JPS604726B2 - Flue gas desulfurization method - Google Patents

Flue gas desulfurization method

Info

Publication number
JPS604726B2
JPS604726B2 JP51137821A JP13782176A JPS604726B2 JP S604726 B2 JPS604726 B2 JP S604726B2 JP 51137821 A JP51137821 A JP 51137821A JP 13782176 A JP13782176 A JP 13782176A JP S604726 B2 JPS604726 B2 JP S604726B2
Authority
JP
Japan
Prior art keywords
zone
sulfuric acid
gas
gypsum
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51137821A
Other languages
Japanese (ja)
Other versions
JPS5362783A (en
Inventor
芳雄 小川
洋 柳岡
英夫 井出村
俊夫 金井
貢 北村
照雄 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP51137821A priority Critical patent/JPS604726B2/en
Priority to GB7412/77A priority patent/GB1577365A/en
Priority to DE2708497A priority patent/DE2708497C3/en
Priority to US05/772,779 priority patent/US4156712A/en
Priority to US05/820,333 priority patent/US4229417A/en
Publication of JPS5362783A publication Critical patent/JPS5362783A/en
Publication of JPS604726B2 publication Critical patent/JPS604726B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

【発明の詳細な説明】 本発明は湿式排煙脱硫法に関し、更に詳細には装置の統
合小型化を可能にし高い脱硫効率で高純度の石膏を生成
できる湿式排煙脱硫法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wet flue gas desulfurization method, and more particularly to a wet flue gas desulfurization method that enables integrated miniaturization of equipment and can produce high purity gypsum with high desulfurization efficiency.

従来、排煙脱硫法としては、スプレー塔、多孔板塔又は
グリッド塔等の装置を使用した気相連続の気液接触によ
る方法があるが、このような方法では気液接触の容積が
大きいにもかかわらず満足すべき脱硫効果が得られず、
又スケーリングの発生等も起って長時間の運転を行なう
ことが困難である。本発明者らは、先に米国特許第38
36630号明細書記載の排煙脱硫法を発明し、この発
明に基づいて既に1■欧基の商業プラントが稼動中であ
り、その中で最大のものは排ガス量が100方NM3/
日を越えている。
Conventionally, flue gas desulfurization methods involve continuous gas-liquid contact using devices such as spray towers, perforated plate towers, or grid towers, but in these methods, the volume of gas-liquid contact is large. However, a satisfactory desulfurization effect could not be obtained.
Furthermore, scaling may occur, making it difficult to operate for a long time. The inventors previously disclosed that U.S. Pat.
He invented the flue gas desulfurization method described in the specification of No. 36630, and one European commercial plant is already in operation based on this invention, the largest of which has an exhaust gas volume of 100 NM3/
It's over a day.

この方法は、排ガス中の亜硫酸ガスを洗浄して除去し、
吸収液中の亜硫酸を第二鉄イオン(Fe3十)触媒の存
在下に空気で酸化して硫酸とし、これを主として石灰石
で中和して石膏を生成させ、更に石膏を液中から分離す
ることによって排ガス中の亜硫酸ガスを石膏として固定
する方法である。そして特に、吸収工程と酸化工程とを
別個にそれぞれの好適な条件下で行ない、吸収液として
は酸化工程から流出する第二鉄イオンを含む硫酸酸性水
溶液の一部を直接使用し、一方硫酸の濃度は酸化工程か
ら抜き出される一部の液に石灰石を添加して石膏を生成
する結晶工程の循環液を使用することによって調節する
方法である。本発明者らは、上記の方法の改良につき研
究を重ねた結果本発明を完成したものであり、本発明の
目的は工程及び装置の統合、小型化により外部循環吸収
液量を零とした脱硫効率の高い湿式排煙脱硫法を提供す
ることである。本発明は、上記の目的を達成するため次
の構成をとるものである。
This method cleans and removes sulfur dioxide gas from exhaust gas,
Sulfurous acid in the absorption liquid is oxidized with air in the presence of a ferric ion (Fe30) catalyst to form sulfuric acid, which is neutralized primarily with limestone to produce gypsum, and the gypsum is further separated from the liquid. This method fixes sulfur dioxide gas in exhaust gas as gypsum. In particular, the absorption step and the oxidation step are carried out separately under their own suitable conditions, and a portion of the sulfuric acid aqueous solution containing ferric ions flowing out from the oxidation step is directly used as the absorption liquid, while the sulfuric acid The concentration is controlled by adding limestone to a portion of the liquid extracted from the oxidation process to produce gypsum by using the circulating liquid from the crystallization process. The present inventors have completed the present invention as a result of repeated research into improving the above method, and the purpose of the present invention is to achieve desulfurization by eliminating the amount of externally circulated absorbed liquid by integrating the process and equipment and downsizing. An object of the present invention is to provide a highly efficient wet flue gas desulfurization method. The present invention has the following configuration to achieve the above object.

