JPS6047986B2 - Method and equipment for collecting samples in high to low pressure liquids - Google Patents

Method and equipment for collecting samples in high to low pressure liquids

Info

Publication number
JPS6047986B2
JPS6047986B2 JP54030811A JP3081179A JPS6047986B2 JP S6047986 B2 JPS6047986 B2 JP S6047986B2 JP 54030811 A JP54030811 A JP 54030811A JP 3081179 A JP3081179 A JP 3081179A JP S6047986 B2 JPS6047986 B2 JP S6047986B2
Authority
JP
Japan
Prior art keywords
sample
liquid
sliding
outer cylinder
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54030811A
Other languages
Japanese (ja)
Other versions
JPS55122133A (en
Inventor
淑子 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP54030811A priority Critical patent/JPS6047986B2/en
Publication of JPS55122133A publication Critical patent/JPS55122133A/en
Publication of JPS6047986B2 publication Critical patent/JPS6047986B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 この発明は、井戸や湖沼、海等の所望深度における試
料液体を採取する方法とそれに使用する装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for collecting a sample liquid at a desired depth in a well, lake, ocean, etc., and an apparatus used therefor.

井戸や湖沼、海等においてかなり深い部分の水質や含
有物質の調査をする場合、従来までは所要深度における
液圧に抗し得る機械的強度に形成された気密性圧力容器
を使用していたが、深度が増し、500〜1000mあ
るいはそれ以上の深度における試料液体を採取する必要
のある時には、その機械的強度を付与するための技術な
らびに材料の点で非常に困難な課題に直面するばかりで
はなく、経済的にも極めて高価なものとなつてしまい、
実用性に乏しいものであらた。
Previously, when investigating the water quality and substances contained in fairly deep areas such as wells, lakes, marshes, and the sea, an airtight pressure vessel was used, which had the mechanical strength to withstand the hydraulic pressure at the required depth. As the depth increases, and it is necessary to collect sample liquids at depths of 500 to 1000 m or more, we not only face very difficult challenges in terms of technology and materials to provide the mechanical strength. , it has become economically extremely expensive,
It turned out to be impractical.

この発明は、それら従前のものの諸欠点に対処すべく開
発研究を継続してきたものであつて、以下においてその
成果を具体的に説明するものである。
This invention has been developed through continued research and development to address the drawbacks of the previous ones, and the results will be specifically explained below.

即ち、従前までのこの種の採取方法が試料採取部分とし
て予め試料採取装置内部に試料採取空間を構成しておき
、試料液体採取層までその空間を維持した状態で到達さ
せるものであつたから、深度が増すに従つて増大する液
圧は該装置の空間を構成する部材の外表面側たけから強
大な押圧外力として作用することとなり、したがつて、
その構成部材な強大な押圧外力に充分に耐え得るだけの
曲げ応力を有するものでなければならず、しかも、構成
部材相互の接合構造においても強度ならびに気密性の点
で相当に高度な設計を必要とすることになつていた。
In other words, in the conventional sampling method of this type, a sample collection space was formed in advance inside the sample collection device as the sample collection part, and the sample liquid was reached while maintaining that space, so the depth As the pressure increases, the increasing hydraulic pressure acts as a strong external pressing force from the side of the outer surface of the member constituting the space of the device, and therefore,
The components must have enough bending stress to withstand the strong external pressure, and the joint structure between the components also requires a highly sophisticated design in terms of strength and airtightness. It was supposed to be.

