JPS6048050B2 - information record carrier - Google Patents

information record carrier

Info

Publication number
JPS6048050B2
JPS6048050B2 JP52116339A JP11633977A JPS6048050B2 JP S6048050 B2 JPS6048050 B2 JP S6048050B2 JP 52116339 A JP52116339 A JP 52116339A JP 11633977 A JP11633977 A JP 11633977A JP S6048050 B2 JPS6048050 B2 JP S6048050B2
Authority
JP
Japan
Prior art keywords
reflective surface
base
light
signal
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52116339A
Other languages
Japanese (ja)
Other versions
JPS5450303A (en
Inventor
利治 藤田
千彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP52116339A priority Critical patent/JPS6048050B2/en
Publication of JPS5450303A publication Critical patent/JPS5450303A/en
Publication of JPS6048050B2 publication Critical patent/JPS6048050B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 この発明は特にビデオディスクとして用いて好適な情報
記録担体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an information record carrier suitable in particular for use as a video disc.

ビデオ信号や音声信号を平面盤上に刻印し、これの凹凸
面に沿つて反射面を形成し、この反射面にレーザビーム
等の光を照射して、この反射光の記録情報に対応した散
乱、反射角の相違、或は光の干渉による強弱の変化を光
電変換素子等を用いて電気信号に変換して原信号を再生
する方式が知られている。
A video signal or audio signal is engraved on a flat board, a reflective surface is formed along the uneven surface of the board, a laser beam or other light is irradiated onto this reflective surface, and the reflected light is scattered in accordance with the recorded information. A known method is to convert differences in reflection angles or changes in strength due to light interference into electrical signals using a photoelectric conversion element or the like to reproduce the original signal.

この場合、凹凸を持つ反射面を形成するには、基板樹脂
の表面にモールディング等によります情報に対応する凹
凸を形成し、この後、凹凸面にアルミニウム等の金属蒸
着を行つて反射面を形成する。又は、予め金属蒸着を行
つて反射面を作つておき、その後でモールディングによ
りこの反射面に凹凸を形成する方法も行なわれている。
これらの方法はいずれも光の反射面そのものに信号情報
に対応する凹凸面を作るものであるが、これらはディス
クの表面に金属面が露出しているために空気中で酸化に
よる錆が生じ易く、又指触−等によつても金属面が汚れ
、光の反射率が変つて情報が乱れる原因となつている。
In this case, in order to form a reflective surface with unevenness, the surface of the substrate resin is molded to form unevenness corresponding to the information, and then a metal such as aluminum is deposited on the uneven surface to form the reflective surface. . Alternatively, a method is also used in which a reflective surface is formed in advance by metal vapor deposition, and then irregularities are formed on the reflective surface by molding.
All of these methods create an uneven surface that corresponds to signal information on the light reflecting surface itself, but these methods are susceptible to rust due to oxidation in the air because the metal surface is exposed on the disk surface. Also, the metal surface becomes dirty due to touch with fingers, etc., which changes the reflectance of light and causes information to be distorted.

又、この方法により作成したビデオディスクは、物理的
に信号溝を走査し、感圧素子による信号取出し、或いは
静電容量による信号取出しによノる再生装置との互換性
はまつたく考えられない。何故なら、これらの表面の金
属膜は充分な耐摩耗性がなく、要求される圧縮弾性等が
ないからである。従つてこの発明の目的は、金属反射面
に錆、汚5れが付着することがなく、常に良好な光の反
射が得られ、且つ他の種々の再生方式、例えば物理的に
信号溝を走査して感圧素子による信号取出しを行なうT
ED方式、静電誘導による信号取り出しを行なうRCA
方式等の再生装置にも用いられる互換性のある情報記録
担体を提供することである。
Furthermore, it is unlikely that video discs created using this method will be compatible with playback devices that physically scan the signal grooves and extract signals using pressure-sensitive elements or capacitance. . This is because the metal films on these surfaces do not have sufficient wear resistance and do not have the required compressive elasticity. Therefore, an object of the present invention is to prevent rust and dirt from adhering to the metal reflective surface, to always obtain good light reflection, and to provide a method that can be used with various other reproduction methods, such as physically scanning the signal groove. T to extract the signal using the pressure sensitive element
ED method, RCA that extracts signals by electrostatic induction
It is an object of the present invention to provide a compatible information recording carrier that can also be used in playback devices such as those of the present invention.

