JPS6047943A - Controlling method and apparatus of analytical accuracy in spectrometric analysis - Google Patents

Controlling method and apparatus of analytical accuracy in spectrometric analysis

Info

Publication number
JPS6047943A
JPS6047943A JP15702283A JP15702283A JPS6047943A JP S6047943 A JPS6047943 A JP S6047943A JP 15702283 A JP15702283 A JP 15702283A JP 15702283 A JP15702283 A JP 15702283A JP S6047943 A JPS6047943 A JP S6047943A
Authority
JP
Japan
Prior art keywords
calculated
concn
area
value
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15702283A
Other languages
Japanese (ja)
Other versions
JPS649570B2 (en
Inventor
Naoki Imamura
直樹 今村
Junichi Ono
小野 準一
Masahiro Mizoguchi
昌宏 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP15702283A priority Critical patent/JPS6047943A/en
Publication of JPS6047943A publication Critical patent/JPS6047943A/en
Publication of JPS649570B2 publication Critical patent/JPS649570B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/67Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence using electric arcs or discharges

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To enable continuous and rational control of an irregularity width, to simplify a program, and to enable the reduction of memory capacity necessary for the control of the irregularity width, by utilizing an experimental formula formed between irregularity and concn. CONSTITUTION:It is judged whether the actual irregularity width R<1> of n-times of analytical results is larger or smaller than N-times of a theoretical width R calculated from formula and, when R<1>>NR, it is judged that measurement is abnormal. In the formula, X is the concn. of the element to be analyzed in a specimen and, concretely, is an average value of n-times of analytical results. In this case, BEC is calculated from a calibration curve. At first, the photometric output of each element is inputted from an analytical apparatus SS and stored in a photometric value area. In the next step, the concn. of each element is calculated from calibration curve data. R<1> is calculated from each concn. value to be inputted to an operation area and R of the formula is calculated. The judgement of R<1>>2R is performed. The previously calculated X, that is, the average concn. and the above judge result are stored in a concn. value area. Thereafter, the content of said area is read to perform printing as R.

Description

【発明の詳細な説明】 L/f)産業上の利用分野 本発明は火花放電を光源とする発光分光分析における分
析の信頼性管理に関するものである。
DETAILED DESCRIPTION OF THE INVENTION L/f) Industrial Application Field The present invention relates to analysis reliability management in emission spectrometry using spark discharge as a light source.

(ロ)従来技術 火花放電を用いる発光分析では分析しようとする元素の
含有チが同じ材料でも、多数回の分析結果のばらつきが
避けられない。しかし試別が決っておればこのばらつき
の大きさは決っているので、一群の分析結果のばらつき
が予め予想していたばらつきよりも太きいときは、その
一群の分析結果は試料が不適当であったが分析装置に何
等かの異常があったものと考えられるから、その一群の
分析結果は除外しなければならない。しかし一群の分析
結果のばらつきが正常か否かの判定ばばらっき@が分析
元素の濃度によって変化するので、−律にできず何段階
かの濃度区分を設け、各区分毎に標準のばらつき幅を定
めて実際のばらつき幅と比較することになり、必要デー
タ量が多く、判定操作が繁雑で、しかもばらつきの管理
幅が段階的で合理性に欠ける所があった。
(b) Conventional technology In optical emission spectrometry using spark discharge, variations in the results of multiple analyzes are unavoidable even if the material contains the same element to be analyzed. However, if the trial is determined, the magnitude of this variation is determined, so if the variation in the analysis results for a group is larger than the variation expected in advance, the analysis results for that group indicate that the sample is inappropriate. However, it is thought that there was some kind of abnormality in the analyzer, so the analysis results of that group must be excluded. However, since the dispersion of a group of analysis results varies depending on the concentration of the analyzed element, it is difficult to determine whether the dispersion of a group of analysis results is normal or not. The width had to be determined and compared with the actual variation width, which required a large amount of data and complicated judgment operations.Moreover, the variation management range was gradual and lacked rationality.

(ハ) 目 的 本発明は分析結果の信頼性の判定に主観を交えず、濃度
に係シなく常に適正な判定がなされるようにし、あわせ
て自動化が容易な分析結果の信頼性管理方法を提供しよ
うとするものである。
(c) Purpose The present invention does not involve subjectivity in determining the reliability of analysis results, and provides a method for managing the reliability of analysis results that is easy to automate, so that an appropriate determination is always made regardless of the concentration. This is what we are trying to provide.