そこで、この発明では、それら従前のもののように予め
試料採取装置に試料採取空間を内蔵させる方法から脱却
し、所定試料液体採取層において試料液体を採取するま
ては該装置を構成する各部材の全表面に実質的に略均等
に液圧が分布するようにし、試料液体を採取すべき位置
においてその液圧分布状況を変えることなく区画室を構
成するようにして、各構成部材が負担する液圧を単に各
構成部材の有する圧縮応力のみて処理させようとするも
のてあつて、まず、第1過程において、対.向面相互を
互いに当接させて物理的に接触した状態の少くとも一対
の滑動区画体1,1″を両端が実質的に開放状に等しい
筒状の外筒体2内部に収容して成る夫々が密実な素材に
より形成された試料採取装置Xを、所望する液体中に次
第に沈降さ.”せて所定の試料液体採取層に位置させる
Therefore, in this invention, we depart from the previous method of incorporating a sample collection space into the sample collection device in advance, and instead collect the sample liquid in a predetermined sample liquid collection layer, and The liquid pressure is distributed substantially evenly over the entire surface, and the liquid pressure borne by each component is reduced by forming compartments without changing the liquid pressure distribution at the position where the sample liquid is to be collected. In the case where the pressure is to be treated simply by using the compressive stress of each component, first, in the first step, the pair. At least a pair of sliding partitions 1, 1'' with their facing surfaces abutting each other and in physical contact are housed inside a cylindrical outer cylinder 2 with both ends substantially open. The sample collection devices X, each made of a solid material, are gradually lowered into the desired liquid and positioned at a predetermined sample liquid collection layer.

この過程においては、該装置の各構成部材1,1″ない
し2は各構成部材相互が当接する面を除いた各面が直接
周辺の液体に接触した状態となつて略均等に液圧を受け
、更に、相互に当接する各構成部材くの当接面も夫々物
理的に接触した状態となつていて実質的に空間に相当す
る部分が存在しないことから、各構成部材の圧縮応力相
互が平衡して恰も一体の構成部材におけるような応力分
布となり、したがつて、この部分においても先の直に液
体に接触した面と同様に略均等に液圧を受けた状態と考
えることができ、該装置を構成する各部材1,1″ない
し2はこの全表面に実質的に略均等な受圧状態となつて
、平衡した外力を各構成部材の圧縮応力でのみ対抗すれ
ば足りるものとなる。この第1過程により所定位置に止
め置かれた状態で、続いて、第2過程では、格筒体2に
収容された滑動区画体1,1″の中、何れか一方を外筒
ノ体2の軸線方向に平行移動させ、この平行移動の過程
て同時的に(即ち、空間部を形成することなく)周辺の
試料液体Wを平行移動させた滑動区画体1および元の位
置のままにある滑動区画体1″、更には、その周辺の外
筒体2の内壁面て囲・まれた区画室3に動入させる。こ
の際の各構成部材1,1″ないし2への受圧状況は、滑
動区画体1が平行移動を開始すると同時に、それまで浸
入する余地のなかつた周辺試料液体採取層の液体Wが、
例えば、外筒体2に設けられた貫通孔4から″動入する
こととなる結果、動入した試料液体Wも周辺の液体wと
全く同一の液圧を有していることから、この過程におけ
る各構成部材1,1″ないし2への液圧の分布状況は先
の第1過程と全く同様に略均等なものとなる。こうして
、区画室3内に試料液体Wを動入したまま、先の試料液
体wの浸入箇所となつた部分を第3過程で隠蔽し、試料
液体Wを実質的に区画室3内に封入状態とする。
In this process, each of the component members 1, 1'' and 2 of the device is in a state where each surface, excluding the surfaces where the component members contact each other, is in direct contact with the surrounding liquid and receives liquid pressure almost equally. Furthermore, since the contact surfaces of the constituent members that are in contact with each other are also in physical contact with each other and there is virtually no space, the compressive stress of each constituent member is balanced. As a result, the stress distribution becomes as if it were in an integral component, and therefore, this part can be considered to be in a state where the liquid pressure is applied almost equally, just like the surface that was in direct contact with the liquid. Each member 1, 1'' or 2 constituting the device receives a substantially uniform pressure over its entire surface, and it is sufficient to counter the balanced external force only with the compressive stress of each component. In the state in which the sliding partition bodies 1 and 1'' housed in the case cylinder 2 are fixed at a predetermined position in the first process, one of the sliding partition bodies 1 and 1'' housed in the case cylinder 2 is moved to the outer cylinder body 2 in the second process. The sliding partition body 1 is moved in parallel in the axial direction of the sliding partition body 1, and the surrounding sample liquid W is simultaneously moved in parallel during this translation process (i.e., without forming a space), and the sliding partition body 1 remains in its original position. The sliding compartment 1'' is moved into a compartment 3 surrounded by the inner wall surface of the outer cylinder 2 around it. At this time, the pressure received by each component 1, 1'' or 2 is as follows: At the same time as the sliding partition 1 starts to move in parallel, the liquid W in the surrounding sample liquid collection layer, which had no room to enter until then,
For example, as a result of the sample liquid W moving in through the through hole 4 provided in the outer cylinder 2, the sample liquid W that has moved in has exactly the same liquid pressure as the surrounding liquid W, so this process The distribution of hydraulic pressure to each of the structural members 1, 1'', and 2 in this step is approximately uniform, just as in the first step. In this way, while the sample liquid W is being moved into the compartment chamber 3, the part where the sample liquid w previously entered is hidden in the third step, and the sample liquid W is substantially sealed in the compartment chamber 3. shall be.