すなわち、本発明の排煙脱硫法は亜硫酸ガスを石膏とし
て固定する排煙脱硫法において、一糟内に収容した石膏
を懸濁する硫酸酸性水溶液の上部城に排ガスを分散導入
して排ガスの微細気泡と該硫酸酸性水溶液からなる液相
連続の気液接触層である第一帯城を形成せしめると共に
該石膏を懸濁する硫酸酸性水溶液の下部域に酸素含有ガ
スを導入して第一帯域の直下に位置して酸素含有ガスの
微細気泡と該硫酸酸性水溶液からなり、第一帯城と液相
で連続し、かつ第一帯城より気泡量が小である第二帯域
を形成せしめ、カルシウム化合物を液相違続の硫酸酸性
水溶液の硫酸濃度を1重量%以下に維持するに足る量で
導入し、かつ第二帯城から石膏を含有する懸濁液をスラ
リー濃度3〜4の重量%に維持するに足る量取り出すこ
とを特徴とするものである。又本発明の排煙脱硫法は亜
硫酸ガスを石膏として固定する排煙脱硫法において、一
糟内に収容した石膏を懸濁し、かつ酸化触媒を含有する
硫酸酸性水溶液の上部城に排ガスを分散導入して排ガス
の微細気泡と該硫酸酸性水溶液からなる液相違碗の気液
接触層である第一帯域を形成せしめると共に該石膏を懸
濁する硫酸酸性水溶液の下部域に酸素含有ガスを導入し
て第一帯城の直下に位置して酸素含有ガスの微細気泡と
該硫酸酸性水溶液からなり、第一帯城と液相で連続し、
かつ第一帯域より気泡量が小である第二帯城を形成せし
め、カルシウム化合物を液相違続の硫酸酸性水溶液の硫
酸濃度を1重量%以下に維持するに足る量で導入し、か
つ第二帯城から石膏を含有する懸濁液をスラリー濃度3
〜40重量%に維持するに足る量取り出すことを特徴と
するものである。本発明方法は、従来の気相違競の気液
接触と異なる液相違線の気液接触方式を探るもので、液
相連続の気液接触が行なわれる第一帯城と酸素含有ガス
導入の第二帯城を空間なくすなわち液相違綾で接触させ
ることができる。
That is, the flue gas desulfurization method of the present invention is a flue gas desulfurization method in which sulfur dioxide gas is fixed as gypsum. A first zone, which is a continuous gas-liquid contact layer consisting of air bubbles and the sulfuric acid aqueous solution, is formed, and an oxygen-containing gas is introduced into the lower region of the sulfuric acid aqueous solution in which the gypsum is suspended. A second zone is formed directly below the oxygen-containing gas microbubbles and the sulfuric acid acidic aqueous solution, and is continuous with the first zone in the liquid phase and has a smaller amount of bubbles than the first zone. The compound is introduced in an amount sufficient to maintain the sulfuric acid concentration of the sulfuric acid acidic aqueous solution of the liquid-disconnection below 1% by weight, and the suspension containing gypsum from the second belt is brought to a slurry concentration of 3 to 4% by weight. It is characterized by taking out enough amount to maintain the condition. In addition, the flue gas desulfurization method of the present invention is a flue gas desulfurization method in which sulfur dioxide gas is fixed as gypsum, in which gypsum contained in a pot is suspended and the flue gas is dispersed and introduced into the upper part of a sulfuric acid acidic aqueous solution containing an oxidation catalyst. to form a first zone which is a gas-liquid contact layer of the liquid difference bowl consisting of fine bubbles of exhaust gas and the sulfuric acid acidic aqueous solution, and at the same time introducing an oxygen-containing gas into the lower region of the sulfuric acidic acidic aqueous solution in which the gypsum is suspended. Located directly under the first belt, it consists of microbubbles of oxygen-containing gas and the acidic aqueous solution of sulfuric acid, and is continuous with the first belt in the liquid phase.
and forming a second zone having a smaller amount of bubbles than the first zone, introducing a calcium compound in an amount sufficient to maintain the sulfuric acid concentration of the sulfuric acid acidic aqueous solution of the liquid-distance connection at 1% by weight or less, and Slurry concentration 3 of suspension containing gypsum from Obijo
It is characterized by taking out an amount sufficient to maintain the content at ~40% by weight. The method of the present invention explores a gas-liquid contact method using a liquid difference line, which is different from the conventional gas-liquid contact using a gas difference competition. Two belts can be brought into contact without any space, that is, with a liquid difference.

しかもこの場合液相違続の気液接触の容積は小さく、液
面の高さを変化させることにより気液接触面積を自由に
調節することができる。又本発明ではカルシウム化合物
を例えば上記第一帯域と第二帯域の接触面に導入すれば
、自動的に第一帯城の亜硫酸ガスに対しても又生成した
硫酸の中和に対してもカルシウム化合物が有効に使用さ
れて脱硫に顕著な効果を及ぼし、更に工程の統合により
吸収塔、酸化塔、中和槽、晶析槽の統合小型化を可能と
し、循環吸収液量を零にすることができる。しかしなが
らカルシウム化合物の導入位置は第一帯城又は第二帯域
に設けてもよい。又脱硫率については、第一帯城と第二
帯城を空間なく液相連続で接触させ、カルシウム化合物
を導入することにより、亜硫酸ガスの吸収、酸化、中和
が同時に進行し、亜硫酸ガスの溶解度の小さい硫酸酸性
水溶液であるにもかかわらず高い脱硫率を実現できる。
又前記のように液面を上下に変化させることにより自由
に気液接触面積を変えることができるので、容易に脱硫
率を調節することもできる。本発明における液相連続の
気液接触層(第一帯城)では、層内で物質移動は、高速
のガスが液に衝突し気泡分裂する際の激しい櫨乱接触及
び層内での分裂した微細気泡間の蝿乱接触、即ち接触界
面積を極めて大にすることにより効率的に行なわれるの
で高い脱硫率を達成することができる。
Moreover, in this case, the volume of gas-liquid contact in the liquid-disconnection is small, and the gas-liquid contact area can be freely adjusted by changing the height of the liquid level. Furthermore, in the present invention, if a calcium compound is introduced, for example, into the contact surface between the first zone and the second zone, calcium will automatically be added to the sulfur dioxide gas in the first zone and the neutralization of the sulfuric acid produced. The compound is used effectively and has a remarkable effect on desulfurization, and furthermore, by integrating the process, it is possible to integrate and downsize the absorption tower, oxidation tower, neutralization tank, and crystallization tank, and reduce the amount of circulating absorption liquid to zero. I can do it. However, the introduction position of the calcium compound may be provided in the first zone or the second zone. Regarding the desulfurization rate, by bringing the first zone and the second zone into continuous liquid phase contact with no space and introducing a calcium compound, absorption, oxidation, and neutralization of sulfur dioxide gas proceed simultaneously. A high desulfurization rate can be achieved even though the sulfuric acid acidic aqueous solution has low solubility.
Furthermore, since the gas-liquid contact area can be freely changed by vertically changing the liquid level as described above, the desulfurization rate can also be easily adjusted. In the liquid phase continuous gas-liquid contact layer (first zone) in the present invention, mass transfer within the layer is caused by intense turbulent contact when high-speed gas collides with the liquid and breaks up the bubbles, and by intense turbulent contact when the high-speed gas collides with the liquid and breaks up the bubbles. A high desulfurization rate can be achieved because this process is carried out efficiently by the turbulent contact between microbubbles, that is, by extremely increasing the contact area.

