JPS6047238A - Optical head - Google Patents

Optical head

Info

Publication number
JPS6047238A
JPS6047238A JP58154576A JP15457683A JPS6047238A JP S6047238 A JPS6047238 A JP S6047238A JP 58154576 A JP58154576 A JP 58154576A JP 15457683 A JP15457683 A JP 15457683A JP S6047238 A JPS6047238 A JP S6047238A
Authority
JP
Japan
Prior art keywords
lens
recording medium
light
beams
semiconductor lasers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58154576A
Other languages
Japanese (ja)
Inventor
Masataka Ito
正隆 伊藤
Masahiko Fujiwara
雅彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58154576A priority Critical patent/JPS6047238A/en
Publication of JPS6047238A publication Critical patent/JPS6047238A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector

Abstract

PURPOSE:To attain ease of beam position adjustment with less components by separating optical path of a collimator lens collimating radiated light from plural semiconductor lasers from plural beams making incident to a recording medium via a condenser lens and reflecting from the recording medium. CONSTITUTION:Irradiated lights 20a, 20b from semiconductor lasers 21a, 21b are collimated by a common collimater lens 22 and made incident to a polarized beam splitter 23. The light is not polarized by the polarized beam splitter 23 but straight-forwarded, the P polarized light is converted into circularly polarized light through a lambda/4 plate 24 and condensed on a recording medium through the condenser lens 26 fitted to an actuator 25. The interval in the (y) direction of two beams on the recording medium 27 is decided by magnification of the converged optical system and is 1-1/2 of the array interval of the semiconductor laser normally. Since the converged position shift between two beams in the focus direction is shared in common to the collimeter lens and the converged lens, the shift is not almost caused and a problem in a conventional constitution collimating plural beam with separte collimator lens is eliminated.

Description

【発明の詳細な説明】 本発明は光ビームをディスク状記録媒体上に収束し、情
報を記録あるいは再生する光学的情報記録再生装置の光
学ヘッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical head of an optical information recording/reproducing apparatus that converges a light beam onto a disk-shaped recording medium to record or reproduce information.

近年、ディスク状の記録媒体上に同心円状あるいは螺旋
状に微小なピットの連続として記録された画像、音声な
どの情報を光学的に再生する技術が進み、ビデオディス
ダ、ディジタル・オーディオディスク等として実用化さ
ねている。また単に再生のみならず記録を行い、メモリ
として利用する光デイスクメモリの開発も行なわねてい
る。このような記録再生が可能な光デイスクメモリ装置
は、従来の磁気プイスクメモリ装置等に比べて小形、@
舞、高記録密度、信号品質の安定性に対する高信頼性等
の特徴があり、家庭における映像、2音楽等の情報源の
みならず端末におけるファイル装置やファイルメモリへ
の応用が期待さねている。
In recent years, technology has advanced for optically reproducing information such as images and audio recorded as a series of concentric or spiral micro pits on disk-shaped recording media, and video discs, digital audio discs, etc. It is still being put into practical use. Furthermore, no effort has been made to develop an optical disk memory that can be used not only for playback but also for recording and as a memory. Optical disk memory devices capable of such recording and playback are smaller and smaller than conventional magnetic disc memory devices, etc.
It has characteristics such as high reliability, high recording density, and stability of signal quality, and is expected to be applied not only to information sources such as video and music in the home, but also to file devices and file memories in terminals. .

このような光デイスクメモリ装置の光諒として従来のガ
スレーザより小形で高効率な半導体レーザ(LD)が用
いらねるようになった。このLDと、収束光学系と、情
報サーボ信号検出系と、サーボ信号に応じて光スポット
をトラック上に位置させるための微少変位のビーム駆動
手段とを1つにまとめて光学ヘッドを構成し、この光学
ヘッドをトラック追跡の際の粗動を行うアクチェータ上
に乗せた機構により、情報トラックの選択追跡を行い情
報記録の再生を行っている。tのように多くの機能を併
せ持つ光学ヘッドは光デイスクメモリ装置σ)1妥な構
成要素となっている。
Semiconductor lasers (LDs), which are smaller and more efficient than conventional gas lasers, have come to be used as optical sources for such optical disk memory devices. This LD, a converging optical system, an information servo signal detection system, and a beam driving means for minute displacement for positioning a light spot on a track according to a servo signal are integrated into one to form an optical head, A mechanism in which this optical head is mounted on an actuator that performs coarse movement during track tracking selectively tracks information tracks and reproduces recorded information. An optical head having many functions such as t has become a reasonable component of an optical disk memory device.