この過程においても区画室3内に実質的に封入された状
態の試料液体Wは周辺液体Wと全く同一の液圧のままで
あるから、各構成部材1,1″ないし2への液圧分布状
況は先の第1ないし2過程と同様な状態が継続されてい
る。この第3過程を終了した後、第4過程で該装置Xを
引き上げれば、区画室3内に所定層の試料液体Wを封入
したまま該装置Xが回収され、試料液体Wを採取するこ
とができるものである。
Even in this process, the sample liquid W substantially sealed in the compartment 3 remains at exactly the same liquid pressure as the surrounding liquid W, so the liquid pressure distribution to each component 1, 1'' or 2 is The situation continues to be the same as in the first and second steps above.After completing this third step, when the device The device X is recovered with W still sealed, and the sample liquid W can be collected.

この際の液圧分布状況は、該装置が次第に引き上げられ
る過程で周辺液体Wは減圧状態となり、区画室3に封入
された試料液体Wの液圧と差異を生ずることとなるが、
この差圧は区画室3を形成する滑動区画体1,1″ない
し外筒体2に夫々均等に加圧され、滑動区画体1,1″
の係止手段あるいは外筒体2の形状を適宜選択すること
により十分に対応可能である。
At this time, the liquid pressure distribution situation will be such that the surrounding liquid W will be in a reduced pressure state as the device is gradually pulled up, and the liquid pressure will be different from the liquid pressure of the sample liquid W sealed in the compartment 3.
This differential pressure is applied equally to the sliding compartments 1, 1" and the outer cylinder 2 forming the compartment 3, and the sliding compartments 1, 1"
This can be sufficiently handled by appropriately selecting the locking means or the shape of the outer cylinder 2.

そして、一部の試料液体Wはこの過程の圧力関係で実質
的に封入状態の区画室3から外方に漏出することも考え
られるが、この際においても区画室3から外方への一方
通行だけに止まることから区画室3内へ所望しない層に
おける液体の混入は完全に防止することができ、試料液
体Wの価値を下げることはない。なお、上記第1ないし
4過程による試料の採取方法においては、該装置Xを所
望する液体W中を沈降、上昇させる手段、ならびに、滑
動区画体1,1″の平行移動手段、更には、区画室3内
に試料液体Wを動入し、隠蔽する手段は夫々従来までの
妥当な技術的手段を選択しさえすれば十分に実施可能て
あつて特別の手段に限定されるものではない。次に、こ
の高〜低圧液体中における試料の採取方法に使用する最
も基本的な装置について説示すれば、第2ないし3図に
示されたように、実質的に両端が開放状に等しい筒状に
形成された外筒体2の所要箇所に、該外筒体2の内外に
通じる貫通孔4を少くとも1個形成する。
It is conceivable that part of the sample liquid W leaks outward from the compartment 3 which is in a substantially sealed state due to the pressure relationship in this process, but even in this case, there is only one-way flow from the compartment 3 to the outside. Therefore, it is possible to completely prevent liquid from entering the compartment 3 in an undesired layer, and the value of the sample liquid W is not lowered. In addition, in the sample collection method according to the first to fourth steps described above, a means for causing the device The means for moving the sample liquid W into the chamber 3 and concealing it can be sufficiently implemented by selecting appropriate conventional technical means, and are not limited to special means. To explain the most basic equipment used in this method of collecting samples in high to low pressure liquids, as shown in Figures 2 and 3, it is a cylindrical device that is substantially open at both ends. At least one through hole 4 communicating with the inside and outside of the outer cylinder 2 is formed at a required location of the formed outer cylinder 2.