(ニ)構 成 測定値のばらつきの1@は測定回数によって異ると共に
、火花放電発光分析では分析元素の試料中濃度によって
も異る。木兄BA(−1:予備調査によ、!111成る
係数を決めるとばらつきの幅と測定回数及び試料中の測
定元素濃度との間に上記係数を用いて簡単な関係式が成
立することを見出し、複数回の分析結果のばらつき幅が
この関係式によ請求めたばらつき幅即ち理論ばらつき幅
よりも一定倍以上犬であるとき、その一群の測定結果は
測定そのものが異常であると判定して分析データとして
採用しないようにするものである。
(d) Constituent The variation in measured values varies depending on the number of measurements, and in the case of spark discharge emission spectrometry, it also varies depending on the concentration of the analytical element in the sample. By determining the coefficient of !111 based on a preliminary investigation, a simple relational expression can be established using the above coefficient between the width of variation, the number of measurements, and the concentration of the measured element in the sample. Heading: When the variation width of multiple analysis results is more than a certain times larger than the variation width calculated by this relational expression, that is, the theoretical variation width, it is determined that the measurement itself of that group of measurement results is abnormal. This is to prevent data from being used as analysis data.

測定回数をnとし、n回の測定による」り定値のばらつ
き幅即ち測定値の最大と最小との差をR1まだばらつき
の標準偏差σは σ= R/ k n・・・・・・・・・・・・・・・(
1)なる簡便法で概算される。こ\でknは測定回数n
によって変化する数値で下表に示すような値になってい
る。
The number of measurements is n, and the variation width of the fixed value after n measurements, that is, the difference between the maximum and minimum measured values, is R1.The standard deviation of the variation σ is σ = R/ k n...・・・・・・・・・(
1) It is approximated by the simple method. Here kn is the number of measurements n
The values vary depending on the situation, as shown in the table below.

まだ係数BEC及び面を定義(後述)して、標準偏差σ
は σ=(X+BEC)XCV・・・・山・・(2)なる実
験式によってもめられることを本件発明者は見出した。
Still defining the coefficient BEC and surface (described later), the standard deviation σ
The inventor of the present invention has discovered that σ=(X+BEC)XCV...Mountain...(2) can be confused with the empirical formula.

(2)式のσに(1)式のσを代入してRを計算すると
、 R= kn (X + BEC) X CV−−1(3
)(3)式はn回の測定結果から理論ばらつき幅をめる
実験式である。本発明1”in回の分析結果の実際のば
らつき幅R1が上記(3)式によりまった理論幅RのN
倍よp大か小かを判定し、R’)NRのとき、測定異常
とする。
When calculating R by substituting σ in equation (1) for σ in equation (2), R= kn (X + BEC)
) (3) is an experimental formula that calculates the theoretical variation range from the results of n measurements. The actual variation range R1 of the 1"in analysis results of the present invention is N of the theoretical range R determined by the above equation (3).
It is determined whether p is larger or smaller than the times p, and when R') is NR, it is determined that the measurement is abnormal.

こXで上記式に出て来るX、DEC,CVについて説明
する。Xは試料中の分析元素の濃度で、具体的にはn回
の分析結果の平均値である。BECは第1図に示すよう
な検量線からめる。検量線は濃度既知の標準試料を用い
、実測によってめた濃度と測定出力との間の関係曲線で
、この曲線を濃度Oまで延長したとき、縦軸を切る点す
は測定出力のバックグラウンドを示す。そこで縦軸上に
、ob=bb”なる点b’をとシ、b′から水平線を引
いて検量線との交点から垂線を降すと、横軸との交点の
濃度がBECである。即ち純測定値とバックグラウンド
が等しい(S/IJ=1)状態のときの濃度値(EEC
はバンクグラウンド等価濃度の噂である。nは濃度Q%
の試料のn回の分析における測定値のばらつきの標準偏
差をσとするとき、 CV−σ/Q であシ、標準試料を用いて予め実測しておく。]゛はa
度測定範囲におけるCVの平均値である。初めに述べた
ように、分析値のばらつき幅は濃度によって異っておシ
、この濃度によるばらつき’Eの変動を平均して定数化
したものである。
Now, X, DEC, and CV that appear in the above equation will be explained. X is the concentration of the analysis element in the sample, specifically the average value of n analysis results. BEC is determined from a calibration curve as shown in FIG. A calibration curve is a relationship curve between concentration and measured output determined by actual measurements using standard samples with known concentrations.When this curve is extended to concentration O, the point that cuts the vertical axis is the background of the measured output. show. So, on the vertical axis, let's take a point b' where ob = bb'', draw a horizontal line from b', and drop a perpendicular line from the intersection with the calibration curve.The concentration at the intersection with the horizontal axis is BEC. Concentration value (EEC) when pure measurement value and background are equal (S/IJ = 1)
is rumored to be the bank ground equivalent concentration. n is concentration Q%
When the standard deviation of the dispersion of measured values in n analyzes of a sample is σ, CV-σ/Q is measured in advance using a standard sample. ] ゛ is a
This is the average value of CV in the temperature measurement range. As stated at the beginning, the range of variation in analytical values varies depending on the concentration, and the fluctuations in the variation 'E depending on the concentration are averaged and made into a constant.

