JPS6047509B2 - How to form furnace walls - Google Patents

How to form furnace walls

Info

Publication number
JPS6047509B2
JPS6047509B2 JP53075408A JP7540878A JPS6047509B2 JP S6047509 B2 JPS6047509 B2 JP S6047509B2 JP 53075408 A JP53075408 A JP 53075408A JP 7540878 A JP7540878 A JP 7540878A JP S6047509 B2 JPS6047509 B2 JP S6047509B2
Authority
JP
Japan
Prior art keywords
refractory
mgo
refractories
furnace
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53075408A
Other languages
Japanese (ja)
Other versions
JPS553539A (en
Inventor
清彦 奈良
吉彦 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP53075408A priority Critical patent/JPS6047509B2/en
Publication of JPS553539A publication Critical patent/JPS553539A/en
Publication of JPS6047509B2 publication Critical patent/JPS6047509B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【発明の詳細な説明】 本発明は、特定の2種類の耐火物を組合せ積築すること
により相乗的な耐用向上を可能とした炉壁の形成方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a furnace wall that enables a synergistic improvement in durability by combining and laminating two specific types of refractories.

電気炉などにおいて最も苛酷な条件にさらされる部分は
ホットスポット部やスラグライン部分であるが、この部
分に使用される耐火物として好適なものとしてMgO−
A12O、−Cr2Oa系の熱溶融鋳造耐火物がある。
The parts exposed to the harshest conditions in electric furnaces and the like are hot spots and slag lines, and MgO- is a suitable refractory to be used in these parts.
There are A12O and -Cr2Oa-based heat-fused cast refractories.

この耐火物は電気炉内スラグに対する極めて優れた耐蝕
性を具備するものであるが、一方緻密な組織をもつ熱溶
融鋳造耐火物ではある程度避けることの出来ない欠点と
しての耐スポーリング性の問題がある。特に最近の操業
傾向として、電気炉の体炉、間欠操業、定期的な炉どめ
等が増えることによる冷却、熱上げの繰り返しによる熱
衝撃を受けることにともなうスポーリング抵抗性の弱さ
の面のみが目立ち耐蝕性の強さが有効に活用されない事
で炉としての寿命が短かくなつてきている。これに対し
、これに代る耐火物として、最近スラリー浸透がなくス
ポーリングに強いカーボン耐火物又はMgO−C耐火物
が使用されることが増えている。しかしながら、この種
カーボン又はMgO−C耐火物は、前記熱溶融鋳造耐火
物より耐スポーリング性は抜群に強く、スラグに対する
侵蝕も少ないが塩基性熱溶融耐火物程ではなく、さらに
酸化による損傷面の欠点をもつため使用条件に配慮せね
ばならず、例えばその1つの手段としてこれらのカーボ
ン系の耐火物はその表面に鉄板を被覆して使用するので
あるが、それでも完全ではなく、また炉の操業により耐
火冫物同士が鉄板を介在して強固に一体となつてしまう
ため補修又は取り替え解体などの作業時に網の目の様に
なつた鉄板の除去が大変困難となる問題もある。本発明
は、これらの観点から種々研究、検討さ;れた結果とし
て、これら特定の2種類の耐火物を積築することにより
、前記弱点をすべて解決できるばかりか塩基性熱溶融鋳
造耐火物ばかりで構成した時の該耐火物の寿命より優れ
た耐用向上を発揮することに成功したものである。
This refractory has extremely excellent corrosion resistance against electric furnace slag, but on the other hand, hot-melt cast refractories with a dense structure suffer from the problem of spalling resistance, which is an unavoidable drawback. be. In particular, as a recent operational trend, the spalling resistance is weak due to thermal shock due to repeated cooling and heating due to the increase in electric furnaces, intermittent operation, periodic furnace closure, etc. However, the lifespan of a furnace is becoming shorter because its corrosion resistance is not effectively utilized. In contrast, carbon refractories or MgO-C refractories, which do not penetrate slurry and are resistant to spalling, have recently been increasingly used as alternative refractories. However, this type of carbon or MgO-C refractory has an extremely stronger spalling resistance than the hot-fused cast refractory, and has less corrosion against slag, but it is not as strong as the basic hot-fused refractory, and it also has a surface that is damaged by oxidation. For example, one way to do this is to coat the surface of these carbon-based refractories with an iron plate, but even that is not perfect, and the conditions of use must be taken into account. Due to the operation, the refractory materials become firmly integrated with each other through the iron plates, which makes it very difficult to remove the mesh-like iron plates during repair, replacement, and demolition work. As a result of various studies and examinations from these viewpoints, the present invention has found that not only can all of the above-mentioned weaknesses be solved by stacking these two specific types of refractories, but also that only basic heat-fused cast refractories can be used. It has been successfully demonstrated that the life span of the refractory is improved to a greater degree than that of the refractory constructed with the above structure.

