JPS6047424A - Laminated body of gallium arsenide and boron arsenide and manufacture thereof - Google Patents

Laminated body of gallium arsenide and boron arsenide and manufacture thereof

Info

Publication number
JPS6047424A
JPS6047424A JP58154198A JP15419883A JPS6047424A JP S6047424 A JPS6047424 A JP S6047424A JP 58154198 A JP58154198 A JP 58154198A JP 15419883 A JP15419883 A JP 15419883A JP S6047424 A JPS6047424 A JP S6047424A
Authority
JP
Japan
Prior art keywords
boron
arsenide
gallium arsenide
wafer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58154198A
Other languages
Japanese (ja)
Other versions
JPH0334650B2 (en
Inventor
Hidechika Yokoyama
横山 英親
Moriatsu Kondou
近藤 守厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUJIYUNDO KAGAKU KENKYUSHO KK
Kojundo Kagaku Kenkyusho KK
Original Assignee
KOUJIYUNDO KAGAKU KENKYUSHO KK
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUJIYUNDO KAGAKU KENKYUSHO KK, Kojundo Kagaku Kenkyusho KK filed Critical KOUJIYUNDO KAGAKU KENKYUSHO KK
Priority to JP58154198A priority Critical patent/JPS6047424A/en
Publication of JPS6047424A publication Critical patent/JPS6047424A/en
Publication of JPH0334650B2 publication Critical patent/JPH0334650B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent the generation of damages and the change of quality due to oxidation during transportation or any other handlings of the wafers of gallium arsenide by composing the protective layer formed on a surface of the gallium arsenide out of a thin film of boron arsenide. CONSTITUTION:One end of the tube reactor 1 made of crystal glass surrounded by a heating furnace 9 is provided with a carrier gas introducing pipe 3 and a boron trichloride gas introducing pipe 4 and another end is provided with a vacuum pump 5 having a pressure gage 14. Also, a container 10 containing boron trichloride 11 is connected to the introducing pipe 4 through a valve 13 and the wafer 6 of gallium arsenide single crystal put on a jig 7 made of crystal glass is contained in the reactor 1. In this constitution, the reactor is firstly kept at 10Torr and the Ar gas including 6 volume % hydrogen is introduced. Then the gas is stopped to reduce the pressure to 10<-3>Torr and boron trichloride is introduced to restore the pressure. After that, the temperature of the wafer 6 is increased to about 60 deg.C and is kept for 20min and then 600 deg.C is kept for 20min. Then the carrier gas is introduced and cooling is done to produce boron arsenide thin film on the wafer 6.

Description

【発明の詳細な説明】 本発明は砒化ガリウムと砒イiつ素薄膜とよりなる新規
な積層体及びその新規な製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel laminate comprising gallium arsenide and an arsenic thin film, and a novel method for producing the same.

砒化ガリウムは半導体素子などを製造するために用いら
れる有用な材料であるが、砒化ガリウムから半導体素子
などを製造するに当っては、たとえば砒化ガリウムの単
結晶を特定の面方位で薄く切り出したウェハの形態で使
用されることが多く、そのためしばしばウェハの形で取
引され又は運搬される。ウェハは通常その面を平滑に研
磨されるが、空気中の酸素により容易に酸化被膜を生ず
る。
Gallium arsenide is a useful material used to manufacture semiconductor devices, etc., but in order to manufacture semiconductor devices etc. from gallium arsenide, for example, wafers cut from a single crystal of gallium arsenide in a specific plane direction are used. They are often used in the form of wafers and are therefore often traded or transported in the form of wafers. Although wafers are usually polished smooth, they easily develop an oxide layer due to oxygen in the air.

しかし砒化ガリウムウェハ面の酸化被膜は必ずしも機械
的に強いものではないため、取扱いに際してはその面に
傷をつけないよう細心の注意が必要である。
However, since the oxide film on the surface of a gallium arsenide wafer is not necessarily mechanically strong, great care must be taken when handling it to avoid damaging the surface.