従来の光学ヘッドは、1つのT、 Dを光源どして用い
、このLDを記録時に妖体上で媒体の記録しきい値より
十分高いブhパワーが得らハるような電気パルスにより
、駆動し、また自生時に記録しきい値より十分低く、か
つS/N比が確保できるような光出力レベルのCWf1
1作を行わせている。しかし、このような方式は、記録
直後の記録状態の千二夕が不可能であり、このため誤り
補正を行う場合には2回転分の時間を必要とする。また
、記録時のフォーカス制御を行う場合、この記録時に大
出力のパルスを用いるために検出系での飽和防止用に低
先出力レベルを設定してサーボ信号をサンプリングした
り、また記録信号レベルに応じて制御系の利得の補償を
する必要があり、検出系が難しくなるという欠点がある
。そのため記録、再生をそわぞね別のLDのビームで行
い、即ち記録ビームは記録のみ、そして再生ビームは情
報信号の再生及び記録再生時のサーボ信号検出に用いる
複数ビーム構成が望ましい。
Conventional optical heads use one T and one D as light sources, and when recording on this LD, an electric pulse is used to generate a beam power sufficiently higher than the recording threshold of the medium. CWf1 at an optical output level that is sufficiently lower than the recording threshold value during self-generation and that ensures a good S/N ratio.
I am making one work. However, with this method, it is impossible to maintain the recorded state immediately after recording, and therefore, when performing error correction, it takes two revolutions. In addition, when performing focus control during recording, in order to use high-output pulses during this recording, a low output level is set to prevent saturation in the detection system and the servo signal is sampled, and the servo signal is sampled at the recording signal level. It is necessary to compensate the gain of the control system accordingly, which has the disadvantage that the detection system becomes difficult. Therefore, it is desirable to perform recording and reproduction using beams from separate LDs, that is, to use a recording beam for recording only, and a reproduction beam for reproducing information signals and detecting servo signals during recording and reproduction.

従来、複数ビーム光学ヘッドは一般には第1図に示すよ
うに波長の異なる2つの半導体レーザがらの放射光を別
々のコリメータレンズでコリメートした後にビームスプ
リッタや偏光ビームスプリッタで合波して収束レンズに
入射する構成となっている。図中のlla、llbはそ
ねぞね再生用、記録用の半導体レーザ(LD)、12a
、12bはコリメータレンズ、13はビームスプリッタ
あるいは偏光ビームスプリッタ、14は1/4波長板、
15はアクチュエータ、16は収束レンズ、17は記録
媒体、18a、18bは干渉フィルタ、19は検出系で
ある。互いに偏光方向が直交し発振波長が異なる半導体
レーザlla、flbの放射光はそ第1ぞわ別々のコリ
メータ12a、12.bでコリメートさね、そねぞねの
発振波長の光のみを透過し、そね以外の波長の九′は反
射する干渉フィルタ18a、18bを透過して偏光ビー
ムスプリッタ13によって合波される。λ/4板14を
透過するとそわぞわの直線偏光光は円偏光光となりアク
チェ−タ15に取付けらねた収束レンズ16を通して記
録媒体17に入射する。記録媒体17から反射した光は
ほぼ同一の光路を逆行し、λ/4板14を透過すると2
つの円偏光光はそねぞね、先注からの放射光の偏光方向
に直交した直線偏光光に変換される。記録用の半導体レ
ーザ11α〆からの放Ω」光は偏光ビームスプリッタ1
3では直進し干渉フィルタ18bによって偏向される。
Conventionally, multi-beam optical heads generally collimate the emitted light from two semiconductor lasers with different wavelengths using separate collimator lenses, and then combine them using a beam splitter or polarizing beam splitter to form a convergent lens, as shown in Figure 1. The configuration is such that the light is incident. lla and llb in the figure are semiconductor lasers (LD) for reproduction and recording, and 12a
, 12b is a collimator lens, 13 is a beam splitter or polarizing beam splitter, 14 is a quarter wavelength plate,
15 is an actuator, 16 is a converging lens, 17 is a recording medium, 18a and 18b are interference filters, and 19 is a detection system. The emitted light from the semiconductor lasers lla and flb, whose polarization directions are orthogonal to each other and whose oscillation wavelengths are different, is first transmitted to separate collimators 12a, 12. Collimated by b, only the light having the oscillation wavelength of the oscillation wavelength is transmitted through interference filters 18a and 18b, which transmit only the light having the oscillation wavelength of the oscillation wavelength, and the wavelengths other than the 9' are reflected, and are combined by the polarizing beam splitter 13. When transmitted through the λ/4 plate 14, the linearly polarized light becomes circularly polarized light and enters the recording medium 17 through a converging lens 16 not attached to the actuator 15. The light reflected from the recording medium 17 travels back along almost the same optical path, and when it passes through the λ/4 plate 14, it becomes 2
Each circularly polarized light is converted into a linearly polarized light that is orthogonal to the polarization direction of the emitted light from the prior injection. The light emitted from the recording semiconductor laser 11α is sent to the polarizing beam splitter 1.
3, it travels straight and is deflected by the interference filter 18b.