以下図面を参照してこの発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図において、番号1は透明樹脂層、2は金属反射面
、3は基体金属円板である。基体金属円板3の上面は平
面となつており、従つて金属反射面2も平面反射面とな
つている。透明樹脂層1の上面には記録情報に対応した
凸部4および凹部5が記録方向6に沿つて順次形成され
ている。透明樹脂層1としては或る程度大きな光の屈折
率を有する材料が望ましく、例えば市楊に存在するもの
としては塩化ビニル樹脂、アクリル樹脂、スチロール樹
脂、オレフィン系樹脂等がこの発明に適する成形性を有
しており、必要な微細信号成型は反対盤による加熱加圧
成型により得られることは確認されている。
In FIG. 1, numeral 1 is a transparent resin layer, 2 is a metal reflective surface, and 3 is a base metal disc. The upper surface of the base metal disk 3 is a flat surface, and therefore the metal reflective surface 2 is also a flat reflective surface. Convex portions 4 and concave portions 5 corresponding to recorded information are sequentially formed on the upper surface of the transparent resin layer 1 along the recording direction 6. It is desirable for the transparent resin layer 1 to be made of a material having a relatively high refractive index of light, and for example, vinyl chloride resin, acrylic resin, styrene resin, olefin resin, etc., which are available in Ichiyang, have moldability suitable for this invention. It has been confirmed that the necessary fine signal molding can be obtained by heating and pressurizing molding using the opposite plate.

又、光の収斂、拡散性についてもこれら樹脂は1.1〜
1.6の屈折率を持つており、所望のレンズ効果に付い
ても満足できる性質を有することが確認された。例えば
塩化ビニール樹脂においては軟質塩化ビニール樹脂およ
び硬質塩化ビニール樹脂を加熱成型してレンチキュラ−
シートを作成し、これを用いて光像形成メカニズムと実
施態様が解明されている。第2図に入射光に対する反射
光の例を示す。
In addition, these resins also have light convergence and diffusion properties of 1.1 to 1.
It has a refractive index of 1.6, and was confirmed to have satisfactory properties in terms of the desired lens effect. For example, in the case of vinyl chloride resin, soft vinyl chloride resin and hard vinyl chloride resin are heated and molded to create lenticular shapes.
A sheet was created and used to elucidate the mechanism and implementation of photoimage formation. FIG. 2 shows an example of reflected light with respect to incident light.