本発明の利点の一つは、気相違続形式における吸収液を
強制的にガス流へ送り込むためのポンプが不要であるの
で、吸収液循環のための動力費が大中に削減されること
である。すなわち、第一帯域における気液の接触は、細
かな液滴の表面で行なわれるのではなく、あらかじめ分
散されたガスが液中に入ることにより生ずる微細な気泡
の表面において行なわれるという特徴を有する。換言す
れば、従来法では液体のエネルギーにより気液接触が行
なわれるのに対し、本発明ではガスのエネルギーで行な
われる。しかも液体のエネルギーを伝えるポンプには、
S02を取扱い更に固体をも許容しなければならない関
係上耐食性、耐摩耗性が要求されるが、本発明ではこれ
に代るガスブロアーは普通材質ですむという大きな利点
を有する。気液接触が、液相違線で行なわれるという本
発明の特徴は団体の附着防止に大きな利点となる。つま
り固体が一度管壁などに附着するとガスの流れではこれ
を剥離することは困難であるが、本発明の方法では、常
に液体で洗われている状態なので固体の閉塞は殆んど起
らない。次に本発明では、排ガスの気泡を含む第一帯域
に接する第二帯域も空気の気泡を含有する液相違続なの
で第一帯城と第二帯城のそれぞれの帯域をポンプ及び配
管などの手段で連結する必要はな*く、上、下に特別の
境界ないこ第一帯城と第二帯城とを配置することができ
、装置はコンパクト化されると共に経済的に安価である
という利点がある。
One of the advantages of the present invention is that no pump is required to force the absorbent into the gas stream in a gas-disconnected configuration, so power costs for circulating the absorbent are greatly reduced. be. In other words, the gas-liquid contact in the first zone is not carried out on the surface of fine droplets, but on the surface of minute bubbles that are created when previously dispersed gas enters the liquid. . In other words, in the conventional method, gas-liquid contact is performed using liquid energy, whereas in the present invention, gas-liquid contact is performed using gas energy. Moreover, the pump that conveys the energy of the liquid,
Corrosion resistance and abrasion resistance are required because S02 must be handled and solids must be tolerated, but the gas blower of the present invention has the great advantage that it can be made of ordinary materials. The feature of the present invention that the gas-liquid contact is carried out at the liquid difference line is a great advantage in preventing the adhesion of particles. In other words, once solids adhere to pipe walls, it is difficult to remove them with a gas flow, but with the method of the present invention, solids are almost never blocked because they are always washed with liquid. . Next, in the present invention, since the second zone adjacent to the first zone containing exhaust gas bubbles also contains air bubbles and is a liquid connection, the first zone and the second zone are connected by means such as pumps and piping. There is no need to connect the first belt and the second belt with a special border at the top and bottom, and the advantage is that the device is compact and economically inexpensive. There is.

更に、本発明の第一帯域は排ガスの気泡を含み、第二帯
城は空気の気泡を含む液相であるが前者で含まれる排ガ
ス気泡の量に比べ後者の空気泡の量はその10%以下で
あるので第一帯城と第二帯城では気泡量に差があり、し
たがって気泡による液の上昇力に差があるため後記第1
図に示すように液の混合を濃投機を用いずして行なうこ
とも可能である。
Furthermore, the first zone of the present invention contains exhaust gas bubbles, and the second zone is a liquid phase containing air bubbles, but the amount of air bubbles in the latter is 10% of the amount of exhaust gas bubbles contained in the former. As shown below, there is a difference in the amount of bubbles between the first belt castle and the second belt castle, and therefore there is a difference in the rising force of the liquid due to the bubbles.
As shown in the figure, it is also possible to mix the liquids without using a concentrate.

勿論、液中には生成した石膏の粒子があるので、これを
確実に浮遊させるために機械的な蝿梓機を用いることも
行なわれてよい。本発明の方法で第二帯城を第一帯城の
直下に位置させることにより、酸化速度を従来の方法よ
り大きくすることができる。
Of course, since there are particles of gypsum produced in the liquid, a mechanical flywheel may be used to ensure that they are suspended. In the method of the present invention, by locating the second band directly below the first band, the oxidation rate can be increased compared to the conventional method.

つまり空気中の酸素を吸収する速度は、02の分圧に略
々比例することは公知であるが、第二帯城で液相違碗の
条件下に吹込まれた空気は第二帯城では勿論のこと第一
帯城でも独立の気泡として存在し、常に空気と同じ分圧
約0.2tmを有し、その分圧に従った速度で液中に吸
収され酸化作用を行なう。ところが従来の排ガスに直援
02を吹込む方法によると気泡の状態でなく空気は排ガ
スに混ぜられてしまうので分圧は上記の10分の1以下
、たかだか0.02tmしか上昇せず、従って酸化速度
も遅くなる。本発明によると、排煙脱硫に要する化学反
応を段階的に行なうのではなく、次式の反応によって一
挙に、しかも同一の装置において完結する。
In other words, it is known that the rate of absorption of oxygen in the air is approximately proportional to the partial pressure of 02, but the air blown into the second belt under the conditions of a liquid difference bowl is of course Even in the first belt, it exists as independent bubbles and always has the same partial pressure as air, about 0.2 tm, and is absorbed into the liquid at a rate according to that partial pressure and performs an oxidizing action. However, with the conventional method of blowing 02 directly into the exhaust gas, the air is not in the form of bubbles and is mixed with the exhaust gas, so the partial pressure increases by less than one-tenth of the above value, or only 0.02 tm at most, resulting in oxidation. The speed will also be slower. According to the present invention, the chemical reactions required for flue gas desulfurization are not performed in stages, but are completed all at once and in the same device by the reaction of the following formula.

S。2十CaC03ぞ2十班20一CaS。S. 20 CaC03 20 Group 201 CaS.

4‐が20HC。4- is 20HC.

2↑このことは本発明が亜硫酸カルシウムの形を経過す
る従来の石灰スラリー法及び本発明者らが先に出願した
米国特許第383663び号明細書記載の硫酸を経由す
る排煙脱硫法と根本的に相違する理由であり、その結果
スケーリングトラブルの防止及び経済性の改善が達成さ
れる。
2↑ This means that the present invention is fundamentally different from the conventional lime slurry method using calcium sulfite and the flue gas desulfurization method using sulfuric acid described in U.S. Patent No. 383,663, which the inventors previously filed. This is the reason for the difference in performance, and as a result, scaling troubles can be prevented and economical efficiency can be improved.