本発明者は、砒化ガリウムウェハの表面の変性について
研究を行い、砒化ガリウムの表面に塩化ホウ素および/
または臭化ホウ素を含有する気体を接触させることによ
って、表面に砒化ホウ素の被膜を有する新規な積層体が
得られることを見出した。このようにして得られた砒化
ホウ素の薄膜は緻密であって機械的にも丈夫であり、硬
くて傷がつき難い上に、化学的にも熱的にも耐久性が高
く、又酸化に対して安定であるから、砒化ガリウムウェ
ハを流通その他の取扱いをする際に、傷や酸化変質を防
ぐための保護被膜とすることができる。
The present inventor conducted research on the modification of the surface of gallium arsenide wafers, and discovered that boron chloride and/or
Alternatively, it has been found that a novel laminate having a boron arsenide coating on the surface can be obtained by contacting with a gas containing boron bromide. The thin film of boron arsenide thus obtained is dense and mechanically strong, hard and scratch resistant, chemically and thermally durable, and resistant to oxidation. Since it is stable and stable, it can be used as a protective coating to prevent scratches and oxidative deterioration when gallium arsenide wafers are distributed or otherwise handled.

このような砒化ホウ素薄膜を得るには、加熱された砒化
ガリウムの面に、塩化ホウ素又は臭化ホウ素あるいはこ
れらの混合ガスを、アルゴン、ヘリウム等の不活性ガス
又はこれに水素を混合したキャリヤガスを併用するか又
は併用せずに接触させると砒化ガリウム中のガリウムが
塩化物又は臭化物となって気化し、一方、残された砒素
は、還元単離されたホウ素と結合して砒化ガリウムの面
に砒化ホウ素として析出するという方法を用いることが
できる。
To obtain such a boron arsenide thin film, boron chloride or boron bromide, or a mixture thereof, is applied to the surface of the heated gallium arsenide using an inert gas such as argon or helium, or a carrier gas containing hydrogen mixed therewith. When the gallium in the gallium arsenide is brought into contact with or without the combination of A method of precipitating boron arsenide can be used.

この際キャリヤガスが不活性ガスであるときか、又は用
いないときは、生成する砒化ホウ素の組成はほぼモル比
で1;1であるが、キャリヤガスが水素を含むときは、
ホウ素の含量が増加し、特に膜厚が大となるに従ってホ
ウ素の含量が増加する傾向があり、モル比1:6のもの
も生成する。
At this time, when the carrier gas is an inert gas or is not used, the composition of boron arsenide produced is approximately 1:1 in molar ratio, but when the carrier gas contains hydrogen,
The boron content tends to increase, especially as the film thickness increases, and a film with a molar ratio of 1:6 is also produced.

キャリヤガスに含まれる塩化ホウ素又は臭化ホウ素の濃
度は特に制限はないが通常5容量%以上が適当である。
There is no particular restriction on the concentration of boron chloride or boron bromide contained in the carrier gas, but it is usually suitable to be 5% by volume or more.

またガスを接触させるときのガスの圧力は特に制限はな
いが大気圧以下が好ましい。
Further, the pressure of the gas when bringing the gas into contact is not particularly limited, but it is preferably atmospheric pressure or lower.

ガスを接触させる砒化ガリウムの面の温度は、低すぎる
と膜の生成が遅く、高すぎると砒素の昇華が著しいので
、300°Cから700°Cの範囲にあたることが望ま
しく、特に500℃から600℃付近であることが好ま
しい。
If the temperature of the surface of the gallium arsenide that is in contact with the gas is too low, the formation of a film will be slow, and if it is too high, the sublimation of arsenic will be significant. Preferably, the temperature is around ℃.

一文、砒化ガリウムの表面は空気中において酸素と結合
し、酸化物膜が生成していることが多いが、酸化物膜が
ない場合と同様に処理すれば、塩化ガリウムなどの生成
とともに酸化物は除去され、キャリヤガスなどと共に系
外に排出されるので砒化ホウ素薄膜の形成には全く支障
がない。
In short, the surface of gallium arsenide often combines with oxygen in the air, forming an oxide film, but if it is treated in the same way as when there is no oxide film, gallium chloride etc. will be formed and the oxide will be removed. Since it is removed and discharged to the outside of the system together with the carrier gas, there is no problem at all with the formation of the boron arsenide thin film.

得られる砒化ホウ素の膜は、モル比1;1のときは半導
体であり、モル比1:6のときは絶縁体となる。その膜
の厚さも反応時間を変えることによって自由に選ぶこと
ができる。従って砒化ホウ素薄膜は、半導体素子を構成
する部材としての半導体層又は絶縁体層、特に電界効果
型トランジスタ等のゲート上に設けられた誘電体層とし
て利用することも可能であり、こうして得られた半導体
素子もまた新規である。
The resulting boron arsenide film is a semiconductor when the molar ratio is 1:1, and an insulator when the molar ratio is 1:6. The thickness of the film can also be freely selected by changing the reaction time. Therefore, the boron arsenide thin film can also be used as a semiconductor layer or an insulator layer as a member constituting a semiconductor device, especially as a dielectric layer provided on the gate of a field effect transistor, etc. Semiconductor devices are also new.