信号面の凹凸の形は通常FM変調された信号の形と同一
と考えられるが、実際のディスクの上ではマスターから
スタンパー、更にディスクに反転され!成形された形は
信号とは少し異なり、最終的には事実上凸レンズや凹レ
ンズを並べた様な形状の溝となつており、ビデオディス
クの様にミクロン単位以下や反転や成型においては通常
起り得ることである。
,即ち、入射光束が凸部4の位置にあるとき
にはこの凸部が凸レンズの働きをして入射光束が収斂し
、凹部5の位置にあるときにはこの凹部5が凹レンズの
働きをして入射光束が拡散させられる。従つて、入射光
束に対して一定の位置、例えば入4射光束と同軸上に光
電変換受光部を設定すれは、そこに達する反射光量は樹
脂層1の凹凸に応じて変化し、この変化を光電変換によ
り電気信号として取り出すことがてきる。第2図の例で
は凸部4および凹部5に形成された凸レンズおよび凹レ
ンズの焦点が丁度反射面2にあるような場合であるが、
焦点がこの反射面2より更に樹脂層1又は基体3の方向
にある場合でも同様に信号再生ができる。第3A図はF
M変調信号の周波数が高く、凸部4の曲率半径が小さい
場合であつて、焦点が樹脂層1内にあり、平行な入射光
束は焦点で集束した後で反射面2により反射され、樹脂
層1の外部でフ収斂される。
The shape of the unevenness on the signal surface is usually considered to be the same as the shape of an FM modulated signal, but on an actual disc, it is reversed from the master to the stamper and then to the disc! The molded shape is slightly different from that of a signal, and the final result is a groove shaped like an array of convex and concave lenses, which usually occurs in submicron units such as video discs, or in inversion and molding. That's true.
That is, when the incident light beam is at the position of the convex part 4, this convex part acts as a convex lens and the incident light beam converges, and when it is at the position of the concave part 5, this concave part 5 acts as a concave lens and the incident light beam converges. be diffused. Therefore, if the photoelectric conversion light receiving section is set at a certain position relative to the incident light beam, for example, on the same axis as the incident light beam, the amount of reflected light that reaches it will change depending on the unevenness of the resin layer 1, and this change will be It can be extracted as an electrical signal through photoelectric conversion. In the example shown in FIG. 2, the focal point of the convex lens and concave lens formed in the convex portion 4 and concave portion 5 is exactly on the reflective surface 2, but
Even when the focal point is further toward the resin layer 1 or the base 3 than the reflective surface 2, signal reproduction can be performed in the same way. Figure 3A is F
In the case where the frequency of the M modulation signal is high and the radius of curvature of the convex portion 4 is small, the focal point is within the resin layer 1, and the parallel incident light beam is reflected by the reflective surface 2 after being focused at the focal point, and the convex portion 4 has a small radius of curvature. It converges outside of 1.

第3B図は周波数が低く凸部4の曲率半径が大きい場合
であつて、焦点が点線で示したように基体3のさらに下
方にあり、平行な入射光束は樹脂層1内に入射してこの
基体3の下方にある焦点に7向つて進み、途中で反射面
2により反射されて、丁度反射面2から実際の焦点まで
の距離と等しい樹脂層1内の位置で焦束され、樹脂層1
外で収斂される。
FIG. 3B shows a case where the frequency is low and the radius of curvature of the convex portion 4 is large, the focal point is further below the base body 3 as indicated by the dotted line, and the parallel incident light beam enters the resin layer 1. It advances toward the focal point located below the base 3, is reflected by the reflective surface 2 on the way, and is focused at a position within the resin layer 1 that is exactly equal to the distance from the reflective surface 2 to the actual focal point, and the resin layer 1
Converged outside.

第4A図は第3A図に示した高周波数の場合の)具体例
であり、説明を明確にするために反射面2のところで展
関して示されている。
FIG. 4A is a specific example (for the high frequency case shown in FIG. 3A), shown in perspective at the reflective surface 2 for clarity of explanation.

信号の周波数は4.2MHZであり、凸レンズの曲率半
径R=4.48μm1焦点距離f=13.7μm、凸部
4の頂点から反射面2までの距離が20pmであつた。
又、第4B図は第3B図に示した低周波数の場合の具体
例であり、信号の周波数は2.8M圧、凸レンズの曲率
半径R=9.99μm、焦点距離f=29.38p,m
1凸部4の頂点から反射面2までの距離が同じく20μ
mであつた。
The frequency of the signal was 4.2 MHZ, the radius of curvature R of the convex lens was 4.48 μm, the focal length f was 13.7 μm, and the distance from the apex of the convex portion 4 to the reflective surface 2 was 20 pm.
Further, Fig. 4B is a specific example of the low frequency case shown in Fig. 3B, where the signal frequency is 2.8M pressure, the radius of curvature of the convex lens R = 9.99μm, and the focal length f = 29.38p, m.
1 The distance from the vertex of convex part 4 to reflective surface 2 is also 20μ
It was m.

第3A,3B図はいずれも凸部4における光の収斂の場
合であり、凹部5の場合は図示しないが当然光は拡散す
る。
3A and 3B both show cases in which light converges in the convex portion 4, and in the case of the concave portion 5, although not shown, the light naturally diffuses.