(2個以上形成する場合には外筒体5の軸線に直交する
断面上に位置するようにしなければならない。)そして
、この外筒体2の内部に同外筒体の内部空間を実質的に
区画し、しかも、該外筒体2の内壁面に沿つて密着した
状態で滑動自在となる滑動区画体1,1″を少くとも一
対嵌挿し、それら一対の滑動区画体1,1″の各対向面
を互いに当接させ、両面全面が物理的に接触した状態と
なつて実質的に両者間に間隙を生じないようにする。(
図面では表現上間隙を有するが如きに示されている。)
そして、このような関係に滑動区画体1,1″を組み合
わせたまま、外筒体2の軸線に沿つて最初に平行移動す
る滑動区画体1によつて先の外筒体2に設けられた貫通
孔4を隠蔽するような位置関係となるように、この滑動
区画体群1,1″と外筒体2との位置を決定すると共に
、滑動区画体1が所定距離平行移動した後、他の滑動区
画体1″が先の滑動区画体1と該所定間隔を維持したま
ま平行移動を行い、その結果この遅れて作動する作動す
る滑動区画体1″によつて先の外筒体2に設けられた貫
通孔4を隠蔽できるように滑動区画体1,1″相互の平
行移動を規制するようにした試料採取装置てある。なお
、21は滑動区画体群1,1″を外筒体2内に収容した
際に、先に作動する滑動区画体1によつて正確に貫通孔
4を隠蔽することができるように案内をする外筒体2に
一体に形成された案内用隔壁であり、22は後発の滑動
区画体1″が作動した後において正確に貫通孔4を隠蔽
するようにする規制用隔壁である。
(If two or more are formed, they must be located on a cross section perpendicular to the axis of the outer cylinder 5.) Then, the internal space of the outer cylinder 2 is substantially filled inside the outer cylinder 2. At least a pair of sliding partitions 1, 1'' are fitted and inserted into the outer cylindrical body 2. The opposing surfaces are brought into contact with each other so that the entire surfaces of both surfaces are in physical contact with substantially no gap between them. (
In the drawings, it is shown as if there is a gap. )
Then, with the sliding partition bodies 1 and 1'' combined in this relationship, the sliding partition body 1, which first moves in parallel along the axis of the outer cylinder body 2, is provided on the previous outer cylinder body 2. The positions of the sliding partition group 1, 1'' and the outer cylinder 2 are determined so that the through hole 4 is hidden in a positional relationship, and after the sliding partition 1 has moved in parallel a predetermined distance, the other The sliding compartment 1'' moves in parallel with the previous sliding compartment 1 while maintaining the predetermined distance, and as a result, the delayed sliding compartment 1'' moves the sliding compartment 1'' to the previous outer cylinder 2. There is a sample collecting device which restricts mutual parallel movement of the sliding partition bodies 1, 1'' so as to hide the provided through-hole 4. Note that 21 indicates the sliding partition group 1, 1'' by connecting it to the outer cylindrical body. This is a guiding partition formed integrally with the outer cylindrical body 2, which guides the through hole 4 so that the through hole 4 can be accurately hidden by the sliding partition 1 that operates first when the housing is housed in the outer cylindrical body 2. , 22 are regulating partition walls that accurately hide the through hole 4 after the subsequent sliding partition body 1'' is activated.

そして、これら滑動区画体1,1″の規制された関係の
平行移動を可能ならしめているのが、一端側が駆動源M
に連動され、他端側にストッパー12を有するようにし
て滑動区画体1の上下に一体的に形成されたシャフト1
1である。また、駆動源Mに例示されたものは、交流モ
ーターmを内部に空間を形成させないようにして完全に
低粘性絶縁オイルIに浸漬し、周辺を内外圧連絡膜Bで
包囲した高圧用のシールを必要としない駆動源の一例で
あつて、この装置には最も適した駆動源であるが、特に
この例に限定されるものではなく、用途に応じてあらゆ
る駆動源の採用が可能であることは勿論である。
The parallel movement of these sliding partitions 1, 1'' in a regulated manner is possible because one end is connected to the driving source M.
A shaft 1 is integrally formed above and below the sliding partition body 1 and has a stopper 12 on the other end side.
It is 1. In addition, the example of the drive source M is a high-pressure seal in which the AC motor m is completely immersed in low-viscosity insulating oil I without forming a space inside, and the periphery is surrounded by an internal and external pressure communication membrane B. This is an example of a drive source that does not require a drive source, and is the most suitable drive source for this device, but it is not limited to this example, and any drive source can be used depending on the application. Of course.