一方、再生用の半導体レーザllbからの放射光は偏光
ビームスプリッタ13で偏向さゎ、そして干渉フィルタ
18aで偏向さね検出系19に入射する。この構成では
、2つのコリメートレンズと2つの干渉フィルタを必要
とするために構成部品が多く、また通常2つの光源の発
振波長が接近しティる(:50nm)ために干渉フィル
タではビームの入射角度に対して分離性能が太き(変化
し、調整が困難で多くの手間を必要とする。
On the other hand, the emitted light from the reproducing semiconductor laser llb is deflected by the polarizing beam splitter 13, and then enters the deflection tongue detection system 19 by the interference filter 18a. This configuration requires two collimating lenses and two interference filters, so there are many components, and since the oscillation wavelengths of the two light sources are usually close to each other (50 nm), the angle of incidence of the beam cannot be determined by the interference filter. Separation performance is high (varies, difficult to adjust, and requires a lot of effort).

さらに複数ビーム光学ヘッドでは2つのビームの焦点方
向の相対収束位置ずわを最大でも1μm程度に抑える必
要があり、そt1以上のすわがあるとひとつのビームの
焦点位置に媒体が位置するようにフォー力学テサーポを
かけた場合、他のビームは媒体上で痒がり記録あるいは
角化特性が劣化してしまう。そわを避り−るために別々
のコリメートレンズで行5LD放射光の千行光比を双方
はぼ〃\゛ 完全に行う必要iあるが、焦点距離が4朋、口径が4紺
の収束レンズを用いた場合にはフリメートレンズを透過
したビームの広がり角が0007°程度で焦点方向の収
束位置が約17+mずねてしまう。
Furthermore, in a multi-beam optical head, it is necessary to suppress the relative convergence position deviation of the two beams in the focal direction to about 1 μm at most, and if there is a deviation of t1 or more, the medium will be located at the focal position of one beam. When photodynamics is applied, the other beams become itchy on the medium and the recording or keratinization properties deteriorate. In order to avoid fidgeting, it is necessary to use separate collimating lenses to achieve a perfect thousand line ratio for both rows of 5LD synchrotron radiation, but a converging lens with a focal length of 4mm and an aperture of 4mm When using this, the divergence angle of the beam transmitted through the frimate lens is about 0007°, and the convergence position in the focal direction is shifted by about 17+m.

