JPH0334650B2 - - Google Patents

Info

Publication number
JPH0334650B2
JPH0334650B2 JP58154198A JP15419883A JPH0334650B2 JP H0334650 B2 JPH0334650 B2 JP H0334650B2 JP 58154198 A JP58154198 A JP 58154198A JP 15419883 A JP15419883 A JP 15419883A JP H0334650 B2 JPH0334650 B2 JP H0334650B2
Authority
JP
Japan
Prior art keywords
boron
gallium arsenide
arsenide
carrier gas
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58154198A
Other languages
Japanese (ja)
Other versions
JPS6047424A (en
Inventor
Hidechika Yokoyama
Moriatsu Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojundo Kagaku Kenkyusho KK
Original Assignee
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojundo Kagaku Kenkyusho KK filed Critical Kojundo Kagaku Kenkyusho KK
Priority to JP58154198A priority Critical patent/JPS6047424A/en
Publication of JPS6047424A publication Critical patent/JPS6047424A/en
Publication of JPH0334650B2 publication Critical patent/JPH0334650B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 本発明は砒化ガリウムと砒化ホウ素薄膜とより
なる新規な積層体及びその新規な製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel laminate comprising gallium arsenide and boron arsenide thin films, and a novel method for producing the same.

砒化ガリウムは半導体素子などを製造するため
に用いられる有用な材料であるが、砒化ガリウム
から半導体素子などを製造するに当つては、たと
えば砒化ガリウムの単結晶を特定の面方位で薄く
切り出したウエハの形態で使用されることが多
く、そのためしばしばウエハの形で取引され又は
運搬される。ウエハは通常その面を平滑に研磨さ
れるが、空気中の酸素により容易に酸化被膜を生
ずる。しかし砒化ガリウムウエハ面の酸化被膜は
必ずしも機械的に強いものではないため、取扱い
に際してはその面に傷をつけないよう細心の注意
が必要である。
Gallium arsenide is a useful material used to manufacture semiconductor devices, etc., but in order to manufacture semiconductor devices etc. from gallium arsenide, for example, wafers cut from a single crystal of gallium arsenide in a specific plane direction are used. They are often used in the form of wafers and are therefore often traded or transported in the form of wafers. Wafers are usually polished to a smooth surface, but oxygen in the air easily forms an oxide layer. However, since the oxide film on the surface of a gallium arsenide wafer is not necessarily mechanically strong, great care must be taken when handling it to avoid damaging the surface.

本発明者は、砒化ガリウムウエハの表面の変性
については研究を行い、砒化ガリウムの表面に塩
化ホウ素および/または臭化ホウ素を含有する気
体を接触させることによつて、表面に砒化ホウ素
の被膜を有する新規な積層体が得られることを見
出した。このようにして得られた砒化ホウ素の薄
膜は緻密であつて機械的にも丈夫であり、硬くて
傷がつき難い上に、科学的にも熱的にも耐久性が
高く、又酸化に対して安定であるから、砒化ガリ
ウムウエハを流通その他の取扱いをする際に、傷
や酸化変質を防ぐための保護被膜とすることがで
きる。
The present inventor conducted research on the modification of the surface of gallium arsenide wafers, and by bringing a gas containing boron chloride and/or boron bromide into contact with the surface of gallium arsenide, a coating of boron arsenide was formed on the surface of gallium arsenide. It has been found that a novel laminate having the following properties can be obtained. The thin film of boron arsenide thus obtained is dense and mechanically strong, hard and scratch resistant, chemically and thermally durable, and resistant to oxidation. Since it is stable and stable, it can be used as a protective coating to prevent scratches and oxidative deterioration when gallium arsenide wafers are distributed or otherwise handled.

このような砒化ホウ素薄膜を得るには、加熱さ
れた砒化ガリウムの面に、塩化ホウ素又は臭化ホ
ウ素あるいはこれらの混合ガスを、アルゴン、ヘ
リウム等の不活性ガス又はこれに水素を混合した
キヤリヤガスと併用するか又は併用せずに接触さ
せると砒化ガリウム中のガリウムが塩化物又は臭
化物などとなつて気化し、一方、残された砒素
は、還元単離されたホウ素と結合して砒化ガリウ
ムの面に砒化ホウ素として析出するという方法を
用いることができる。
To obtain such a boron arsenide thin film, boron chloride, boron bromide, or a mixture thereof is applied to the heated gallium arsenide surface with an inert gas such as argon or helium, or a carrier gas mixed with hydrogen. When brought into contact with or without combination, the gallium in gallium arsenide becomes chloride or bromide and vaporizes, while the remaining arsenic combines with the reduced and isolated boron and forms the surface of gallium arsenide. A method of precipitating boron arsenide can be used.