従つて凸部4と凹部5では反射光量に大きな差が生じ、
又、周波数の高低によつても多少の光量差があるので、
凹凸の形状に略対応した再生信号波形が得られる。この
様に反射光による信号検出がフィリップス方式と同様に
行なう事が出来る。又、第1図に示した実施例は上述の
ような光学的再生でなく、スタイラスによる物理的走査
により感圧走査体を樹脂層1上面の凹凸に接触、滑動さ
せる。いわゆるTED方式による再生も可能である。こ
の場合は、有機溶剤に溶解した塩化ビニール樹脂を金属
面上に塗布することにより得る表面作成技術が確立され
ている。これにより充分な弾性と耐摩耗性を有し、通常
の硬質塩化ビニールシートにより作成するビデオディス
クと同等以上の耐摩耗性が得られた。例えば、厚さ0.
047707!、硬度190のニッケル薄板円板の表面
を溶剤を用いて清浄にして基板を用意する。
Therefore, there is a large difference in the amount of reflected light between the convex portions 4 and the concave portions 5,
Also, there is a slight difference in the amount of light depending on the frequency, so
A reproduced signal waveform substantially corresponding to the shape of the unevenness can be obtained. In this way, signal detection using reflected light can be performed in the same way as the Phillips method. Further, in the embodiment shown in FIG. 1, the pressure-sensitive scanning body is brought into contact with and slid on the irregularities on the upper surface of the resin layer 1 by physical scanning with a stylus, rather than optical reproduction as described above. Reproduction using the so-called TED method is also possible. In this case, a surface preparation technique has been established in which a vinyl chloride resin dissolved in an organic solvent is applied onto the metal surface. As a result, it has sufficient elasticity and abrasion resistance, and has an abrasion resistance equal to or higher than that of video discs made from ordinary hard vinyl chloride sheets. For example, thickness 0.
047707! A substrate is prepared by cleaning the surface of a thin nickel disk having a hardness of 190 using a solvent.

この楊合、ニッケル薄板の厚さと硬度は、再生装置の鞍
形固定台上に空気層を保ち勿らディスクを回転させるT
ED方式に使用する場合に、鞍形に沿つて彎曲するに充
分で且つ200万回におよぶ反復復元が可能な弾性限界
内変形を行なうに重要な要素である。且つ、均一な厚さ
のものを大,量に経済的に市場で求め得るものでなけれ
ばならないが、この面でもニッケル薄板はこの条件を満
たすものである。このようなニッケル薄板表面に溶剤を
溶かした塩化ビニール樹脂をロールコータ(回転塗布機
)にて塗布、乾燥する。塗布は1回に10pmの厚さづ
つ2回行ない塗布むらを少なくし、又欠落部をなくする
。又、この厚さは前述した如く成形後のレンズに相当す
る性能を持たせる為の厚さであり、信号の凹凸の大きさ
と深さおよび受光部とディスク面までの距離に関係して
決め−られるべきであるが、この楊合には20μmとな
つている。必要以上に厚い場合は光の透過率が落ち、薄
すぎる楊合は均一性を甚しく欠き、更に厚さに対するム
ラ量の比が大きくなつて好ましくなく、後述する成型工
程時に信号全面全体にむらなく微細信号を成型するのは
難かしい。
The thickness and hardness of the thin nickel plate are such that it allows the disk to rotate while maintaining an air layer on the saddle-shaped fixed base of the playback device.
When used in the ED method, this is an important element to perform deformation within the elastic limit that is sufficient to bend along the saddle shape and to allow repeated restoration up to 2 million times. In addition, it must be able to be economically obtained in the market in large quantities with uniform thickness, and nickel thin plates satisfy this condition in this respect as well. A vinyl chloride resin in which a solvent is dissolved is applied to the surface of such a nickel thin plate using a roll coater (rotary coating machine) and dried. Coating is performed twice at a thickness of 10 pm each time to reduce uneven coating and eliminate missing parts. Also, as mentioned above, this thickness is the thickness to provide performance equivalent to that of the lens after molding, and is determined in relation to the size and depth of the signal unevenness and the distance between the light receiving part and the disk surface. The distance should be 20 μm. If it is thicker than necessary, the light transmittance will drop, and if it is too thin, it will seriously lack uniformity, and the ratio of unevenness to thickness will become undesirable. It is difficult to mold fine signals without