以下、図面に基づいて本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on the drawings.

図は本発明を実施するための装置の例を示した略図であ
って、1は直径3cm、長さ5Qcmの石英ガラス製の
反応管であり、その一端2にキャ′リヤガス導入管3と
三塩化ホウ素ガス導入管4が爆接されている。反応管1
の他端は、フランジとなり、ノズルを経て真空ポンプ5
に接続されている。反応管の中には石英ガラス製の治具
7が置かれ、その上に砒化ガリウム単結晶ウェハ6が並
べられている。9は加熱用の炉であり、、:8は温度測
定用のセンサである。10は三塩化ホウ素1jを貯えた
容器であり、キャリヤガス用流量調節器12及び三塩化
ホウ素用流量調節器13、さらに圧力計14が備えられ
ている。
The figure is a schematic diagram showing an example of an apparatus for carrying out the present invention, in which 1 is a reaction tube made of quartz glass with a diameter of 3 cm and a length of 5 Q cm, with a carrier gas introduction tube 3 and a quartz glass reaction tube at one end 2. A boron chloride gas introduction pipe 4 is in explosive contact. Reaction tube 1
The other end becomes a flange and passes through the nozzle to the vacuum pump 5.
It is connected to the. A quartz glass jig 7 is placed inside the reaction tube, and gallium arsenide single crystal wafers 6 are arranged on it. 9 is a heating furnace, and 8 is a temperature measurement sensor. A container 10 stores boron trichloride 1j, and is equipped with a carrier gas flow regulator 12, a boron trichloride flow regulator 13, and a pressure gauge 14.

この装置を用いて、以下のようにして本発明を実施した
。先づ真空ポンプを用いて反応管内部を排気し、10T
orrに保ちつつ、水素を6容量%含むアルゴン(以下
キャリヤガスという)を標準状態換算で毎分50rr+
42の割合で0.5時間導入し、次いでキャリヤガスの
供給を止めて反応管内圧を10 ’ T o r rま
で下げた。次に三塩化ホウ素を標準状態換算で毎分50
m1の割合で導入し、反応管内圧を10Torrとなる
よう真空ポンプの排気を調節しながら加熱炉によりウェ
ハを加熱し、毎分的50℃の昇温速度で約30分後に6
00℃とし、更に20分間600℃に保持した。次いで
反応管内圧を10To r rに保ちながら、キャリヤ
ガスを標準状態換算で毎分100nnj!の割合で6分
間導入し、次に三塩化ホウ素の導入と真空ポンプによる
排気を停止し、内圧が常圧に達したらキャリヤガスの導
入を停止した。この状態で更に30分間600℃に保持
したのち加熱を止め放冷した。
Using this device, the present invention was carried out in the following manner. First, the inside of the reaction tube was evacuated using a vacuum pump, and the pressure was increased to 10T.
Argon containing 6% by volume of hydrogen (hereinafter referred to as carrier gas) is heated at 50rr+ per minute in standard conditions while maintaining the
42 for 0.5 hour, and then the supply of carrier gas was stopped and the internal pressure of the reaction tube was lowered to 10' Torr. Next, apply boron trichloride at a rate of 50% per minute in standard conditions.
The wafer was heated in a heating furnace while adjusting the exhaust of the vacuum pump so that the internal pressure of the reaction tube was 10 Torr, and after about 30 minutes at a heating rate of 50°C per minute,
The temperature was set to 00°C, and the temperature was further maintained at 600°C for 20 minutes. Next, while maintaining the internal pressure of the reaction tube at 10 Torr, the carrier gas was pumped at 100 nnj/min (converted to standard conditions). Then, the introduction of boron trichloride and the evacuation by the vacuum pump were stopped, and when the internal pressure reached normal pressure, the introduction of the carrier gas was stopped. After maintaining this state at 600° C. for another 30 minutes, heating was stopped and allowed to cool.

