification rate was 74.5% at reaction temperatures of 2500°C, 300°C, and 350°C.

89.4%、927%であった。They were 89.4% and 927%.

実施例8 実施例1と同様に V、θs:WOg : CoSO4:Ti01=1ニア
:2:90である触媒を得た。 脱硝率は反応温度が2
501 30CF、35CF において各々75.2%
Example 8 In the same manner as in Example 1, a catalyst was obtained in which V, θs: WOg: CoSO4:Ti01=1near:2:90. The denitrification rate is determined by the reaction temperature of 2.
501 75.2% each for 30CF and 35CF
.

89.896.93.2%であった。It was 89.896.93.2%.

特許出願人patent applicant

Claims (4)

【特許請求の範囲】[Claims] (1)を未酸化物を含有する排ガスから窒素酸化物を除
去するに当9、該排ガスをアンモニア共存下で酸化チタ
ンを主成分とする担体に酸化パナジクムおよび金属硫酸
塩を担持させた触媒に150℃以上500℃以下で接触
させ、選択的に窒素酸化物を除去する方法。
In order to remove nitrogen oxides from exhaust gas containing unoxidized substances (1), the exhaust gas is transferred to a catalyst in which panadicum oxide and metal sulfate are supported on a carrier mainly composed of titanium oxide in the coexistence of ammonia. A method of selectively removing nitrogen oxides by contacting at a temperature of 150°C or higher and 500°C or lower.
(2)窒素酸化物を含有する排ガスから窒素酸化物を除
去するに当り、該排ガスをアンモニア共存下で酸化チタ
ンを主成分とする担体に#化パナジクム、金属硫酸塩お
よび酸化タングステン、酸化モリブデンの1種以上を担
持させた触媒に150℃以上で接触させ、選択的に窒素
酸化物を除去する方法。
(2) When removing nitrogen oxides from exhaust gas containing nitrogen oxides, the exhaust gas is transferred to a carrier containing titanium oxide as a main component in the coexistence of ammonia with #2 panadicum, metal sulfates, tungsten oxide, and molybdenum oxide. A method for selectively removing nitrogen oxides by contacting the catalyst at 150°C or higher with one or more supported catalysts.
(3)金属硫酸塩が硫酸ニッケル、WLFI12マンガ
ン、硫酸コバルトの1種以上であることを特徴とする特
許請求の範ll+1第1項記載および第2項記載の方法
(3) The method according to Claims 11+1 and 2, wherein the metal sulfate is one or more of nickel sulfate, WLFI12 manganese, and cobalt sulfate.
(4) 酸化チタンを主成分とする担体が酸化チタン換
算で70〜99重量%、酸化パナジクムが0.1〜10
重量%、酸化タングステン、酸化モリブチ゛ンの1種以
上が0−15重ffi%、金属硫酸塩が0.1〜5重量
%である特許請求の範囲第1項および第2項記載の方法
(4) The carrier mainly composed of titanium oxide is 70 to 99% by weight in terms of titanium oxide, and the amount of panadicum oxide is 0.1 to 10% by weight.
3. The method according to claim 1, wherein the content of one or more of tungsten oxide and molybutylene oxide is 0-15% by weight, and the metal sulfate is 0.1-5% by weight.
JP58155383A 1983-08-25 1983-08-25 Process for removing oxides of nitrogen Pending JPS6048124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58155383A JPS6048124A (en) 1983-08-25 1983-08-25 Process for removing oxides of nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58155383A JPS6048124A (en) 1983-08-25 1983-08-25 Process for removing oxides of nitrogen

Publications (1)

Publication Number Publication Date
JPS6048124A true JPS6048124A (en) 1985-03-15

Family

ID=15604743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58155383A Pending JPS6048124A (en) 1983-08-25 1983-08-25 Process for removing oxides of nitrogen

Country Status (1)

Country Link
JP (1) JPS6048124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170344A (en) * 2011-12-23 2013-06-26 李雪梅 Catalyst for low-temperature SCR (Selective Catalytic Reduction) denitration and preparation method of catalyst
CN114308010A (en) * 2021-12-23 2022-04-12 江苏金聚合金材料有限公司 Preparation and application of titanium dioxide loaded molybdenum trioxide and vanadium pentoxide catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108517A (en) * 1980-01-30 1981-08-28 Mitsubishi Chem Ind Ltd Decomposition of nitrogen oxide in waste gas
JPS56168835A (en) * 1980-05-31 1981-12-25 Mitsubishi Petrochem Co Ltd Denitrating catalyst and denitrating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108517A (en) * 1980-01-30 1981-08-28 Mitsubishi Chem Ind Ltd Decomposition of nitrogen oxide in waste gas
JPS56168835A (en) * 1980-05-31 1981-12-25 Mitsubishi Petrochem Co Ltd Denitrating catalyst and denitrating method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170344A (en) * 2011-12-23 2013-06-26 李雪梅 Catalyst for low-temperature SCR (Selective Catalytic Reduction) denitration and preparation method of catalyst
CN103170344B (en) * 2011-12-23 2015-10-07 李雪梅 A kind of Catalysts and its preparation method for low temperature SCR denitration
CN114308010A (en) * 2021-12-23 2022-04-12 江苏金聚合金材料有限公司 Preparation and application of titanium dioxide loaded molybdenum trioxide and vanadium pentoxide catalyst
CN114308010B (en) * 2021-12-23 2023-11-03 江苏金聚合金材料有限公司 Preparation and application of titanium dioxide loaded molybdenum trioxide and vanadium pentoxide catalyst

Similar Documents

Publication Publication Date Title
US4003978A (en) Method for treating ammonia-containing gases
US4107272A (en) Process for removing nitrogen oxides using ammonia as a reductant and sulfated metallic catalysts
JP2682628B2 (en) Nitrogen oxide removal method and removal catalyst
US4138469A (en) Process for catalytically treating exhaust gas containing NOx in the presence of ammonia gas
KR101798713B1 (en) SCR Catalyst for Nitrogen Oxide Removal and Manufacturing method thereof
US3993731A (en) Selective removal of nitrogen oxides from waste gas
IE63828B1 (en) New catalyst capable of being used in a process for the selective reduction of oxides of nitrogen
US4350670A (en) Process for treating flue gas
JPS6211892B2 (en)
JPH1099684A (en) Catalyst composition for reduction of nox, its production and reducing method for nox in exhaust combustion gas containing oxygen
JPS5852698B2 (en) Datsushi Yokubai
US4031185A (en) Process for making nitrogen oxides contained in flue gas harmless
SK282140B6 (en) Process of catalytic oxidation of ammonia to nitrogen in exhaust gas
WO1994021373A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
JPH05212282A (en) Catalyst and method for treating sulfur compound containing gas
US4138368A (en) Catalyst for reducing nitrogen oxides
US4225462A (en) Catalyst for reducing nitrogen oxides and process for producing the same
CN1410149A (en) Combustion catalyst of hydrogen sulfide in gas and its preparation and use method
JPS6048124A (en) Process for removing oxides of nitrogen
JPS6029288B2 (en) Catalyst manufacturing method and denitrification method
WO2002034388A1 (en) Exhaust gas purifying catalyst compound, catalyst comprising said compound and method for preparing the compound
JPH0239297B2 (en)
KR100408880B1 (en) De-NOx CATALYSTS AND METHOD BY DIRECT CATALYTIC REDUCTION
WO2023203603A1 (en) Exhaust gas denitration method
JP3710975B2 (en) Low temperature denitration catalyst