本発明方法を図面により更に詳細に説明する。The method of the present invention will be explained in more detail with reference to the drawings.

第1図は本発明の一実施態様を示す装置の機構及びフロ
ーシートを示すもので、亜硫酸ガスを導管1よりガス分
散器3を通して槽2の石膏懸濁硫酸酸性水溶液の液面下
に導入し、液相連続の気液接触層を形成する第一帯城で
亜硫酸ガスを吸収し、前記石膏懸濁硫酸酸性水溶液中の
排ガス導入口より低位の液面に設けられた酸素含有ガス
導入口6から分散して空気を導入する第二帯域からの酸
素により、亜硫酸ガスを吸収と同時に硫酸に酸化する。
この際、第一帯域と第二帯城の接触面に導管21から硫
酸濃度1重量%以下に維持するに足る量で導入されるカ
ルシウム化合物により、中和反応も同時に進行して石膏
を生成する。亜硫酸ガスを除去されたガスは、糟2の液
面上の空間部で気液分離し導管4から排出される。生成
した石膏は、導管5よりポンプ7で遠心分離機8中に槽
内の石膏濃度が結晶成長に好適な3〜4の重量%の濃度
に保持されるように抜き出して粗大石膏結晶を生長させ
る。次いで、遠心分離機8で脱水した石膏9を分離取出
し、母液は導管10から母液槽11を通しポンプ12に
より導管13より補給水14と共にスプレー15を使用
して排ガスの冷却に使われる。又糟2からの排出液の1
部を導管16より損梓機17を備えた槽19に導入し、
カルシウム化合物18をスラリー化し、これはポンプ2
川こより導管121を通って槽2に供給される。本発明
方法の実施に適する硫酸酸性水溶液の濃度は1重量%以
下望ましくは、0.01〜1重量%であり、これが0.
01重量%以下では、通常の粒径のカルシウム化合物を
使用する場合には、未反応カルシウム化合物が残り、カ
ルシウム化合物の利用率と生成石膏品質の低下、及びス
ケーリングが生じることがあるので、硫酸濃度を0.0
1重量%以下にする場合には、カルシウム化合物を20
0メッシュ90%パス、硫酸濃度を0.001重量%以
下にする場合には、325メッシュ95%パスより細か
く粉砕して、反応速度を早めることにより未反応カルシ
ウム化合物を石膏品質として許容される値まで減少させ
ることが可能となる。又本発明によれば、この濃度範囲
で濃度が高い、例えば1重量%の場合には、高い脱硫率
を維持するために、吸収液すなわち石膏を懸濁した硫酸
酸性水溶液に酸化触媒例えば3価の鉄化合物を添加する
ことが効果的であることが認められた。更に該硫酸酸性
水溶液は排ガス源に対応して、又それに付随する前処理
に基因して次の物質を含有することもある。例えば硫安
、苧硝、カーボン、FeS04、Fe2(S04)3、
CaC12、HN03、(NH4)2S04、山2(S
04)3、MgS04、NaCI等である。又本発明方
法の実施に際しては、槽内の石膏濃度を3〜4の重量%
に保持するが、これは粗大石膏結晶を得るのに必要であ
り、石膏濃度が3重量%以下になると、石膏結晶の粒経
が小さくなり石膏のスケールも発生し易くなる。
FIG. 1 shows the mechanism and flow sheet of an apparatus showing one embodiment of the present invention, in which sulfur dioxide gas is introduced from a conduit 1 through a gas disperser 3 below the surface of a gypsum-suspended sulfuric acid acidic aqueous solution in a tank 2. , an oxygen-containing gas inlet 6 which absorbs sulfur dioxide gas in the first zone forming a gas-liquid contact layer with a continuous liquid phase and is provided at a lower liquid level than the exhaust gas inlet in the gypsum-suspended sulfuric acid acidic aqueous solution. Oxygen from the second zone into which air is introduced absorbs sulfur dioxide gas and simultaneously oxidizes it to sulfuric acid.
At this time, due to the calcium compound introduced from the conduit 21 into the contact surface between the first zone and the second zone in an amount sufficient to maintain the sulfuric acid concentration at 1% by weight or less, a neutralization reaction simultaneously proceeds to produce gypsum. . The gas from which the sulfur dioxide gas has been removed undergoes gas-liquid separation in the space above the liquid surface of the slag 2 and is discharged from the conduit 4. The generated gypsum is extracted from a conduit 5 into a centrifugal separator 8 by a pump 7 so that the gypsum concentration in the tank is maintained at a concentration of 3 to 4% by weight, which is suitable for crystal growth, and coarse gypsum crystals are grown. . Next, the dehydrated gypsum 9 is separated and taken out by a centrifugal separator 8, and the mother liquor is passed from a conduit 10 through a mother liquor tank 11 and is used by a pump 12 to cool exhaust gas together with make-up water 14 from a conduit 13 using a spray 15. 1 of the liquid discharged from the sludge 2
part is introduced from the conduit 16 into a tank 19 equipped with a loss filter 17,
Calcium compound 18 is slurried, and this is pump 2
The water is supplied from the river to the tank 2 through a conduit 121. The concentration of the sulfuric acid acidic aqueous solution suitable for implementing the method of the present invention is 1% by weight or less, preferably 0.01 to 1% by weight, and 0.01% to 1% by weight.
If the sulfuric acid concentration is less than 0.01% by weight, unreacted calcium compounds may remain when using calcium compounds with normal particle sizes, resulting in a decrease in the utilization rate of the calcium compounds and the quality of the produced gypsum, as well as scaling. 0.0
When reducing the amount to 1% by weight or less, add 20% of the calcium compound.
0 mesh 90% pass, if the sulfuric acid concentration is 0.001% by weight or less, it is finely pulverized than the 325 mesh 95% pass to accelerate the reaction rate and remove unreacted calcium compounds to an acceptable value for gypsum quality. It is possible to reduce it to According to the present invention, when the concentration is high in this concentration range, for example 1% by weight, an oxidation catalyst such as a trivalent oxidation catalyst is added to the absorption liquid, that is, a sulfuric acid acidic aqueous solution in which gypsum is suspended, in order to maintain a high desulfurization rate. The addition of iron compounds was found to be effective. Furthermore, the sulfuric acid acidic aqueous solution may contain the following substances depending on the exhaust gas source and the accompanying pretreatment. For example, ammonium sulfate, ramie, carbon, FeS04, Fe2(S04)3,
CaC12, HN03, (NH4)2S04, Mountain 2 (S
04)3, MgS04, NaCI, etc. Furthermore, when carrying out the method of the present invention, the gypsum concentration in the tank should be adjusted to 3 to 4% by weight.
This is necessary to obtain coarse gypsum crystals, and when the gypsum concentration becomes 3% by weight or less, the grain size of the gypsum crystals becomes small and gypsum scale tends to occur.