更にまた、図中23は最初に平行移動する滑動区画体1
が所定距離移動する際に排斥する外筒体2内に混入した
液体W″の逃げ孔を示したものであつて、このような逃
げ孔を適宜箇所に設けて実質的に外筒体2の両端を開放
状に等しい状態としても良いし、図上では省略した外筒
体2の上端部を実際に開放したものとしても良く、その
技術的解決手段は適宜選択可能てある。
Furthermore, in the figure, 23 is the sliding partition body 1 that first moves in parallel.
This figure shows an escape hole for liquid W'' mixed into the outer cylinder body 2 which is expelled when the liquid moves a predetermined distance.Such escape holes are provided at appropriate locations to substantially eliminate the Both ends may be equally open, or the upper end of the outer cylindrical body 2 (not shown in the figure) may actually be open, and the technical solution can be selected as appropriate.

また、図示はされていないが、外筒体2の下端側で案内
用隔壁21の下面近傍にも液体面へ投入時に封入される
可能性のある空気を排出し、しかも、外筒体2の沈降時
の液体Wの移動を容易にして抵抗を少からしめる適当な
逃け孔を形成するようにすること、更には、区画室3に
相当する箇所の外筒体2に試料液体Wを取り出すための
栓付取り出し孔を設けるようにすることも夫々必要に応
じて当然採用し得る技術的手段である。
In addition, although not shown in the drawings, air that may be enclosed when the liquid is introduced into the liquid surface is discharged near the lower surface of the guide partition 21 on the lower end side of the outer cylinder 2. An appropriate escape hole is formed to facilitate the movement of the liquid W during sedimentation and reduce resistance, and furthermore, the sample liquid W is taken out into the outer cylinder 2 at a location corresponding to the compartment 3. Providing an extraction hole with a stopper for this purpose is also a technical means that can be adopted as required.

上記のような構成から成る試料採取装置Xをこの発明の
試料採取方法に従つて説明したものが第〔4図以後に示
されている。
An explanation of the sample collecting device X having the above-mentioned configuration according to the sample collecting method of the present invention is shown in FIG. 4 and subsequent figures.

第4図は、該装置をこの発明の試料採取方法における第
2過程から第3過程初期に及んだ時点で捕えた状況を図
示したもので、第2過程で最初に作動する滑動区画体1
を駆動源Mに連動したシヤフト11の作動によつて上昇
させることにより外筒体2の軸線に沿つて平行移動させ
た結果、シャフト11の下端側に取着されたストッパー
12が他の滑動区画体1″に当接して該滑動区画体1″
を先の滑動区画体1と所定間隔に保持したまま平行移動
を開始し始めたところである。
FIG. 4 is a diagram illustrating a situation in which the device is captured from the second stage to the beginning of the third stage in the sample collection method of the present invention, in which the sliding compartment body 1 is activated first in the second stage.
As a result, the stopper 12 attached to the lower end side of the shaft 11 is moved upwardly by the operation of the shaft 11 linked to the drive source M, thereby moving it parallelly along the axis of the outer cylinder 2. The sliding partition body 1'' abuts against the body 1''
It has just started to move in parallel while maintaining the sliding partition body 1 at a predetermined distance from the previous sliding partition body 1.

この過程では、各滑動区画体1,1″ないし外筒体2に
よつて区画された区画室3に貫通孔4を通じて試料液体
Wが矢印で示すような動きで既に満されており、各構成
部材1,1″ないし2等には先に説明したとおりの受圧
状態が実現されていて、各構成部材はその圧縮応力のみ
によつて形状を通常と同様な状態に維持している。
In this process, the sample liquid W moves as shown by the arrow through the through hole 4 into the compartment 3 divided by each sliding compartment 1, 1'' or the outer cylinder 2, and the sample liquid W moves as shown by the arrow. The pressure-receiving state as described above is realized in the members 1, 1'', 2, etc., and each component maintains its shape in the same state as usual only by its compressive stress.