(ホ)実施例 上の説明で測定回数nは別に制限しなかった。(e) Examples In the above explanation, the number of measurements n was not particularly limited.

nは2よシ大なら幾らでもよく、実際上n、=2でも充
分なことが多い。−例として鋼中の炭素の火花放電発光
分析で、n−2の場合について述べる。
n may be any value as long as it is greater than 2, and in practice, n = 2 is often sufficient. - As an example, we will discuss the case of n-2 in spark discharge emission spectroscopy of carbon in steel.

この場合分析に用いた波長はCl 930 XTある。In this case, the wavelength used for analysis is Cl 930 XT.

前記(2)式は a = (C% + 0.1 ) X O,008とな
る。又画表でn==2のときk n = ]、、1−で
あるから(3)式は R=1.1X(C%−1−0,1,) X O,008
,、、(4)こ\で炭素濃度C%は2回の測定値から検
量線を用いてめた濃度値の平均値である。管理幅を2σ
とすると、2回の分析値の差R1が2Rよシ大なるとき
分析異常と判定される。0%−0,1とすると(4)式
のRは0.00194となり、2回の測定値の差が0・
00388以上であったら分析異常である。第2図で横
軸は0%、縦軸ij:R’即ち2測定値の差で、斜線か
ら下なら分析良、上は分析異常である。
The above formula (2) becomes a = (C% + 0.1) X O,008. Also, when n = = 2 in the diagram, k n = ],, 1-, so equation (3) is R = 1.1X (C%-1-0,1,) X O,008
,,, (4) Here, the carbon concentration C% is the average value of concentration values calculated from two measurements using a calibration curve. Control width is 2σ
Then, when the difference R1 between the two analysis values is greater than 2R, it is determined that the analysis is abnormal. If 0% - 0.1, then R in equation (4) will be 0.00194, and the difference between the two measured values will be 0.
If it is 00388 or more, it is an analysis abnormality. In FIG. 2, the horizontal axis is 0%, and the vertical axis is ij:R', that is, the difference between two measured values.If the value is below the diagonal line, the analysis is good, and if it is above the diagonal line, the analysis is abnormal.

第3図は上述し/こ管理動作を行う装置の一例を示す。FIG. 3 shows an example of a device that performs the above-mentioned management operations.

SSは発光分光分析装置、CPUはコンピュータ、Mは
メモリである。メモリMは上述管理動作のプログラムを
入れたプログラムエリヤ、各分析元素についての上述し
たDEC,CV等のデータ、各元素毎の検量線のデータ
等を格納しておくデータエリヤ、分析装置SSから直接
得られる各分析元素の測光値を格納する測光値エリヤ、
前記(3)式のRその他演算1判定の経過で出てくるデ
ータを−・詩人れておく演算エリヤ、求められた濃度値
を格納する濃度値エリヤを有する。Pはプリンタで分析
結果を印字する。Rは印字例で、試料No、各元素の濃
度値、分析正常か異常かの判定(OIJ Tは異常を示
す)が印字される。判定は一試料につき、何れかの元素
に関して上述した判定で異常の場合、OUTとなる。
SS is an emission spectrometer, CPU is a computer, and M is a memory. The memory M is a program area that stores the above-mentioned management operation program, a data area that stores the above-mentioned DEC, CV, etc. data for each analysis element, calibration curve data for each element, etc., and a data area that stores the data directly from the analyzer SS. A photometric value area that stores the photometric values of each analytical element obtained;
It has a calculation area for storing R in the equation (3) and other data generated in the course of calculation 1 determination, and a density value area for storing the determined density value. P prints out the analysis results using a printer. R is an example of printing, in which the sample number, the concentration value of each element, and a determination as to whether the analysis is normal or abnormal (OIJT indicates abnormality) are printed. If the above-mentioned judgment is abnormal for any element for one sample, the judgment becomes OUT.