従って、複数のビームのコリメーションを同程度に調整
し、焦点方向の収束位置をほぼ一斂させることは困難で
ある。またビームjB]隔は収束レンズへのビームの入
射角度をlA藍して行っているが、収束レンズの焦点距
離が4關の場合、0.14度の斜め入射が10μmのビ
ーム間隔に相当し、調整精度が厳しく、再現性も悪い。
Therefore, it is difficult to adjust the collimation of a plurality of beams to the same degree and to make the convergence positions in the focal direction substantially converge. Also, the beam spacing is determined by setting the incident angle of the beam to the converging lens as 1A, but if the focal length of the converging lens is 4 degrees, an oblique incidence of 0.14 degrees corresponds to a beam spacing of 10 μm. , the adjustment accuracy is strict and the reproducibility is poor.

本発明の目的は、こわらの問題を解決し、ビーム調整が
容易で構成部品が少ない複数ビーム光学ヘッドを提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a multi-beam optical head that solves the stiffness problem, allows easy beam adjustment, and has fewer components.

以下、図面に従って本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第2図は本発明による光学ヘッドの一実施例を示す図で
、光源として、互いに近接し、放射方向が同一な発振波
長が双方共に0.7871mの2個のAlGaAs 半
導体レーザ21a、21bを用いた光学ヘッドである。
FIG. 2 is a diagram showing an embodiment of the optical head according to the present invention, in which two AlGaAs semiconductor lasers 21a and 21b, which are close to each other, have the same emission direction, and both have an oscillation wavelength of 0.7871 m are used as light sources. This is an optical head.

半導体レーザ21a、21bからの放射光20 a、 
20 bは共通のフリメータレンズ22により平行化さ
れて偏光ビームスプリッタ23に入射する。20aは再
生用、20bは配分用ビームで電界成分がほとんどy方
向にのみ存在する(P偏光)。偏光ビームスプリンタ2
3では偏向さit′1′に直進し、λノ板24を透過し
てP偏光は円偏光に変換され、アクチュエータ25に取
付けられた収束レンズ26を通して記録媒体27の 上27に集光される。記録媒体上27せδででムのy方
向の間隔は収束光学系の拡大倍率で決定さね、通常LD
のアレイ間隔の1〜1/2程度である。焦点方向(y方
向)の2ビ一ム間の収束位置ずilはフリメートレンズ
、収束レンズを共有しているのでほとんど生じず、複数
のビームを別々のコリメータレンズでコリメートする従
来の構成の問題点は解消される。さらに記録媒体上での
ビーム間隔は光源である半導体レーザ間の間隔に光学系
の結像倍率を乗じた関係になるので、半導体レーザを一
定の間隔で作製、例えば同一基板上に複数個パターン化
して、結晶成長すわば光源の間隔、そして媒体上のビー
ム間隔は再現よく、かつ精度良く設定できる。記録媒体
X27により反射された光はほぼ同一の光路を逆行し、
1/4波長板24を通過すると円偏光から、半導体レー
ザ21の発振光の偏光方向とは直交した偏光(S偏光)
になるので偏光ビームスプリッタ23ではy方向に偏向
される。さらにレンズ28を透過した再生信号を含む反
射光20C及び記録用ビームの反射光20dはレンズか
らの距離がほぼ同一の地点に収束される。収束レンズ2
7、レンズ28の焦点距離をそわぞわ4龍、40m、記
録媒体27上での収束ビーム径、ビーム間隔をそねぞね
1.5μm、50μ−とするとレンズ28を透過して収
束した光の収束ビーム径、ビーム間隔はそねぞわ15μ
m。
Emitted light 20a from semiconductor lasers 21a and 21b,
20 b is collimated by the common frimeter lens 22 and enters the polarizing beam splitter 23 . 20a is a beam for reproduction, and 20b is a beam for distribution, and the electric field component exists almost only in the y direction (P polarized light). Polarized beam splinter 2
In 3, the P-polarized light goes straight to the polarized it'1', passes through the λ plate 24, is converted into circularly polarized light, and is condensed onto the top 27 of the recording medium 27 through the converging lens 26 attached to the actuator 25. . The spacing in the y direction of the beams at 27 degrees δ on the recording medium is determined by the magnification of the converging optical system, and is usually
This is about 1 to 1/2 of the array spacing. The convergence position difference between the two beams in the focal direction (y direction) rarely occurs because the merging lens and converging lens are shared, and this is a problem with the conventional configuration in which multiple beams are collimated using separate collimator lenses. The points are cleared. Furthermore, the beam spacing on the recording medium is determined by multiplying the spacing between the semiconductor lasers (light sources) by the imaging magnification of the optical system. Therefore, the crystal growth, the interval between the light sources, and the interval between the beams on the medium can be set with good reproducibility and accuracy. The light reflected by the recording medium X27 travels back along almost the same optical path,
When passing through the quarter-wave plate 24, the circularly polarized light changes into polarized light (S-polarized light) that is perpendicular to the polarization direction of the oscillation light of the semiconductor laser 21.
Therefore, the polarizing beam splitter 23 deflects the light in the y direction. Further, the reflected light 20C containing the reproduction signal and the reflected light 20d of the recording beam transmitted through the lens 28 are converged at a point at approximately the same distance from the lens. Convergent lens 2
7. If the focal length of the lens 28 is 40 m, the diameter of the convergent beam on the recording medium 27, and the beam interval are 1.5 μm and 50 μm, then the light that passes through the lens 28 and converges. The convergent beam diameter and beam spacing are 15μ.
m.