この金属板ベースに樹脂を均一にコートする方法はすべ
に提案された方法を用いれはよい。塗布樹脂としては塩
酸ビニール共重合体樹脂を透明な溶剤を用いて溶液とな
し、普通加える着色剤等の透明性を妨げる物質は一切混
入せず用いた。次にこのシートを用い例えば140℃、
150kg/Cdの加熱加圧下で6秒間処理し、その後
冷却することによりビデオディスクが得られた。このデ
ィスクは反射光による再生装置に適合するのは勿論、接
触感圧式スタイラムによる再生装置によつても良好な再
生信号が得られた。尚、この実施例ではニッケル基板が
対電極となり、静電ピックアップとの間に挾まれる透明
樹脂層の凹凸により変化する静電容量が電気出力に変換
できるので、RCA方式として知られる静電容量方式に
も適用できる。更に光学的再生方式には反射光式の他に
トムソンCSF式として知られる透過光式の信号再生方
式とがあるが、この発明ではこれらの方式に対しても互
換性のあるディスクが得られる。
Any of the proposed methods may be used to uniformly coat the metal plate base with resin. As the coating resin, a vinyl hydrochloride copolymer resin was made into a solution using a transparent solvent, and no substances that would interfere with transparency, such as colorants that are normally added, were used. Next, using this sheet, for example, at 140°C,
A video disc was obtained by processing for 6 seconds under heat and pressure of 150 kg/Cd, and then cooling. This disk was not only suitable for a reproduction device using reflected light, but also provided a good reproduction signal with a reproduction device using a contact pressure-sensitive stylum. In this example, the nickel substrate serves as the counter electrode, and the capacitance that changes due to the unevenness of the transparent resin layer sandwiched between the electrostatic pickup and the electrostatic pickup can be converted into electrical output. It can also be applied to methods. In addition to the reflected light method, optical reproduction methods include a transmitted light signal reproduction method known as the Thomson CSF method, and the present invention provides a disc that is compatible with these methods as well.

第5図はその走査方向の断面を示す。透明樹脂層1の表
面は第1図と同様に凹凸信号面となつている。この樹脂
層1の底面はアルミニウム蒸着面2aと接し、更に透明
樹脂層基体3aと接している。即ち、透明樹脂基体層3
aとして0.1醜の透明塩化ビニールシートを用意し、
この平らな上面にアルミニウムを蒸着して反射透過面2
aが形成される。この楊合、アルミニウム蒸着は基体層
3a上面に均一に行ない、その光学的反射と透過の特性
を丁度50%づつに選定する。次にこの蒸着面を保護す
る目的で塩化ビニールの樹脂層1を塗布する。これは前
述の溶剤に溶かした溶液を約20μmの厚さに塗布し乾
燥させることによつて形成される。この後で、この透明
樹脂層1の面上に第5図に示した凹凸情報を通常の成型
機を用いて形成した。第6図は第5図の実施例における
再生時の入射光の反射、屈折の状態を示す。
FIG. 5 shows a cross section in the scanning direction. The surface of the transparent resin layer 1 has a concavo-convex signal surface similar to that shown in FIG. The bottom surface of this resin layer 1 is in contact with the aluminum vapor deposition surface 2a, and further in contact with the transparent resin layer base 3a. That is, the transparent resin base layer 3
Prepare a transparent vinyl chloride sheet with 0.1 ugliness as a,
Aluminum is vapor-deposited on this flat top surface to create a reflective and transmissive surface 2.
a is formed. This layering and aluminum vapor deposition are uniformly performed on the upper surface of the base layer 3a, and the optical reflection and transmission characteristics are selected to be exactly 50% each. Next, a resin layer 1 of vinyl chloride is applied to protect this vapor deposition surface. This is formed by applying a solution dissolved in the above-mentioned solvent to a thickness of about 20 μm and drying it. Thereafter, the unevenness information shown in FIG. 5 was formed on the surface of this transparent resin layer 1 using an ordinary molding machine. FIG. 6 shows the state of reflection and refraction of incident light during reproduction in the embodiment shown in FIG.