このようにして得られた処理ずみウェハの表面を調べた
ところ、表面は砒素1モルとホウ素6モルを含む砒化ホ
ウ素であった。電子顕微鏡の観察によれば表面は平滑均
一であり、大気中で500℃に一30分間加熱した後も
殆ど変化は認められなかった。表面層は電気的絶縁性を
示し、膜の厚さは約2600オングストロームであった
When the surface of the thus obtained treated wafer was examined, it was found that the surface was boron arsenide containing 1 mole of arsenic and 6 moles of boron. According to observation using an electron microscope, the surface was smooth and uniform, and almost no change was observed even after heating at 500° C. for 130 minutes in the air. The surface layer was electrically insulating and the film thickness was about 2600 angstroms.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を実施するための装置の一例を示す略図であ
る。
The figure is a schematic diagram showing an example of an apparatus for carrying out the invention.

Claims (1)

【特許請求の範囲】 (11砒化ガリウムとその表面に設けられた砒化ホウ素
薄膜とより成る積層体。 (2) 砒化ガリウムの表面または砒化ガリウムの表面
に酸化物の薄膜を設けた面に塩化ホウ素および/または
臭化ホウ素を含有する気体を接触させることを特徴とす
る砒化ガリウムとその表面に設けられた砒化ホウ素薄膜
とより成る積層体の製法。
[Claims] (11) A laminate consisting of gallium arsenide and a boron arsenide thin film provided on its surface. A method for producing a laminate comprising gallium arsenide and a boron arsenide thin film provided on its surface, characterized by contacting with a gas containing boron bromide and/or boron bromide.
JP58154198A 1983-08-25 1983-08-25 Laminated body of gallium arsenide and boron arsenide and manufacture thereof Granted JPS6047424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154198A JPS6047424A (en) 1983-08-25 1983-08-25 Laminated body of gallium arsenide and boron arsenide and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154198A JPS6047424A (en) 1983-08-25 1983-08-25 Laminated body of gallium arsenide and boron arsenide and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6047424A true JPS6047424A (en) 1985-03-14
JPH0334650B2 JPH0334650B2 (en) 1991-05-23

Family

ID=15578978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154198A Granted JPS6047424A (en) 1983-08-25 1983-08-25 Laminated body of gallium arsenide and boron arsenide and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6047424A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161265A (en) * 1974-11-25 1976-05-27 Handotai Kenkyu Shinkokai 335 zokukagobutsuhandotaisoshi
JPS5432990A (en) * 1977-08-19 1979-03-10 Nec Corp Semiconductor light source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161265A (en) * 1974-11-25 1976-05-27 Handotai Kenkyu Shinkokai 335 zokukagobutsuhandotaisoshi
JPS5432990A (en) * 1977-08-19 1979-03-10 Nec Corp Semiconductor light source

Also Published As

Publication number Publication date
JPH0334650B2 (en) 1991-05-23

Similar Documents

Publication Publication Date Title
EP0617142A1 (en) Preparation of silica thin films
US4341818A (en) Method for producing silicon dioxide/polycrystalline silicon interfaces
US3837905A (en) Thermal oxidation of silicon
JPS5884111A (en) Improved plasma deposition for silicon
JPS6047424A (en) Laminated body of gallium arsenide and boron arsenide and manufacture thereof
US5906861A (en) Apparatus and method for depositing borophosphosilicate glass on a substrate
US6531415B1 (en) Silicon nitride furnace tube low temperature cycle purge for attenuated particle formation
JPH1116903A (en) Forming method of thin oxide film using wet oxidation
JP3915054B2 (en) Film forming material, film forming method, and element
JP2000174006A (en) Film making device
US3668095A (en) Method of manufacturing a metallic oxide film on a substrate
US3342619A (en) Method for growing germania films
JP3281467B2 (en) Film formation method
JPS6240377A (en) Production of antimony nitride
JPH058271B2 (en)
JPS6390138A (en) Method for cleaning semiconductor surface
JPH01129972A (en) Formation of silicon oxynitride film
US4302278A (en) GaAs Crystal surface passivation method
JPS6057634A (en) Formation of surface protective film
JPH07335643A (en) Film forming method
JPS60255699A (en) Member for producing semiconductor si single crystal and production thereof
JPH02177539A (en) Silicon wafer with protective film and formation of protective film for silicon wafer
JPH01196816A (en) Introduction of impurity
JPS5916337A (en) Formation of semiconductor protection film
JPS6129120A (en) Thin film forming device