即ち、本発明は、ペリクレース及びスピネルを主結晶と
する塩基性熱溶融耐火物とMgO−C耐火物とをゼブラ
積み又はチェッカー積みしたことを特徴とする炉壁の形
成方法を要旨とするものである。
That is, the gist of the present invention is a method for forming a furnace wall characterized by zebra stacking or checker stacking a basic heat-melting refractory whose main crystals are periclase and spinel and an MgO-C refractory. be.

本発明において、ペリクレース及びスピネルを主結晶と
する熱溶融耐火物は、所定配合のMgO原料、アルミナ
原料、クロム鉱などの必要原料を電気炉にて完全に熱溶
融し、一般にはこの湯を所定形状の鋳型に鋳込んで冷却
再固化することにより得られるもの、ペリクレース(M
gO)とクロムスピネル(MgO●Cr2O3)又はア
ルミナスピネル(Mf卜Al。
In the present invention, heat-melting refractories whose main crystals are periclase and spinel are produced by completely melting necessary raw materials such as MgO raw material, alumina raw material, and chromite in a predetermined combination in an electric furnace, and generally using this hot water in a predetermined amount. Periclese (M
gO) and chromium spinel (MgOCr2O3) or alumina spinel (MfAl.

O3)を主結晶とするものであつて、組成的には化学分
析的に重量%でMgO35〜80%、Cr2O38〜5
0%、Al2O38〜40%、Fe2O3(FeOとし
て存在するものも含む)最大18%、SiO2最大8%
、CaO最大10%からなるものが特に望ましい。本発
明において、炭素マグネシア複合耐火物であるMgO−
C系耐火物は、MgO原料とカーボン、グラファイトな
どのカーボン原料を所定割合で配合したものを通常の方
法により成形、乾燥して得られる通常不焼成の耐火物で
あり、ここにおいてカーボン量が多すぎるとスラグの付
着が少なく、酸化し易く耐熱性の面て問題があり、カー
ボンが多すぎると塩基性熱溶融耐火物との組合せにおい
て該耐火物の寿命向上の効果が充分でないため重量%で
MgO95〜60%、Cが5〜40%の組成を有するも
のが好ましく、またカーボンとの組合.せにおいてMg
O以外の成分では耐蝕性において充分でない。
O3) as the main crystal, and its composition is chemically analyzed as 35-80% MgO and 8-5% Cr2O by weight.
0%, Al2O38-40%, Fe2O3 (including that present as FeO) up to 18%, SiO2 up to 8%
, up to 10% CaO are particularly preferred. In the present invention, MgO- which is a carbon-magnesia composite refractory
C-based refractories are usually unfired refractories obtained by molding and drying a mixture of MgO raw materials and carbon raw materials such as carbon and graphite in a predetermined ratio using a conventional method. If there is too much slag, there will be less slag adhesion and it will be easily oxidized, causing problems in terms of heat resistance. If there is too much carbon, the effect of improving the life of the refractory will not be sufficient when combined with basic heat-melting refractories, so It is preferable to have a composition of 95 to 60% MgO and 5 to 40% C, and in combination with carbon. Mg
Components other than O do not have sufficient corrosion resistance.

本発明において、MgO−C耐火物は、鉄板で被覆して
もよいが必ずしも被覆しなくても使用し得る。
In the present invention, the MgO-C refractory may be coated with an iron plate, but may be used without necessarily being coated.

本発明を以下図面に示した実施態様を参照しながら具体
的に説明する。
The present invention will be specifically described below with reference to embodiments shown in the drawings.

第1図は、電気炉の一つのホットスポット部分の側壁を
炉の内側からみた説明図であり、本発明を採用した炉壁
の部分は、熱溶融耐火物列1と・MgO−C耐火物列2
からなるゼブラ積みの部分である。
FIG. 1 is an explanatory diagram of the side wall of one hot spot part of the electric furnace, seen from the inside of the furnace. Column 2
This is the part of the zebra stack consisting of.