この際キヤリヤガスが不活性ガスであるとき
か、又は用いないときは、生成する砒化ホウ素の
組成はほぼモル比で1:1であるが、キヤリヤガ
スが水素を含むときは、キヤリヤガス中の水素の
含量が増加するにつれてホウ素の含量が増加し、
特に膜厚が大となるに従つてホウ素の含量が増加
する傾向があり、モル比1:6のものも生成す
る。
At this time, when the carrier gas is an inert gas or is not used, the composition of boron arsenide produced is approximately 1:1 in molar ratio, but when the carrier gas contains hydrogen, the content of hydrogen in the carrier gas is approximately 1:1. The boron content increases as
In particular, as the film thickness increases, the boron content tends to increase, and a film with a molar ratio of 1:6 is also produced.

キヤリヤガスに含まれる塩化ホウ素又は臭化ホ
ウ素の濃度は特に制限はないが通常5容量%以上
が適当である。
There is no particular restriction on the concentration of boron chloride or boron bromide contained in the carrier gas, but it is usually suitable to be 5% by volume or more.

またガスを接触させるときのガスの圧力は特に
制限はないが大気圧以下が好ましい。
Further, the pressure of the gas when bringing the gas into contact is not particularly limited, but it is preferably atmospheric pressure or lower.

ガスを接触させる砒化ガリウムの面の温度は、
低すぎると膜の生成が遅く、高すぎると砒素の昇
華が著しいので、300℃から700℃の範囲にあるこ
とが望ましく、特に500℃から600℃付近であるこ
とが好ましい。
The temperature of the surface of gallium arsenide that is in contact with the gas is
If the temperature is too low, the formation of the film will be slow, and if it is too high, the sublimation of arsenic will be significant. Therefore, the temperature is preferably in the range of 300°C to 700°C, and particularly preferably around 500°C to 600°C.

又、砒化ガリウムの表面は空気中において酸素
と結合し、酸化物膜が生成していることが多い
が、酸化物膜がない場合と同様に処理すれば、塩
化ガリウムなどの生成とともに酸化物は除去さ
れ、キヤリヤガスなどと共に系外に排出されるの
で砒化ホウ素薄膜の形成には全く支障がない。
In addition, the surface of gallium arsenide often combines with oxygen in the air and forms an oxide film, but if treated in the same way as when there is no oxide film, the oxide will be removed along with the formation of gallium chloride, etc. Since it is removed and discharged to the outside of the system together with the carrier gas, there is no problem at all with the formation of the boron arsenide thin film.

得られる砒化ホウ素の膜は、モル比1:1のと
きは半導体であり、モル比1:6のときは絶縁体
となる。その膜の厚さも反応時間を変えることに
よつて自由に選ぶことができる。従つて砒化ホウ
素薄膜は、半導体素子を構成する部材としての半
導体層又は絶縁体層、特に電界効果型トランジス
タ等のゲート上に設けられた誘電体層として利用
することも可能であり、こうして得られた半導体
素子もまた新規である。
The resulting boron arsenide film is a semiconductor when the molar ratio is 1:1, and an insulator when the molar ratio is 1:6. The thickness of the film can also be freely selected by changing the reaction time. Therefore, the boron arsenide thin film can also be used as a semiconductor layer or an insulator layer as a member constituting a semiconductor device, especially as a dielectric layer provided on the gate of a field effect transistor, etc. The new semiconductor device is also new.

以下、図面に基づいて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below based on the drawings.