第5図では、この発明の試料採取方法の第3過程を終了
した時点以後の該装置の状態を図示したもので、各滑動
区画体1,1″が所定の間隔を置いて平行移動した結果
、後発の(図面では下方の)滑動区画体1″が貫通孔4
を隠蔽し、破線で図示された区画室3内の試料液体Wは
実質的に封入状態となる。
FIG. 5 illustrates the state of the apparatus after completing the third step of the sample collection method of the present invention, as a result of the parallel movement of each sliding partition body 1, 1'' at a predetermined interval. , the later (lower in the drawing) sliding compartment 1″ is connected to the through hole 4.
, and the sample liquid W in the compartment 3 indicated by the broken line is substantially sealed.

この状態でも各構成部材の受圧状況は既に説明したとお
り各面全面に略均等に液圧が分布し各構成部材の圧縮応
力と平衡した状態となつている。
Even in this state, as described above, the pressure received by each component is such that the hydraulic pressure is distributed approximately evenly over the entire surface and is in equilibrium with the compressive stress of each component.

こうして該装置Xを回収すれぱ所望する層における試料
液体Wが採取されるものである。なお、上記までの実施
例では滑動区画体が一対のものによつて説示したが、そ
れ以上の対から成るものとし、各深度毎に段階的に作動
させるようにするものもほとんど同様の機構を多段式に
形成することによつて実現することができるものであ.
る。
When the apparatus X is recovered in this manner, the sample liquid W in the desired layer is collected. In addition, in the embodiments described above, a pair of sliding compartments has been explained, but an almost similar mechanism can be used to construct one that consists of more than one pair and is operated in stages at each depth. This can be achieved by forming it in multiple stages.
Ru.

また、対をなす滑動区画体の一方(即ち、後発のもので
図面では下方のもの)を外筒体2と一体に形成した固定
されたものとし、貫通孔4はその他の適当な手段、例え
ば、逆止弁等を利用して隠蔽するようにしたものもこの
発明の試料採取方法に包含される。
Also, one of the pair of sliding compartments (i.e., the latter one and the lower one in the drawing) is formed integrally with the outer cylinder 2 and is fixed, and the through hole 4 is formed by other suitable means, e.g. , a method in which the specimen is concealed using a check valve or the like is also included in the sample collection method of the present invention.

更にまた、図示はされていないが、外筒体2と滑動区画
体1,1″との密着接触手段は、両者の間にピストリン
グ様の中間部材等を介することにより更に一段と両者の
密着精度を高めるようにして実施すれば、より効率よく
試料液体の採取が可能となるものである。
Furthermore, although not shown, the close contact means between the outer cylinder 2 and the sliding partitions 1, 1'' can be further improved by interposing an intermediate member such as a piston ring between the two. If carried out in such a way as to increase the amount of water, the sample liquid can be collected more efficiently.

叙述のとおり、この発明の高〜低圧液体中における試料
の採取方法ならびにその装置によれば、密実で圧縮強度
に優れた素材てあれは鋼材に限らずその他の素材のもの
によつても実施可能なものであり、しかも、特に材厚の
大きいものを採用することもなく、その構成も極めて簡
単なものであることから、従前のものに比較して製造な
らびに取り扱い作業性が簡便なものであり、更に特に重
要な効果として、現状において考えられるあらゆる深度
における試料液体の採取が実質的に可能となることを挙
げておかなければならない。
As described above, according to the method and apparatus for collecting samples in high to low pressure liquids of the present invention, it is possible to use not only steel but also other materials that are dense and have excellent compressive strength. Furthermore, since it does not require particularly thick materials and its construction is extremely simple, it is easier to manufacture and handle than previous products. However, it must be mentioned that a particularly important effect is that it becomes virtually possible to collect sample liquid at all conceivable depths at present.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明による試料採取方法ならびに−それに
使用する装置を説明するための代表的な実施例の一つを
示したもので、第1図は、試料採取方法の各過程を順次
図示したもの、第2ないし3図は、その試料採取方法に
使用する装置の一部を省略した断面図ならびに同装置の
使用態様を示した説明図、第4ないし5図は、同装置の
作動過程を示したものの一部を省略した断面図である。
The drawings show one typical embodiment for explaining the sample collection method according to the present invention and the apparatus used therein, and FIG. 1 sequentially illustrates each step of the sample collection method. , Figures 2 and 3 are partially omitted cross-sectional views of the apparatus used in the sample collection method and explanatory diagrams showing how the apparatus is used, and Figures 4 and 5 are diagrams showing the operating process of the apparatus. FIG.