即ち、凸部4ては平行入射光は凸レンズ作用により半透
明のアルミニウム蒸着面2a上に集束され、半分は入射
光路に沿つて反射され、残りはアルミニウム蒸着面2a
を透過して透過基体層3aを透過する。又、凹部5では
平行入射光が凹レンズ作用によつて拡散され、アルミニ
ウム蒸着面2aで50%は反射され、残りは透過して基
体層3aを透過してさらに拡散される。従つて基体層3
aの下方に光電変換素子を設けることにより透過光によ
る良好な信号l再生ができる。この第5図の実施例の場
合は反射光による信号再生ばかりでなく、接触形再生方
式、アルミニウム蒸着面2aを対電極として静電容量式
再生方式にも良好に適用でき、良好な互換性が実現でき
る。以上述べたようにこの発明による情報記録担体は現
在知られている各再生方式に互換性を持つておりどの方
式でも信号の再生ができるばかりでなく、構造が簡単で
入手し易い材料で形成でき、金属面が露出していないの
で錆、指触による汚れ等つのおそれがなく良好な再生特
性が維持できる。
That is, in the convex portion 4, the parallel incident light is focused on the translucent aluminum vapor deposited surface 2a by the convex lens action, half of it is reflected along the incident optical path, and the rest is reflected on the aluminum vapor deposited surface 2a.
The light passes through the transparent base layer 3a. Further, parallel incident light is diffused in the concave portion 5 by a concave lens action, 50% of the light is reflected by the aluminum vapor deposited surface 2a, and the rest is transmitted through the base layer 3a and further diffused. Therefore, the base layer 3
By providing a photoelectric conversion element below a, good signal reproduction using transmitted light can be achieved. In the case of the embodiment shown in FIG. 5, it can be applied not only to signal reproduction using reflected light but also to a contact type reproduction method and a capacitance type reproduction method using the aluminum vapor-deposited surface 2a as a counter electrode, and has good compatibility. realizable. As described above, the information recording carrier according to the present invention is compatible with each currently known reproduction method, and can not only reproduce signals using any method, but also has a simple structure and can be formed from easily available materials. Since the metal surface is not exposed, there is no risk of rust, dirt from touching, etc., and good playback characteristics can be maintained.

従つて特別な保護層や特別な材料が不要であり、従来の
製造設備がそのまま用いられる等の利点がある。
Therefore, there are advantages such as no special protective layer or special material is required, and conventional manufacturing equipment can be used as is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の記録凹凸部を示す断面図
、第2図は再生時の光の径路を示す図、第3図Aは高周
波信号記録時の光の径路を示す図、第白B図は低周波信
号記録時の光の径路を示す図、第4A図および第4B図
は夫々第3A,3B図を詳細に説明する図、第5図はこ
の発明の他の実施例を示す断面図、第6図は第5図の実
施例の再生時の光の径路を示す図である。 1・・・・・・透明樹脂層、2・・・・・・反射面、3
・・・・・・基体、4・・・・・・凸部、5・・・・・
・凹部。
FIG. 1 is a cross-sectional view showing the recording unevenness of an embodiment of the present invention, FIG. 2 is a view showing the path of light during reproduction, and FIG. 3A is a view showing the path of light during high-frequency signal recording. FIG. 4A and 4B are diagrams explaining FIGS. 3A and 3B in detail, respectively, and FIG. 5 is another embodiment of the present invention. FIG. 6 is a diagram showing the path of light during reproduction in the embodiment of FIG. 5. 1... Transparent resin layer, 2... Reflective surface, 3
... Base body, 4 ... Convex part, 5 ...
・Concavity.