図は本発明を実施するための装置の例を示した
略図であつて、1は直径3cm、長さ60cmの石英ガ
ラス製の反応管であり、その一端2にキヤリヤガ
ス導入管3と三塩化ホウ素ガス導入管4が熔接さ
れている。反応管1の他端は、フランジとなり、
ノズルを経て真空ポンプ5に接続されている。反
応管の中には石英ガラス製の治具7が置かれ、そ
の上に砒化ガリウム単結晶ウエハ6が並べられて
いる。9は加熱用の炉であり、8は温度測定用の
センサである。10は三塩化ホウ素11を貯えた
容器であり、キヤリヤガス用流量調節器12及び
三塩化ホウ素用流量調節器13、さらに圧力計1
4が備えられている。
The figure is a schematic diagram showing an example of an apparatus for carrying out the present invention, in which 1 is a reaction tube made of quartz glass with a diameter of 3 cm and a length of 60 cm, with a carrier gas introduction tube 3 and boron trichloride at one end 2. A gas introduction pipe 4 is welded. The other end of the reaction tube 1 becomes a flange,
It is connected to a vacuum pump 5 via a nozzle. A quartz glass jig 7 is placed inside the reaction tube, and gallium arsenide single crystal wafers 6 are arranged on it. 9 is a heating furnace, and 8 is a temperature measurement sensor. 10 is a container storing boron trichloride 11, a flow rate regulator 12 for carrier gas, a flow rate regulator 13 for boron trichloride, and a pressure gauge 1.
4 are provided.

この装置を用いて、以下のようにして本発明を
実施した。先づ真空ポンプを用いて反応管内部を
排気し、10Torrに保ちつつ、水素を6容量%含
むアルゴン(以下キヤリヤガスという)を標準状
態換算で毎分50mlの割合で0.5時間導入し、次い
でキヤリヤガスの供給を止めて反応管内圧を
10-3Torrまで下げた。次に三塩化ホウ素を標準
状態換算で毎分50mlの割合で導入し、反応管内圧
を10Torrとなるよう真空ポンプの排気を調節し
ながら加熱炉によりウエハを加熱し、毎分約50℃
の昇温速度で約30分後に600℃とし、更に20分間
600℃に保持した。次いで反応管内圧を10Torrに
保ちながら、キヤリヤガスを標準状態換算で毎分
100mlの割合で6分間導入し、次に三塩化ホウ素
の導入と真空ポンプによる排気を停止し、内圧が
常圧に達した後キヤリヤガスの導入を停止した。
この状態で更に30分間600℃に保持したのち加熱
を止め放冷した。
Using this device, the present invention was carried out in the following manner. First, the inside of the reaction tube was evacuated using a vacuum pump, and while maintaining the temperature at 10 Torr, argon containing 6% by volume of hydrogen (hereinafter referred to as carrier gas) was introduced at a rate of 50 ml per minute (converted to standard conditions) for 0.5 hours, and then the carrier gas was evacuated. Stop the supply and adjust the reaction tube internal pressure.
It was lowered to 10 -3 Torr. Next, boron trichloride was introduced at a rate of 50 ml per minute (converted to standard conditions), and the wafer was heated in a heating furnace at approximately 50°C per minute while adjusting the vacuum pump exhaust so that the internal pressure of the reaction tube was 10 Torr.
After about 30 minutes, raise the temperature to 600℃, and then heat for another 20 minutes.
It was maintained at 600°C. Next, while maintaining the internal pressure of the reaction tube at 10 Torr, the carrier gas is pumped every minute (converted to standard conditions).
After introducing boron trichloride for 6 minutes at a rate of 100 ml, the introduction of boron trichloride and evacuation by the vacuum pump were stopped, and after the internal pressure reached normal pressure, the introduction of carrier gas was stopped.
After maintaining this state at 600°C for an additional 30 minutes, heating was stopped and the mixture was allowed to cool.

このようにして得られた処理ずみウエハの表面
を調べたところ、表面は砒素1モルとホウ素6モ
ルを含む砒化ホウ素であつた。電子顕微鏡の観察
によれば表面は平滑均一であり、大気中で500℃
に30分間加熱した後も殆ど変化は認められなかつ
た。表面層は電気的絶縁性を示し、膜の厚さは約
2600オングストロームであつた。
When the surface of the thus obtained treated wafer was examined, it was found that the surface was boron arsenide containing 1 mole of arsenic and 6 moles of boron. According to observation using an electron microscope, the surface is smooth and uniform, and it can be heated to 500℃ in the atmosphere.
Almost no change was observed even after heating for 30 minutes. The surface layer exhibits electrical insulation, and the film thickness is approximately
It was 2600 angstroms.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を実施するための装置の一例を示す
略図である。
The figure is a schematic diagram showing an example of an apparatus for carrying out the invention.