Claims (1)

【特許請求の範囲】 1 下記第1ないし4過程により所望する高〜低圧液体
中における試料液体を採取する過程において、少くとも
第1ないし3過程における試料採取装置の各構成部材個
々の全表面に実質的に液体圧力が略均等に分布するよう
にした高〜低圧液体中における試料の採取方法。 第1過程 対向面相互を互いに当接させた関係にある少くとも一対
の滑動区画体と、同滑動区画体を収容し、且つ、その両
端側を開枚状に等しくした筒状の外筒体とを夫々密実な
素材により形成した試料採取装置を所望する液体中に次
第に沈降させ、この沈降過程において常に外筒体内外に
液体が接触する如くして所定の試料液体採取層に位置さ
せる。 第2過程 第1過程において所定深度に位置させられた試料採取装
置の少くとも1個の滑動区画体を外筒体の軸線方向に所
定距離だけ平行移動させることにより、滑動区画体相互
ならびに外筒体によつて構成される区画室内に試料液体
採取層における液体を動入する。 第3過程 試料液体を区画室に収容したまま所定距離離反した状態
で一対の滑動区画体を平行移動させることにより、試料
液体を実質的に区画室内に封入状態とする。 第4過程 試料液体を実質的に区画室内に封入状態としたまま、該
試料採取装置を引き上げて区画室内の試料液体を採取す
る。 2 実質的に両端が開放状に等しい筒状に形成された外
筒体の所要箇所に、該外筒体内外に通じる貫通孔を少く
とも1個形成すると共に、前記外筒体内部には同外筒体
の内部空間を実質的に区画し、しかも、該外筒体内壁面
に沿つて滑動自在な滑動区画体を少くとも一対各対向面
を互いに当接させて嵌挿して成る試料採取装置において
、最初に作動させる滑動区画体が前記貫通孔を隠蔽する
ように一連の滑動区画体の位置を規制して配設すると共
に、一連の滑動区画体相互が、最初に作動する滑動区画
体に後れて順次所定間隔置きに連動して平行移動する如
く連結させて形成された特許請求の範囲第1項に記載さ
れた高〜低圧液体中における試料の採取方法に使用する
試料採取装置。
[Scope of Claims] 1. In the process of collecting a sample liquid in a desired high to low pressure liquid in the following first to fourth processes, at least the entire surface of each component of the sample collecting device in the first to third processes is A method for collecting a sample in a high to low pressure liquid in which the liquid pressure is substantially evenly distributed. First step: at least a pair of sliding compartments whose opposing surfaces are in contact with each other, and a cylindrical outer cylinder that accommodates the sliding compartments and has both ends equally open. A sample collecting device made of a solid material is gradually lowered into the desired liquid, and is positioned at a predetermined sample liquid collecting layer in such a way that the liquid is constantly in contact with the inside and outside of the outer cylinder during this sedimentation process. Second step: By moving at least one sliding section of the sample collecting device positioned at a predetermined depth in the first step in parallel by a predetermined distance in the axial direction of the outer cylinder, the sliding sections are moved toward each other and the outer cylinder. The liquid in the sample liquid collection layer is moved into the compartment formed by the body. Third step: By moving the pair of sliding compartments in parallel while keeping the sample liquid contained in the compartment and separated by a predetermined distance, the sample liquid is substantially enclosed within the compartment. Fourth step: While the sample liquid is substantially sealed in the compartment, the sample collection device is pulled up to collect the sample liquid in the compartment. 2 At least one through hole that communicates with the inside and outside of the outer cylinder is formed at a required location in the outer cylinder, which is formed into a cylindrical shape with substantially open ends, and the same hole is formed inside the outer cylinder. In a sample collecting device comprising at least a pair of sliding compartment bodies that substantially partition an internal space of an outer cylinder and are slidable along the wall surface of the outer cylinder, and are fitted with their opposing surfaces in contact with each other. , the positions of the series of sliding compartments are regulated and arranged so that the sliding compartment to be operated first hides the through hole, and the series of sliding compartments are arranged so that the sliding compartments are arranged after the sliding compartment to be operated first. A sample collecting device for use in the method for collecting a sample in a high to low pressure liquid as set forth in claim 1, wherein the sample collecting device is connected so as to move in parallel at predetermined intervals.
JP54030811A 1979-03-15 1979-03-15 Method and equipment for collecting samples in high to low pressure liquids Expired JPS6047986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54030811A JPS6047986B2 (en) 1979-03-15 1979-03-15 Method and equipment for collecting samples in high to low pressure liquids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54030811A JPS6047986B2 (en) 1979-03-15 1979-03-15 Method and equipment for collecting samples in high to low pressure liquids