尚、図面において、3,4は本発明方法を採用した炉壁
の周囲の煉瓦域であり、例えば3にはドロマイト煉瓦、
4には不焼成MgO−Cr2O3耐火物が使用されてお
り、5はバーナー配置部分を示している。
In the drawings, 3 and 4 are brick areas around the furnace wall where the method of the present invention is applied; for example, 3 is made of dolomite bricks,
4 is an unfired MgO-Cr2O3 refractory, and 5 is a burner arrangement part.

本発明は、このように特定の熱溶融耐火物とMgO−C
耐火物を利用し、交互にそれぞれの耐火物からなる各列
を形成するいわゆるゼブラタイプの積み方式が望ましい
態様であるが、第4図に示す如く、勿論同一厚で交互に
2種類の耐火物を配置するいわゆるチェッカータイプの
積み方式で)あつてもよい。
The present invention thus provides specific heat-melting refractories and MgO-C
A desirable embodiment is the so-called zebra type stacking method in which rows of refractories are alternately formed using refractories, but as shown in Figure 4, two types of refractories of the same thickness are of course alternately stacked. (in a so-called checker-type stacking system).

第4図にても1は熱溶融耐火物、2はMgO−C耐火物
を示す。本発明の炉壁は、このようにゼブラ又はチェッ
カーのいずれの方式でも或はこれらの組合せ方式でもよ
く、その実施態様としては種々の応用が可・能である。
In FIG. 4 as well, 1 indicates a hot melt refractory and 2 indicates a MgO-C refractory. As described above, the furnace wall of the present invention may be of either the zebra or checker type, or a combination of these types, and various applications are possible as the embodiment thereof.

例えば、第1図では熱溶融耐火物とMgO−C耐火物の
厚みの異なるもの1つづつでそれぞれの列を形成しかつ
一つの熱溶融耐火物の幅に2つのMgO−C耐火物をそ
れぞれの目地が連続するよ”うに積築した例を示し、第
2図では第1図と同様であるが目地をずらして配置した
例、第3図ではMgO−C耐火物を2列にし、熱溶融耐
火物との配置割合を1:1とした例、第4図では配置割
合は第3図と同じ形式で、かつ1:1であるが、各列間
においてそれぞれの耐火物が互いにほS゛半分づつの接
触面積をもつように配置された例が示されている。
For example, in Fig. 1, each row is made of one heat-melting refractory and one MgO-C refractory of different thickness, and two MgO-C refractories are placed in the width of one heat-melting refractory. Figure 2 shows an example in which the joints are arranged in a continuous manner, Figure 2 shows an example that is similar to Figure 1, but the joints are staggered, and Figure 3 shows an example in which MgO-C refractories are arranged in two rows and An example in which the arrangement ratio with the molten refractories is 1:1. In Fig. 4, the arrangement ratio is the same as in Fig. 3 and is 1:1, but the refractories are close to each other between each row. An example is shown in which the contact area is halved.

このように本発明では種々の積築方法が可能であるが、
好ましい態様としては、いずれにしろ炉の内側からみた
塩基性熱溶融耐火物とMgO−C耐火物の配置割合が4
:1〜1:2となる範囲とすることである。
As described above, various construction methods are possible with the present invention, but
In any case, as a preferred embodiment, the arrangement ratio of the basic heat-melting refractory and the MgO-C refractory as seen from the inside of the furnace is 4.
:1 to 1:2.

本発明の効果を示すものとして、40トン電気炉のホッ
トスポット部に第1図、第2図で示す如き積築方法によ
り炉壁を形成した結果、該ホットスポット部の耐用は、
3週間(約210チャージ)を経ても耐火物の残存厚は
充分で引き続いて安全耐用が可能であることを示してい
る。
As a demonstration of the effects of the present invention, as a result of forming a furnace wall in the hot spot part of a 40-ton electric furnace by the construction method shown in Figs. 1 and 2, the service life of the hot spot part was as follows.
Even after three weeks (approximately 210 charges), the remaining thickness of the refractory was sufficient, indicating that it could continue to be used safely.