500μmm程度にブLる。記録媒体27からの2つの
反射ビーム20C,20dの焦点位置にナイフエッヂ2
9を挿入した場合、ビーム中心から100μ薄程度離第
1た地点では光パワはほとんど零でありまたナイフエッ
ヂ29も100μm程度の位置合せは可能であるので記
録ビームの反射光20dをナイフエッヂにより光路を分
離し反対光20Cのみを検出系30へ入射させて再生信
号を得ることかできる。
The width is about 500 μmm. A knife edge 2 is located at the focal position of the two reflected beams 20C and 20d from the recording medium 27.
9, the optical power is almost zero at the first point about 100 μm thin from the beam center, and the knife edge 29 can also be aligned by about 100 μm, so the reflected light 20d of the recording beam is transferred by the knife edge. A reproduced signal can be obtained by separating the optical path and allowing only the opposite light 20C to enter the detection system 30.

上記の如く、この構成では、従来の籾数ビーム光学ヘッ
ドの難点であったビーム位置調整が容易であり、かつ部
品数が少な℃・利点がある。
As described above, this configuration has the advantage that it is easy to adjust the beam position, which was a drawback of the conventional grain beam optical head, and that the number of parts is small.

本実施例では光源である2つの半導体レーザとして発振
波長が双方とも同一の078μ累のAlGaAs半導体
を用いたが他の波長、あるいはそわそわ波長が異なる半
導体レーザな用いてもl¥111様な事が言える。また
複数ビーム光学ヘッドとして2ビーム九学ヘツドを示し
たがそれ以上のビームを用いた光学ヘッドにおいても同
様な事が言える。
In this example, AlGaAs semiconductors with the same oscillation wavelength of 078 μm were used as the two semiconductor lasers serving as the light sources, but even if semiconductor lasers with other wavelengths or different wavelengths were used, the cost would be around ¥111. I can say it. Further, although a two-beam optical head is shown as a multi-beam optical head, the same can be said of optical heads using more beams.