又石膏濃度が4の重量%以上になると、槽や配管等で語
りが起りやすく運転が難しくなり、石膏結晶の粒径に対
する影響もほとんど無くなるので、4の重量%以上の運
転は避けなければならない。本発明方法によれば、生成
される石膏の純度も良好であり、又排水のCOD(化学
的酸素要求量)も3胸以下に押えることもできる。
In addition, if the gypsum concentration exceeds 4% by weight, it becomes difficult to operate because it tends to cause stagnation in tanks and piping, and there is almost no effect on the particle size of gypsum crystals, so operation at concentrations above 4% by weight must be avoided. . According to the method of the present invention, the purity of the gypsum produced is good, and the COD (chemical oxygen demand) of wastewater can also be suppressed to 3 or less.

従来、アルカリ吸収液による湿式排煙脱硫の吸収はpH
5〜7で行なわれ、亜硫酸塩を一部吸収帯城から抜き出
し、硫酸を添加して禾反応物をなくし、pHを下げ、空
気で硫酸塩に酸化しているが、硫酸を余分に添加するこ
とと、酸化を完全に行なうことが困難なために、生成石
膏の純度の低下及びCODの排水規準値の達成が困難に
なるという問題があったが、本発明によりこれらの問題
が一挙に解決できる。すなわち、本発明方法で使用する
吸収液は硫酸酸性水溶液なので、未反応石灰石は当然系
内に存在せず石灰石の利用率も100%となり、硫酸の
添加も不要になる。又pHが低く亜硫酸ガスの吸収酸化
が同時に進行することにより、必要に応じ添加される3
価の鉄化合物が酸化に対する顕著な効果を発揮して亜硫
酸塩は完全に酸化され、その結果排水のCODも低くな
る。以上述べたように、本発明は装置の統合による小型
化、高い脱硫率の実現、高純度石膏の生成及び排水のC
ODの低下等の利点を有する排煙脱硫法である。
Conventionally, absorption in wet flue gas desulfurization using an alkaline absorption liquid depends on the pH.
5 to 7, some of the sulfite is extracted from the absorption band, sulfuric acid is added to eliminate the reactant, the pH is lowered, and oxidized to sulfate with air, but sulfuric acid is added in excess. In addition, because it is difficult to perform complete oxidation, there have been problems such as a decrease in the purity of the produced gypsum and difficulty in achieving COD wastewater standard values, but the present invention solves these problems at once. can. That is, since the absorption liquid used in the method of the present invention is an acidic sulfuric acid aqueous solution, there is naturally no unreacted limestone in the system, and the utilization rate of limestone is 100%, making it unnecessary to add sulfuric acid. Also, because the pH is low and absorption and oxidation of sulfur dioxide gas progresses at the same time, 3 is added as needed.
The valent iron compounds exert a significant effect on oxidation and the sulfites are completely oxidized, resulting in a low COD of the wastewater. As described above, the present invention achieves miniaturization through equipment integration, realization of high desulfurization rate, production of high purity gypsum, and wastewater carbonization.
This is a flue gas desulfurization method that has advantages such as lower OD.

次に本発明の効果を説明するために、従来法の一種であ
るスプレー塔利用の装置による実験例と本発明方法によ
る実験例の比較実施の結果について述べる。
Next, in order to explain the effects of the present invention, the results of a comparative experiment between an experimental example using an apparatus using a spray tower, which is a type of conventional method, and an experimental example using the method of the present invention will be described.

スプレー塔による実験装置を第2図により説明する。The experimental apparatus using a spray tower will be explained with reference to FIG.

70仇駁■、全長15肌のスプレー塔2′に、亜硫酸ガ
ス濃度109Qpmのボイラー排ガス98州M3/日を
導管1′より導入し、吸収液を導管6′より抜き出し、
その10M3′日をポンプ7′により循環し、スプレー
5′より噴霧し、脱硫したガスを導管3′から排出した
Boiler exhaust gas of 98 M3/day with a sulfur dioxide gas concentration of 109 Qpm was introduced into the spray tower 2' with a total length of 15 mm, through conduit 1', and the absorption liquid was extracted through conduit 6'.
The 10 M3' was circulated by pump 7', sprayed from spray 5', and the desulfurized gas was discharged from conduit 3'.

一方、325メッシュ95%パスの石灰石粉のスラリー
を導管4より導入し、循環液の一部を導管8′から排出
した。その結果、吸収液のpHを5.5〜6.0にする
と約90%の脱硫率が得られたが、スケーリングが進行
して長時間の運転はできなかった。この時の吸収液中の
固体の組成の分析結果は次のとおりであった。CaC。
On the other hand, a slurry of limestone powder with a 95% pass of 325 mesh was introduced through conduit 4, and a portion of the circulating liquid was discharged through conduit 8'. As a result, when the pH of the absorption liquid was adjusted to 5.5 to 6.0, a desulfurization rate of about 90% was obtained, but scaling progressed and long-term operation was not possible. The analysis results of the solid composition in the absorption liquid at this time were as follows. CaC.

3 19モル%C
aS0301/2日20
70〃CaS04・2日20
11〃次に、スケーリングの起きないように硫
酸酸性水溶液による脱硫を試みたところ、第3図のグラ
フにおけるB(スプレー塔)及びC(多孔板塔)の結果
にみられるように、硫酸濃度0.01重量%以上ではほ
とんど脱硫することはできなかった。
3 19 mol%C
aS0301/2nd 20
70〃CaS04・2nd 20
11. Next, we tried desulfurization using an acidic sulfuric acid aqueous solution to prevent scaling, and as seen in the results of B (spray tower) and C (perforated plate tower) in the graph of Figure 3, the sulfuric acid concentration was 0. At .01% by weight or more, desulfurization could hardly be achieved.