Claims (1)

【特許請求の範囲】 1 ホウ素と砒素のモル比が1:1よりも大きな
表面組成を有する絶縁性の砒化ホウ素薄膜を砒化
ガリウム基体上に設けてなる砒化ガリウムと砒化
ホウ素との積層体。 2 砒化ガリウム基体または表面に酸化物の薄膜
を有する砒化ガリウム基体にホウ素の塩化物また
は臭化物を含有する気体を接触させることを特徴
とする砒化ガリウムと砒化ホウ素との積層体の製
法。 3 ホウ素の塩化物または臭化物を含有する気体
が水素を含むものである特許請求の範囲第2項記
載の製法。
[Scope of Claims] 1. A laminate of gallium arsenide and boron arsenide, which comprises a gallium arsenide substrate and an insulating boron arsenide thin film having a surface composition in which the molar ratio of boron to arsenic is greater than 1:1. 2. A method for producing a laminate of gallium arsenide and boron arsenide, which comprises contacting a gallium arsenide substrate or a gallium arsenide substrate having a thin oxide film on the surface with a gas containing boron chloride or bromide. 3. The production method according to claim 2, wherein the gas containing boron chloride or bromide contains hydrogen.
JP58154198A 1983-08-25 1983-08-25 Laminated body of gallium arsenide and boron arsenide and manufacture thereof Granted JPS6047424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154198A JPS6047424A (en) 1983-08-25 1983-08-25 Laminated body of gallium arsenide and boron arsenide and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154198A JPS6047424A (en) 1983-08-25 1983-08-25 Laminated body of gallium arsenide and boron arsenide and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6047424A JPS6047424A (en) 1985-03-14
JPH0334650B2 true JPH0334650B2 (en) 1991-05-23

Family

ID=15578978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154198A Granted JPS6047424A (en) 1983-08-25 1983-08-25 Laminated body of gallium arsenide and boron arsenide and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6047424A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161265A (en) * 1974-11-25 1976-05-27 Handotai Kenkyu Shinkokai 335 zokukagobutsuhandotaisoshi
JPS5432990A (en) * 1977-08-19 1979-03-10 Nec Corp Semiconductor light source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161265A (en) * 1974-11-25 1976-05-27 Handotai Kenkyu Shinkokai 335 zokukagobutsuhandotaisoshi
JPS5432990A (en) * 1977-08-19 1979-03-10 Nec Corp Semiconductor light source

Also Published As

Publication number Publication date
JPS6047424A (en) 1985-03-14

Similar Documents

Publication Publication Date Title
US5225032A (en) Method of producing stoichiometric, epitaxial, monocrystalline films of silicon carbide at temperatures below 900 degrees centigrade
TWI331364B (en)
KR880011898A (en) Thin film formation method and device
US6683011B2 (en) Process for forming hafnium oxide films
US3316130A (en) Epitaxial growth of semiconductor devices
WO2006029651A1 (en) Method of manufacturing a silicon dioxide layer
JPS60257526A (en) Method of growing insulator layer
US4341818A (en) Method for producing silicon dioxide/polycrystalline silicon interfaces
EP0617142A1 (en) Preparation of silica thin films
US3837905A (en) Thermal oxidation of silicon
JPS5884111A (en) Improved plasma deposition for silicon
EP0067165A1 (en) Improved partial vacuum boron diffusion process.
JPH0334650B2 (en)
US6531415B1 (en) Silicon nitride furnace tube low temperature cycle purge for attenuated particle formation
JP3915054B2 (en) Film forming material, film forming method, and element
US3668095A (en) Method of manufacturing a metallic oxide film on a substrate
US3342619A (en) Method for growing germania films
JPS6240377A (en) Production of antimony nitride
JP2805243B2 (en) Prevention of precipitation
US4302278A (en) GaAs Crystal surface passivation method
JPH058271B2 (en)
JPS6390138A (en) Method for cleaning semiconductor surface
JPS6057634A (en) Formation of surface protective film
KR880000276B1 (en) Process for making insulating layer in mos transistor
JPS6158972B2 (en)