尚、全炉壁をMgO−C耐火物とした場合の耐用は、従
来辛うじて200チャージであり、同様に全炉壁を塩基
性の熱溶融耐火物とした場合の耐用は、MgO−C耐火
物の場合より劣り150チャージ程度のことも多かつた
In addition, the service life when the entire furnace wall is made of MgO-C refractory is conventionally only 200 charges, and similarly, the service life when the entire furnace wall is made of basic heat-melting refractory is the same as that of MgO-C refractory. It was inferior to the case of , and it was often about 150 charges.

また全炉壁をドロマイト煉瓦として場合の耐用はせいぜ
い140チャージ程度である。本発明による炉壁が何故
にすぐれた耐用を示すかについては次のような理由によ
るものと考えられる。
Furthermore, if the entire furnace wall is made of dolomite bricks, the durability is about 140 charges at most. The reason why the furnace wall according to the present invention exhibits excellent durability is considered to be due to the following reasons.

まず塩基性熱溶融耐火物例えば旭硝子株式会社MAC上
Cの熱伝導率は3〜4Kca117n−Hr・℃である
に対し、MgO−C煉瓦のそれは10KcaIIm−H
r・0C以上であり、この熱的に温度変化に敏感に追随
するMgO−C煉瓦をうまく組合せたことによりMAC
上Cについても炉の稼動面(内側)と背面間の温度差が
なくなり、電気炉の熱上げ時などにかかる温度の急激な
変化を緩和しうることによる耐用向上が考えられる。
First, the thermal conductivity of basic heat-melting refractories, such as Asahi Glass Co., Ltd.'s MAC Upper C, is 3 to 4 Kca117n-Hr・℃, while that of MgO-C bricks is 10KcaIIm-H.
By skillfully combining MgO-C bricks, which are more than r・0C and thermally follow temperature changes sensitively, MAC
As for the upper part C, the temperature difference between the operating surface (inside) and the rear surface of the furnace is eliminated, and the durability can be improved by alleviating the sudden change in temperature that occurs when heating up the electric furnace.

又MAC上Cと組合せる炉材として従来の塩基性煉瓦で
は損耗が早くMAC上Cのスポーリング傾向を防止出来
ないための意味でMgO−C煉瓦との組合せが現状では
最良であると考えられる。解体后のMAC上C残片を見
ても内在亀裂を発生しながらも欠落する事なく本来のス
ラグ耐蝕性を発揮していることが明らかである。さらに
MAC上Cの表面にMgO−C煉瓦中の1部の成分がグ
レーズされたことによると思われる保護層が形成されM
AC上Cの熱膨脹、収縮の緩衝層の役目をなしているの
ではないかということである。本発明は、このように特
定の2種類の耐火物をうまく組合せることにより、それ
ぞれ単独で用いた場合には考えられない耐用の向上と補
修、築炉の簡便さなどの効果を発揮することに成功した
もので電気炉のみならず脱ガス炉、転炉等にも広く応用
し得るものでありその実用上の価値は多大である。
In addition, as a furnace material to be combined with MAC upper C, the combination with MgO-C brick is currently considered to be the best, as conventional basic bricks wear out quickly and cannot prevent the spalling tendency of MAC upper C. . Even when looking at the C residue on the MAC after dismantling, it is clear that although internal cracks have occurred, the original slag corrosion resistance has been exhibited without any chipping. Furthermore, a protective layer was formed on the surface of the MAC top C, which is thought to be due to the glazing of some components in the MgO-C brick.
It is thought that it acts as a buffer layer for thermal expansion and contraction of C on AC. By skillfully combining two specific types of refractories, the present invention achieves effects such as improved durability, repairability, and ease of furnace construction that would be unimaginable if they were used alone. It has been successfully applied to not only electric furnaces but also degassing furnaces, converters, etc., and has great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の1実施態様を示す電気炉ホットスポ
ット部の側壁を内側からみた説明図、第2図は乃至第4
図は、本発明耐火物の積築態様を示す説明図をそれぞれ
示す。 図面にて、1はペリクレース・スピネルを主結晶とする
塩基性熱溶融耐火物列又は耐火物、2はMgO−C耐火
物列又は耐火物を示す。
FIG. 1 is an explanatory diagram of a side wall of an electric furnace hot spot section showing one embodiment of the present invention, seen from the inside, and FIGS.
The figures each show explanatory diagrams showing the manner in which the refractories of the present invention are stacked. In the drawings, 1 indicates a basic heat-melting refractory series or refractory whose main crystal is periclase spinel, and 2 indicates an MgO-C refractory series or refractory.