以上、本発明によねば構成部品が少なく、ビーム位置調
整が容易な複数ビーム光学ヘッドが実現できる。
As described above, according to the present invention, a multi-beam optical head with fewer components and easy beam position adjustment can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2つのビームを別々のフリメータレンズでコリ
メートした後に合成する従来の一般的な複数ビーム光学
ヘッドの構成図でlla、llbは半導体レーザ、12
a、12bはコリメータレンズ、13はビームスプリッ
タあるいは偏光ビームスプリッタ、14は1/4波長板
、15はアクチェエータ、16は収束レンズ、17は記
録媒体18a、18bは干渉フィルタ、19は検出系で
ある。第2し1は本発明による光学ヘッドの一実施 例
を示す図で、21a、21bは半導体レーザ20a、2
0b、20c、20dはレーザ光、22はフリメートレ
ンズ、23は偏光ビームスプリッタ、24は1/4波長
板、25は7クチエエーク、26は収束レンズ、27は
記録媒体、28はレンズ、29はナイフエッヂ、30は
検出系である。 +1理人弁理士 内原
Figure 1 is a configuration diagram of a conventional general multi-beam optical head that collimates two beams with separate frimeter lenses and then combines them.
a and 12b are collimator lenses, 13 is a beam splitter or polarizing beam splitter, 14 is a quarter wavelength plate, 15 is an actuator, 16 is a converging lens, 17 is a recording medium 18a, 18b is an interference filter, and 19 is a detection system. . 21 is a diagram showing an embodiment of the optical head according to the present invention, and 21a and 21b are semiconductor lasers 20a and 2.
0b, 20c, 20d are laser beams, 22 is a frimate lens, 23 is a polarizing beam splitter, 24 is a quarter wavelength plate, 25 is a 7-wave plate, 26 is a converging lens, 27 is a recording medium, 28 is a lens, 29 is a Knife edge 30 is a detection system. +1 Patent Attorney Uchihara

Claims (1)

【特許請求の範囲】[Claims] 放射方向が同一で互いに近接して位置する複数の半導体
レーザと、前記複数の半導体レーザからの放射光を平行
化する1つのコリメートレンズと、前記半導体レーザか
ら、の放射光が記録媒体に略垂直となるように設置した
収束レンズと、前記記録媒体からの反射光と前記半導体
レーザからの放射光を分離する光学的手段と、前記記録
媒体からの反射光を絶縁する光学的手段と、前記記録媒
体から反射する複数ビームの光路を分離する光学的手段
とを具備したことを特徴とする光学ヘッド。
a plurality of semiconductor lasers having the same emission direction and located close to each other; one collimating lens for collimating the light emitted from the plurality of semiconductor lasers; and a collimating lens for collimating the light emitted from the semiconductor lasers, the light emitted from the semiconductor lasers being substantially perpendicular to the recording medium. a converging lens installed so that 1. An optical head comprising: optical means for separating optical paths of a plurality of beams reflected from a medium.
JP58154576A 1983-08-24 1983-08-24 Optical head Pending JPS6047238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154576A JPS6047238A (en) 1983-08-24 1983-08-24 Optical head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154576A JPS6047238A (en) 1983-08-24 1983-08-24 Optical head

Publications (1)

Publication Number Publication Date
JPS6047238A true JPS6047238A (en) 1985-03-14

Family

ID=15587239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154576A Pending JPS6047238A (en) 1983-08-24 1983-08-24 Optical head

Country Status (1)

Country Link
JP (1) JPS6047238A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181441A (en) * 1981-04-21 1982-11-08 Philips Nv Recorder and reader for optical recording carrier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181441A (en) * 1981-04-21 1982-11-08 Philips Nv Recorder and reader for optical recording carrier

Similar Documents

Publication Publication Date Title
US4667316A (en) Information recording-reproducing apparatus
JPH0714242A (en) Double-beam optical head
JPS6047238A (en) Optical head
JPH0512772B2 (en)
JPS637952Y2 (en)
JP3005648B2 (en) Optical disk recording method and optical disk device
JPS59142758A (en) Optical head for optical memory
JP2978269B2 (en) Optical disk drive
JPS647469Y2 (en)
JPH1027347A (en) Optical signal reproducing method, optical head and optical recorder
JPH07141681A (en) Optical head
JP2517697Y2 (en) Multiple beam optical head
KR100207720B1 (en) Optical pickup apparatus for recording and reproducing
JPH06130213A (en) Optical pickup device
JPH0424770B2 (en)
KR100266201B1 (en) Optical pickup apparatus
JPH02276046A (en) Optical head device
JP2730167B2 (en) Multi-beam optical head device
JPS5992447A (en) Double beam optical head
JPS632126A (en) Two-laser optical head
JPS62125549A (en) Optical head
JPS60177444A (en) Optical head device
JPS59139151A (en) Recording device of optical information
JPH03116546A (en) Information recording and reproducing device
JPS6047276A (en) Information device