そこで、本発明方法による実験を第1図に示す装置によ
り実施したところ、同第3図のグラフにおけるAに示す
ように、硫酸濃度0.01重量%以上でも高い脱硫率が
得られ、しかもスケーリングは全く起らず、又禾反応石
灰石や未酸化亜硫酸カルシウムも零であり、石灰石の利
用率も100%であった。(後記実施例1参照)以上の
実験によっても、従来の気相連続の気液接触による方法
より本発明の液相違競の気液接触による方法が優れてい
ることは明らかである。次に本発明を実施例により更に
詳細に説明するが、本発明はこれらの実施例になんら限
定されものではない。
Therefore, when experiments using the method of the present invention were carried out using the apparatus shown in Fig. 1, as shown by A in the graph of Fig. 3, a high desulfurization rate was obtained even at a sulfuric acid concentration of 0.01% by weight or more. No reaction occurred at all, and there was no amount of reactive limestone or unoxidized calcium sulfite, and the utilization rate of limestone was 100%. (See Example 1 below) It is clear from the above experiments that the method using gas-liquid contact using liquid difference competition according to the present invention is superior to the conventional method using gas-liquid contact using continuous gas phase. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

*誉実施例 1第1図に
示す形式の装置を使用し、重油を燃料とするボイラーか
らの、亜硫酸ガス濃度112の血、酸素濃度3%、温度
約200℃の排ガス擬似M8/日を、スプレー15で約
60ooまで冷却して吸収液をいれた塔蔚6000側、
60物舷◇の糟2中に導入した。
* Homare Example 1 Using a device of the type shown in Figure 1, simulated exhaust gas M8/day with a sulfur dioxide concentration of 112, an oxygen concentration of 3%, and a temperature of approximately 200°C from a boiler fueled by heavy oil, The tower 6000 side was cooled to about 60 oo with spray 15 and filled with absorption liquid,
It was introduced into a 60-barrel ◇ vessel.

この際第一帯域の深さは100仇岬、第二帯城の深さは
350仇舷であった。酸化用空気IONM3/H導管6
より導入し、325メッシュ95%パスの石灰石粉(4
.7k9/H)を硫酸濃度0.02〜0.3重量%に保
つように導入した。この時の脱硫率は第3図に示すとお
りであった。ポンプ7で遠心分離機8に送られた吸収液
量は100そ/日で、槽2の石膏濃度を8重量%に保持
した。この母液と補給水約70ぞ/日をスプレー15に
導入して排ガスを冷却した。生成した石膏の分析結果は
次のとおりである。CaS04・2日20 98.
9重量多 PH 6C
aC03 0 ″ 平均粒度 6
0〃CaS03 0 ″ 凝結時間 始発
8分30秒付着水分 9 〃 終
結 22分40秒ヌ レ引張り強さ 10.7&
/淡又、石灰石の利用率は100%であり、1ケ月間の
連続運転の結果スケーリングの兆候は全く無かつた。
At this time, the depth of the first zone was 100 mounds, and the depth of the second zone was 350 mounds. Oxidizing air IONM3/H conduit 6
325 mesh 95% pass limestone powder (4
.. 7k9/H) was introduced so as to maintain the sulfuric acid concentration at 0.02 to 0.3% by weight. The desulfurization rate at this time was as shown in Figure 3. The amount of absorption liquid sent to the centrifuge 8 by the pump 7 was 100 days/day, and the gypsum concentration in the tank 2 was maintained at 8% by weight. This mother liquor and about 70 g/day of make-up water were introduced into the spray 15 to cool the exhaust gas. The analysis results of the generated gypsum are as follows. CaS04・2nd 20 98.
9 heavy weight PH 6C
aC03 0″ Average particle size 6
0〃CaS03 0″ Condensation time First train
8 minutes 30 seconds adhering moisture 9 〃 Ending 22 minutes 40 seconds Tensile strength 10.7&
/Umamata: The utilization rate of limestone was 100%, and there was no sign of scaling after one month of continuous operation.

実施例 2 実施例1の装置を使用し、重油を燃料とするボイラーか
らの、亜硫酸ガス濃度105■m、酸素濃度4%、温度
約20000の排ガス950NM′日に、NH30.2
NM3/N(S03の霧点を低下させるために添加)を
添加したガスを導管1から、500Ppmの3価の硫酸
鉄を溶解した吸収液を保持する糟2中に導入した。
Example 2 Using the apparatus of Example 1, 950 NM' of exhaust gas from a boiler fueled by heavy oil with a sulfur dioxide concentration of 105 μm, an oxygen concentration of 4%, and a temperature of about 20,000 NH30.2
A gas to which NM3/N (added to lower the fog point of S03) was introduced from conduit 1 into vessel 2 holding an absorption liquid in which 500 Ppm of trivalent iron sulfate was dissolved.

酸化用空気IONW/日を導管6より導入し、又325
メッシュ95%パスの石灰石粉(3.8k9/H)を硫
酸濃度0.03〜0.0抗重量%に保つように供給した
。この時の脱硫率は94〜97%であった。又出口排ガ
スのN地は零であった。5日間運転した後、吸収液を分
析すると硫安濃度は9重量%(生成量70kg)になっ
ており、添加したNH3は吸収された後、吹込まれた空
気により酸化されていることが確認された。
Oxidizing air IONW/day is introduced from conduit 6, and 325
Limestone powder (3.8k9/H) with a 95% mesh pass was supplied so that the sulfuric acid concentration was maintained at 0.03 to 0.0% by weight. The desulfurization rate at this time was 94 to 97%. Also, the N area of the exhaust gas at the exit was zero. After 5 days of operation, analysis of the absorption liquid revealed that the ammonium sulfate concentration was 9% by weight (produced amount: 70 kg), confirming that the added NH3 was absorbed and then oxidized by the blown air. .

68以後は硫安濃度の上昇を押えるために間汐つ的に1
日150その割合で遠心分離後の母波を排出した。
After 1968, the concentration of ammonium sulfate was increased by
The mother wave after centrifugation was discharged at the same rate for 150 days.