Claims (1)

【特許請求の範囲】 1 ペリクレース及びスピネルを主結晶とする塩基性熱
溶融耐火物とMgO−C系耐火物とをゼプラ積み又はチ
ェッカー積みしたことを特徴とする炉壁の形成方法。 2 炉内側からみた塩基性熱溶融耐火物とMgO−C耐
火物の配置割合が4:1〜1:2である特許請求の範囲
第1項記載の炉壁の形成方法。 3 塩基性熱溶融耐火物は、重量%で、MgO35〜8
0%、Cr_2O_38〜50%、Al_2O_38〜
40%、Fe_2O_3最大18%、SiO_2最大8
%、CaO最大10%の化学組成を有するものである特
許請求の範囲第1項又は第2項いずれか記載の炉壁の形
成方法。 4 MgO−C耐火物は、重量%で、MgO95〜60
%、C5〜40%の組成を有するものである特許請求の
範囲第1項又は第2項いずれか記載の炉壁の形成方法。
[Claims] 1. A method for forming a furnace wall, characterized in that a basic heat-melting refractory whose main crystals are periclase and spinel and an MgO-C-based refractory are stacked in zepra or checkered stacks. 2. The method for forming a furnace wall according to claim 1, wherein the arrangement ratio of the basic heat-melting refractory and the MgO-C refractory as seen from the inside of the furnace is 4:1 to 1:2. 3 The basic heat-melting refractory contains MgO35 to 8 in weight%.
0%, Cr_2O_38~50%, Al_2O_38~
40%, Fe_2O_3 max. 18%, SiO_2 max. 8
%, and a chemical composition of at most 10% CaO. 4 MgO-C refractory is MgO95-60 in weight%
%, C5 to 40%.
JP53075408A 1978-06-23 1978-06-23 How to form furnace walls Expired JPS6047509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53075408A JPS6047509B2 (en) 1978-06-23 1978-06-23 How to form furnace walls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53075408A JPS6047509B2 (en) 1978-06-23 1978-06-23 How to form furnace walls

Publications (2)

Publication Number Publication Date
JPS553539A JPS553539A (en) 1980-01-11
JPS6047509B2 true JPS6047509B2 (en) 1985-10-22

Family

ID=13575311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53075408A Expired JPS6047509B2 (en) 1978-06-23 1978-06-23 How to form furnace walls

Country Status (1)

Country Link
JP (1) JPS6047509B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5740174B2 (en) * 2011-02-18 2015-06-24 東京窯業株式会社 Insulated brick wall with molten metal contact type

Also Published As

Publication number Publication date
JPS553539A (en) 1980-01-11

Similar Documents

Publication Publication Date Title
AU719743B2 (en) Refractory wall, metallurgical vessel comprising such a refractory wall and method in which such a refractory wall is applied
JPS6047509B2 (en) How to form furnace walls
US2024595A (en) Furnace structure
JPS589121B2 (en) hearth structure
JP3448339B2 (en) Refractory lining of molten metal container
CN108424989A (en) A kind of blast furnace taphole region cooling structure
JP2813091B2 (en) Rotary kiln lining structure
JPH11131128A (en) Lining structure of refining furnace
JPS6031064Y2 (en) Protection wall brickwork structure of blast furnace furnace wall
JPS63299853A (en) Lining construction in molten steel ladle
JPH0516203Y2 (en)
JPS5833285B2 (en) Blast furnace, especially the fireproof structure of its bottom
JPH0216982Y2 (en)
EP0083702B1 (en) Water cooled refractory lined furnaces
JPH04367518A (en) Furnace wall of electric melting furnace for rockwool and construction of the wall
US2757623A (en) Composite furnace roof construction
US2134248A (en) Furnace lining, especially of highly heated metallurgical furnaces and particularly to linings of furnace gas ports
JPH11131129A (en) Lining structure of refining furnace
JPH02165863A (en) Lining structure for bottom of ladle of false bottom type
JPS5935556Y2 (en) Blast furnace bottom and furnace wall structure
JP3135149B2 (en) Municipal solid waste incineration ash melting furnace
GB1427646A (en) Sub-hearth construction for metallurgical furnaces
SU1346934A1 (en) Rotary furnace lining
US1786829A (en) Furnace construction
JPH0636472Y2 (en) Brick structure of hearth of steelmaking arc furnace