第4図は管理動作のフローチャー1・である。寸ず分析
装置SSから各元素の測光出力を入力して檀 測光値エリヤに格納するイ)。次に桝量線データを用い
て各元素の濃度をめる(口)。検量線は2法条項式とし
て3個の係数がデータエリヤに入れてあり、濃度はその
係数を用いて計算する。分析は2回行うので、2回の濃
度値の平均を算出(ハ)し、その値は前記(3)式のX
であるから各濃度値と共に演算エリヤに入れておく(ニ
)。各濃度値からR1を算出し演算エリヤへ入れる(ホ
)。(3)式のRを刷算する(へ)。
FIG. 4 is a flowchart 1 of the management operation. Input the photometric output of each element from the photometric analyzer SS and store it in the photometric value area a). Next, calculate the concentration of each element using the mass curve data (see below). The calibration curve has three coefficients entered in the data area as a two-method equation, and the concentration is calculated using the coefficients. Since the analysis is performed twice, the average of the two concentration values is calculated (c), and the value is expressed as X in equation (3) above.
Therefore, it is stored in the calculation area along with each density value (d). R1 is calculated from each density value and entered into the calculation area (e). (3) Print out R in the equation.

R’:(2Rの判定を行う(ト)。先にめだX即ち平均
濃度及び上の判定結果を濃度値エリヤに格納する(チ)
。その後同エリヤの内容を読出して第3図Rのように印
字を行う(す1゜これらの動作は各元素毎に行われる。
R': (Perform 2R judgment (G). First, store Meda X, that is, the average density and the above judgment result in the density value area (H)
. Thereafter, the contents of the same area are read out and printed as shown in FIG. 3R (step 1) These operations are performed for each element.

(へ)効 果 火花放電発光分析では測定値のばらつき幅が濃度によっ
て変化するが、本発明はばらつきと濃度との間に簡単な
実験式が成立つことを見出し、その式を利用することに
よシ測定濃度範囲全域にわたって連続的かつ合理的にば
らつき幅の管理ができるようになり、測定濃度範囲全域
で単一の式で判定を行えるので、プログラムが簡単であ
シ、必要データも少く、ばらつき幅管理のために要する
メモリ容量が少くてすむ。
(f) Effect In spark discharge emission spectroscopy, the range of variation in measured values changes depending on the concentration, but the present invention found that a simple experimental formula holds between the variation and concentration, and decided to utilize that formula. It is now possible to continuously and rationally manage the variation range over the entire measured concentration range, and judgments can be made using a single formula over the entire measured concentration range, making programming easy and requiring less data. The memory capacity required for variation width management is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はBECを説明するグラフ、第2図は本発明を鋼
中の炭素の分析に適用した例における炭素濃度と許容ば
らつき幅との関係のグラフ、第3図は本発明の一実施例
装置のブロック図、第4図は同装置の動作のフローチャ
ートである。 代理人 弁理士 林 浩 介
Figure 1 is a graph explaining BEC, Figure 2 is a graph of the relationship between carbon concentration and allowable variation width in an example where the present invention is applied to the analysis of carbon in steel, and Figure 3 is an example of the present invention. The block diagram of the device, FIG. 4, is a flowchart of the operation of the device. Agent Patent Attorney Kosuke Hayashi

Claims (2)