Publications (2)

Publication Number Publication Date
JPS55122133A JPS55122133A (en) 1980-09-19
JPS6047986B2 true JPS6047986B2 (en) 1985-10-24

Family

ID=12314065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54030811A Expired JPS6047986B2 (en) 1979-03-15 1979-03-15 Method and equipment for collecting samples in high to low pressure liquids

Country Status (1)

Country Link
JP (1) JPS6047986B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342302Y2 (en) * 1987-11-10 1991-09-04
JPH03125982U (en) * 1990-04-02 1991-12-19
JPH0439387U (en) * 1990-07-25 1992-04-03

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114441726B (en) * 2022-01-25 2022-08-12 生态环境部土壤与农业农村生态环境监管技术中心 Real-time continuous monitoring system for soil and underground water in industrial park

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629714Y2 (en) * 1976-04-05 1981-07-15

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0342302Y2 (en) * 1987-11-10 1991-09-04
JPH03125982U (en) * 1990-04-02 1991-12-19
JPH0439387U (en) * 1990-07-25 1992-04-03

Also Published As

Publication number Publication date
JPS55122133A (en) 1980-09-19

Similar Documents

Publication Publication Date Title
US20190234835A1 (en) Mechanical handheld hermatic sampler for marine sediment and sampling, pressure mataining method thereof
KR920700587A (en) Devices for the manufacture of bone binders
CA2299264A1 (en) Methods for seabed piston coring
US4409814A (en) Gas extracting device
CA2440991A1 (en) Method and apparatus to provide miniature formation fluid sample
JP6559019B2 (en) Collection device, collection device connector, and method for producing improved soil cement
JPS6047986B2 (en) Method and equipment for collecting samples in high to low pressure liquids
CN112985909B (en) Multi-sequence fluid pressure-maintaining sampling device carried by deep sea carrier
WO1987004790A1 (en) Method and apparatus for preparation of rock core samples
US4234046A (en) Pressure differential seafloor corer-carrier
CN111604009B (en) Multifunctional supercritical fluid processor for materials
DE4019594A1 (en) Pump for oil industry has chamber with flexible bags - and can pump mixt. contg. gases, liq. hydrocarbon(s) and solid particles without problems affecting rotary pumps
US4253539A (en) Device for generating acoustic waves in a fluid by implosion
RU2669468C1 (en) Underwater vehicle buoyancy changing device
WO2002075280A3 (en) Examination device and method for examination of chemical and/or biological samples
CN105971845A (en) Vacuum pump
RU2294431C1 (en) Device for liquid probe taking from well
US4697255A (en) Implosion type energy source for seismic exploration
CN107505167A (en) A kind of drainage pipeline undisturbed sediment sampler and its method for sampling
JPH03229128A (en) Mud sampling device
SU1038473A2 (en) Cable device for investigating formations in uncased wells
SU499398A1 (en) Geochemical probe
SU471524A1 (en) Fluid sampler
SU1530767A1 (en) Device for hydrodynamic well-logging
SU1167313A1 (en) Deep-well sampler