Claims (1)

【特許請求の範囲】 1 基体と、この基体表面上に形成された反射面と、こ
の反射面上に設けられ記録情報に応じて形成された凹凸
を有する透明樹脂層とを有し、前記凹凸が前記透明樹脂
層を通つて入射し反射面で反射される光束に対して、凹
レンズおよび凸レンズとして作用することを特徴とする
情報記録担体。 2 前記基体が金属であり、反射面がこの金属基体の表
面に形成されていることを特徴とする特許請求の範囲第
1項による情報記録担体。 3 前記反射面が前記基体表面に形成された金属蒸着層
であることを特徴とする特許請求の範囲第1項による情
報記録担体。 4 前記基体が透明材で成り、前記反射面が垂直入射光
に対して約50%の光透過率を有する金属蒸着層である
ことを特徴とする特許請求の範囲第1項による情報記録
担体。 5 前記記録情報が周波数変調されて成ることを特徴と
する特許請求の範囲第1項による情報記録担体。
[Scope of Claims] 1 A device comprising a base, a reflective surface formed on the surface of the base, and a transparent resin layer provided on the reflective surface and having unevenness formed in accordance with recorded information, wherein the unevenness is act as a concave lens and a convex lens for a light beam incident through the transparent resin layer and reflected by a reflecting surface. 2. The information recording carrier according to claim 1, wherein the base is made of metal, and a reflective surface is formed on the surface of the metal base. 3. The information recording carrier according to claim 1, wherein the reflective surface is a metal vapor deposited layer formed on the surface of the substrate. 4. An information recording carrier according to claim 1, wherein the base is made of a transparent material, and the reflective surface is a metal vapor deposited layer having a light transmittance of about 50% for vertically incident light. 5. An information recording carrier according to claim 1, characterized in that the recorded information is frequency modulated.
JP52116339A 1977-09-28 1977-09-28 information record carrier Expired JPS6048050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52116339A JPS6048050B2 (en) 1977-09-28 1977-09-28 information record carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52116339A JPS6048050B2 (en) 1977-09-28 1977-09-28 information record carrier

Publications (2)

Publication Number Publication Date
JPS5450303A JPS5450303A (en) 1979-04-20
JPS6048050B2 true JPS6048050B2 (en) 1985-10-25

Family

ID=14684495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52116339A Expired JPS6048050B2 (en) 1977-09-28 1977-09-28 information record carrier

Country Status (1)

Country Link
JP (1) JPS6048050B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319252A (en) * 1980-07-21 1982-03-09 Drexler Technology Corporation Optical data storage and recording medium having a replaceable protective coverplate

Also Published As

Publication number Publication date
JPS5450303A (en) 1979-04-20

Similar Documents

Publication Publication Date Title
TW411456B (en) Optical recording medium, substrate for the same and stamper
JPH09134545A (en) Optical memory media and its preparation
JPH0323981B2 (en)
JP4258037B2 (en) Optical recording medium and optical recording / reproducing apparatus using the same
JP3338660B2 (en) optical disk
JPH10283683A (en) Optical recording medium and its manufacture
WO2000070608A1 (en) Disk-like multilayer information recording medium and production method thereof
JPS6048050B2 (en) information record carrier
JPS6318254B2 (en)
JPH09147417A (en) Optical recording medium and its production
US4819223A (en) Video record disc
JPH057774B2 (en)
JPH09134547A (en) Optical recording medium and its manufacture
JP3840566B2 (en) Multi-layer structure optical recording medium and manufacturing method thereof
JP2637587B2 (en) Information recording medium and recording / reproducing method
JPH0344838A (en) Optical disk
JPH1153767A (en) Optical data recording disk and its production
JPS6020337A (en) Manufacture of information recording carrier
JP2505241B2 (en) Optical disc and manufacturing method thereof
JPH08124223A (en) Production of optical disc
JPH04205932A (en) Optical information recording medium
JPH05323855A (en) Hologram film with improved color development property and high diffraction efficiency
JPS61113142A (en) Producing method of stamper for optical disk
TW556188B (en) Manufacturing method for compact disk
JPS62137742A (en) Information recording disk