【特許請求の範囲】[Claims] (1)発光分析によるn回の測定における濃度値の最大
、最小の差R1と平均Xをめ下式による理論ばらつき幅
Rを算出し、管理幅をNとするとき、R’)NRならば
上記n回の測定は異常と判定することを特徴とする発光
分析における分析の良否管理方法。 R=(X十BKC)XCV こ\でBECは発光分析装置の測定出力がバックグラウ
ンドレベルの2倍であるときの各元素の濃度値、暮は測
定濃度範囲における各濃度での測定濃度値のばらつき幅
を当該濃度で割った値の平均値。
(1) Calculate the theoretical variation width R using the following formula using the maximum and minimum difference R1 of concentration values in n measurements by emission spectrometry and the average X, and when the control width is N, if R')NR then A method for managing the quality of analysis in luminescence analysis, characterized in that the n measurements are determined to be abnormal. R = (X 0 BKC) Average value of the variation width divided by the relevant concentration.
(2)各元素についてのDEC,σ■等のデータを予め
格納したデータエリヤ、各元素のR2X等の判定演算で
用いられる測定データを格納しておく演算エリヤ、求め
られた各元素の濃度値を格納しておく濃度値エリヤを有
するメモリを備え、R−(X+BEC)XCVの演算を
行い、同人のRと上記R1とに関しR’)NRか否かを
判定するプログラムを有する制御コンピュータと発光分
析装置とを組合せた発光分析における分析精度管理装置
(2) A data area that stores data such as DEC and σ■ for each element in advance, a calculation area that stores measurement data used in judgment calculations such as R2X of each element, and the determined concentration value of each element. A control computer including a memory having a density value area for storing R-(X+BEC) Analytical accuracy control device for luminescence spectrometry combined with an analyzer.
JP15702283A 1983-08-26 1983-08-26 Controlling method and apparatus of analytical accuracy in spectrometric analysis Granted JPS6047943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15702283A JPS6047943A (en) 1983-08-26 1983-08-26 Controlling method and apparatus of analytical accuracy in spectrometric analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15702283A JPS6047943A (en) 1983-08-26 1983-08-26 Controlling method and apparatus of analytical accuracy in spectrometric analysis

Publications (2)

Publication Number Publication Date
JPS6047943A true JPS6047943A (en) 1985-03-15
JPS649570B2 JPS649570B2 (en) 1989-02-17

Family

ID=15640468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15702283A Granted JPS6047943A (en) 1983-08-26 1983-08-26 Controlling method and apparatus of analytical accuracy in spectrometric analysis

Country Status (1)

Country Link
JP (1) JPS6047943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136253A (en) * 2017-02-23 2018-08-30 株式会社島津製作所 Emission spectrophotometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136253A (en) * 2017-02-23 2018-08-30 株式会社島津製作所 Emission spectrophotometer
CN108469431A (en) * 2017-02-23 2018-08-31 株式会社岛津制作所 Emission spectrographic analysis device
CN108469431B (en) * 2017-02-23 2020-12-18 株式会社岛津制作所 Emission spectrum analysis device

Also Published As

Publication number Publication date
JPS649570B2 (en) 1989-02-17

Similar Documents

Publication Publication Date Title
Meier On art and science in curve-fitting vibrational spectra
JP4506554B2 (en) Emission spectroscopy analysis method and emission spectroscopy analyzer
JP2516468B2 (en) C and S simultaneous analyzer
JPS6047943A (en) Controlling method and apparatus of analytical accuracy in spectrometric analysis
JP2004101416A (en) Multi-component analysis apparatus
JP3223097B2 (en) Method for analyzing the concentration of multiple components contained in a solution
JP5454403B2 (en) Sol. A method for highly accurate determination of Al and sol. Process operation method of high-precision determination method of Al
JP2010261895A (en) Method and apparatus for measuring concentration of trace constituent in solution
JP7425473B2 (en) Threshold calculation device, threshold calculation method, and measurement device
JPH0755565A (en) Method and apparatus for quantitatively calculating by using spectrum
JP2000266737A (en) Structure analyzer for unknown substance
JP2009535619A (en) Method in spectroscopy for the investigation of samples containing at least two elements
JP2022150584A (en) Analysis method for result of icp emission spectral analysis measurement and analysis system for result of icp emission spectral analysis measurement
JPH08129002A (en) Chromatrograph mass spectrometer using sim method
JP2005331386A (en) Calibration curve correcting method
Margoshes et al. Fitting of analytical functions with digital computers in spectrochemical analysis
JP4393886B2 (en) Atomic absorption photometer
US6671629B2 (en) Method and device for measuring characteristics of a sample
JPH0664049B2 (en) Water quality analyzer data processing method
JPH06337252A (en) Fluorescent x ray analytic method
JPS606833A (en) Spectrophotometer
JP2508604B2 (en) X-ray fluorescence analyzer
JP3311491B2 (en) X-ray reflectivity analyzer
JPH06102175A (en) Atomic absorption photometer
JPH10104177A (en) Qualitative analyzer