遠心分離された石膏の量は8k9/日で分析によると石
膏中のCaC03及びCaS03は零であった。実施例
3 実施例1の装置を使用し、重油を燃料とするボイラーか
らの、亜硫酸ガス濃度107■風、酸素濃度3%、温度
約200qoの排ガス550NM3/H‘こ、亜硫酸ガ
スをボンベで5NM3/H添加し、亜硫酸ガス濃度を約
1000■岬にして、吸収液を保持する糟2に導入した
The amount of gypsum centrifuged was 8k9/day, and analysis showed that CaC03 and CaS03 in the gypsum were zero. Example 3 Using the apparatus of Example 1, 550 NM3/H' of exhaust gas from a boiler fueled by heavy oil with a sulfur dioxide concentration of 107cm, an oxygen concentration of 3%, and a temperature of about 200 qo was collected in a cylinder at 5NM3. /H was added to make the sulfur dioxide gas concentration about 1000 μm, and the mixture was introduced into the tank 2 holding the absorption liquid.

酸化用空気50NM3/日を導管6より導入し、又32
5メッシュ95%パスの石灰石粉(23k9′H)を、
硫酸濃度0.03〜0.0亀重量%に保つように供給し
た。この時の脱硫率は90〜93%であった。実施例
4 実施例1の装置を使用し、重油を燃料とするボイラーか
らの、亜硫酸ガス濃度390柳、酸素濃度3%、温度約
200℃の排ガス1250N船/日を、200肌の3価
の鉄を客解した吸収液を保持する槽2に導入した。
Oxidizing air of 50 NM3/day was introduced from conduit 6, and
5 mesh 95% pass limestone powder (23k9'H),
The sulfuric acid concentration was maintained at 0.03 to 0.0% by weight. The desulfurization rate at this time was 90 to 93%. Example
4 Using the apparatus of Example 1, exhaust gas of 1250N per day from a boiler fueled by heavy oil with a sulfur dioxide concentration of 390%, oxygen concentration of 3%, and a temperature of approximately 200°C, and trivalent iron of 200% The solution was introduced into tank 2 which holds the dissolved absorption liquid.

酸化用空気ION帆/日を導管6より導入し、又325
メッシュ95%パスの石灰石粉(2k9/H)を、硫酸
濃度0.02〜0.04重量%に保つように供給した。
この時の脱硫率は97〜99%であった。
Oxidizing air ION sail/day is introduced from conduit 6, and 325
Limestone powder (2k9/H) with a 95% mesh pass was supplied so that the sulfuric acid concentration was maintained at 0.02 to 0.04% by weight.
The desulfurization rate at this time was 97 to 99%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するに当り使用する装置の一
具体例を示す系統図、第2図は従釆のスプレー塔方式に
よる装置の系統図、第3図は本発明方法、スプレー塔及
び多孔板塔各方式を使用した場合の硫酸濃度と脱硫率と
の関係を示したグラフをそれぞれ示す。 1・・・・・・亜硫酸ガス導管、2・・・・・・反応槽
、3・・・・・・ガス分散器、4・・・・・・ガス排出
導管、5・・・・・・石膏排出導管、6・・・・・・酸
素含有ガス導入管、7…・・・ポンプ、8・・・・・・
遠心分離機、9・・・・・・石膏、10・・・・・・母
液導管、11・・・・・・母液槽、12・・・・・・ポ
ンプ、13・・・・・・母液輸送導管、14・・・・・
・補給水、15・・・・・・スプレー、16・・・・・
・石費スラリー導管、17・・・・・・縄梓機、18・
・・・・・カルシウム化合物、19・・・・・・カルシ
ウム化合物スラリー槽、20・・・・・・ポンプ、21
・・・・・・カルシウム化合物スラリー導管、1′・・
・・・・ボイラー排ガス導管、2′・・・・・・スプレ
ー塔、3′・・・・・・ガス排出導管、4′・・・・・
・石灰石粉スラリー導管、5′・・・・・・スプレー、
6′吸収液抜き出し導管、7′・・・・・・ポンプ、8
′・・・・・・石膏排出導管。 矛了図矛2図 矛3図
Fig. 1 is a system diagram showing a specific example of the apparatus used in carrying out the method of the present invention, Fig. 2 is a system diagram of an apparatus using a secondary spray tower system, and Fig. 3 is a system diagram showing a specific example of the apparatus used in carrying out the method of the present invention. and a graph showing the relationship between sulfuric acid concentration and desulfurization rate when using each perforated plate column system. 1...Sulfur dioxide gas conduit, 2...Reaction tank, 3...Gas disperser, 4...Gas exhaust pipe, 5... Gypsum discharge pipe, 6...Oxygen-containing gas introduction pipe, 7...Pump, 8...
Centrifuge, 9...Gypsum, 10...Mother liquor conduit, 11...Mother liquor tank, 12...Pump, 13...Mother liquor Transport conduit, 14...
・Supplementary water, 15...Spray, 16...
・Ishikari slurry conduit, 17... rope azusa machine, 18.
... Calcium compound, 19 ... Calcium compound slurry tank, 20 ... Pump, 21
...Calcium compound slurry conduit, 1'...
...Boiler exhaust gas pipe, 2'...Spray tower, 3'...Gas discharge pipe, 4'...
・Limestone powder slurry conduit, 5'...spray,
6' Absorption liquid extraction conduit, 7'...Pump, 8
′...Gypsum discharge conduit. Kyoryo Zuyō 2 Zuyō 3

Claims (1)

【特許請求の範囲】 1 亜硫酸ガスを石膏として固定する排煙脱硫法におい
て、一槽内に収容した石膏を懸濁する硫酸酸性水溶液の
上部域に排ガスを分散導入して排ガスの微細気泡と該硫
酸酸性水溶液からなる液相連続の気液接触層である第一
帯域を形成せしめると共に該石膏を懸濁する硫酸酸性水
溶液の下部域に酸素含有ガスを導入して第一帯域の直下
に位置して酸素含有ガスの微細気泡と該硫酸酸性水溶液
からなり、第一帯域と液相で連続し、かつ第一帯域より
気泡量が小である第二帯域を形成せしめ、カルシウム化
合物を液相連続の硫酸酸性水溶液の硫酸濃度を1重量%
以下に維持するに足る量で導入し、かつ第二帯域から石
膏を含有する懸濁液をスラリー濃度3〜40重量%に維
持するに足る量取り出すことを特徴とする排煙脱硫法。 2 カルシウム化合物を第一帯域と第二帯域との接触面
において導入する特許請求の範囲第1項記載の方法。3
亜硫酸ガスを石膏として固定する排煙脱硫法において
、一槽内に収容した石膏を懸濁し、かつ酸化触媒を含有
する硫酸酸性水溶液の上部域に排ガスを分散導入して排
ガスの微細気泡と該硫酸酸性水溶液からなる液相連続の
気液接触層である第一帯域を形成せしめると共に該石膏
を懸濁する硫酸酸性水溶液の下部域に酸素含有ガスを導
入して第一帯域の直下に位置して酸素含有ガスの微細気
泡と該硫酸酸性水溶液からなり、第一帯域と液相で連続
し、かつ第一帯域より気泡量が小である第二帯域を形成
せしめ、カルシウム化合物を液相連続の硫酸酸性水溶液
の硫酸濃度を1重量%以下に維持するに足る量で導入し
、かつ第二帯域から石膏を含有する懸濁液をスラリー濃
度3〜40重量%に維持するに足る量取り出すことを特
徴とする排煙脱硫法。
[Claims] 1. In the flue gas desulfurization method in which sulfur dioxide gas is fixed as gypsum, the flue gas is dispersed and introduced into the upper region of a sulfuric acid acid aqueous solution in which gypsum is suspended in a tank, and the fine bubbles of the flue gas and the A gas-liquid contact layer having a continuous liquid phase is formed in the first zone consisting of the sulfuric acid acid aqueous solution, and an oxygen-containing gas is introduced into the lower region of the sulfuric acid acid aqueous solution in which the gypsum is suspended, so as to be located directly below the first zone. A second zone is formed, which is composed of microbubbles of oxygen-containing gas and the sulfuric acid acid aqueous solution, is continuous with the first zone in the liquid phase, and has a smaller amount of bubbles than the first zone. The sulfuric acid concentration of the sulfuric acid acidic aqueous solution is 1% by weight.
A method for flue gas desulfurization, characterized in that a sufficient amount is introduced to maintain a slurry concentration of 3 to 40% by weight, and a sufficient amount is withdrawn from a second zone to maintain a slurry concentration of 3 to 40% by weight. 2. The method according to claim 1, wherein the calcium compound is introduced at the interface between the first zone and the second zone. 3
In the flue gas desulfurization method, which fixes sulfur dioxide gas as gypsum, gypsum stored in a tank is suspended, and the flue gas is dispersed and introduced into the upper region of a sulfuric acid acidic aqueous solution containing an oxidation catalyst. A first zone, which is a gas-liquid contact layer with a continuous liquid phase consisting of an acidic aqueous solution, is formed, and an oxygen-containing gas is introduced into the lower region of the sulfuric acid acidic aqueous solution in which the gypsum is suspended, and the gas is located immediately below the first zone. A second zone is formed of fine bubbles of oxygen-containing gas and the sulfuric acid acidic aqueous solution, and is continuous with the first zone in the liquid phase and has a smaller amount of bubbles than the first zone. The sulfuric acid concentration of the acidic aqueous solution is introduced in an amount sufficient to maintain the sulfuric acid concentration at 1% by weight or less, and the gypsum-containing suspension is removed from the second zone in an amount sufficient to maintain the slurry concentration at 3 to 40% by weight. flue gas desulfurization method.
JP51137821A 1976-02-28 1976-11-18 Flue gas desulfurization method Expired JPS604726B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP51137821A JPS604726B2 (en) 1976-11-18 1976-11-18 Flue gas desulfurization method
GB7412/77A GB1577365A (en) 1976-02-28 1977-02-22 Gas-liquid contacting method and apparatus
DE2708497A DE2708497C3 (en) 1976-02-28 1977-02-26 Method and device for removing contaminants from an exhaust gas
US05/772,779 US4156712A (en) 1976-02-28 1977-02-28 Gas-liquid contacting method
US05/820,333 US4229417A (en) 1976-02-28 1977-07-29 Gas-liquid contacting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51137821A JPS604726B2 (en) 1976-11-18 1976-11-18 Flue gas desulfurization method

Publications (2)

Publication Number Publication Date
JPS5362783A JPS5362783A (en) 1978-06-05
JPS604726B2 true JPS604726B2 (en) 1985-02-06

Family

ID=15207626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51137821A Expired JPS604726B2 (en) 1976-02-28 1976-11-18 Flue gas desulfurization method

Country Status (1)

Country Link
JP (1) JPS604726B2 (en)

Also Published As

Publication number Publication date
JPS5362783A (en) 1978-06-05

Similar Documents

Publication Publication Date Title
US4690807A (en) Process for the simultaneous absorption of sulfur oxides and production of ammonium sulfate
US3836630A (en) Method for treatment of gas containing sulfur dioxide
US4696804A (en) Method for treating SO2, SO3 and dust simultaneously
US7419643B1 (en) Methods and apparatus for recovering gypsum and magnesium hydroxide products
CN102091519A (en) Double-groove wet-process flue gas desulfuration device and method operating on basis of two pH values
KR0174794B1 (en) Exhaust gas desulfurization process
CN102284238A (en) Bialkali-method flue-gas desulphurization process
Su et al. A pilot-scale jet bubbling reactor for wet flue gas desulfurization with pyrolusite
US3965242A (en) Method for desulfurizing exhaust gas by alkali sulphite-gypsum process
US5407646A (en) Dual impeller method and apparatus for effecting chemical conversion
CN205903789U (en) Concentrated oxidative desulfurization device of carbide ash or carbide slag two -stage
JPS604726B2 (en) Flue gas desulfurization method
JPS62225226A (en) Wet stack-gas desulfurization facility
JPH0691938B2 (en) Method for removing sulfur oxides in exhaust gas
US4618482A (en) Method for controlling a concentration of slurry in wet flue gas desulfurization apparatus
JPS59230620A (en) Slurry concentration control method of wet waste gas desulfurization apparatus
JP3504427B2 (en) Exhaust gas desulfurization method
CN109908736B (en) Limestone gypsum wet desulfurization device
CN210009826U (en) Limestone gypsum wet desulphurization device
CN110436505A (en) A kind of method of desulfurization co-production gypsum and calcium chloride
JP3532028B2 (en) Exhaust gas desulfurization method
JPS6116490B2 (en)
CN216418925U (en) Device for treating limestone wet desulphurization slurry poisoning
JPH0227868Y2 (en)
JPH10151470A (en) Treatment of waste water