JPS6046338A - Method and apparatus for preparing amorphous composite material - Google Patents

Method and apparatus for preparing amorphous composite material

Info

Publication number
JPS6046338A
JPS6046338A JP58155619A JP15561983A JPS6046338A JP S6046338 A JPS6046338 A JP S6046338A JP 58155619 A JP58155619 A JP 58155619A JP 15561983 A JP15561983 A JP 15561983A JP S6046338 A JPS6046338 A JP S6046338A
Authority
JP
Japan
Prior art keywords
particles
alloy
micro
reservoir
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58155619A
Other languages
Japanese (ja)
Inventor
Masahiro Nawa
正弘 名和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP58155619A priority Critical patent/JPS6046338A/en
Publication of JPS6046338A publication Critical patent/JPS6046338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To uniformly disperse particles throughout an amorphous matrix without forming a solid solution, in a method for preparing the title material having second phase particle dispersed therein according to a quenching method, by injecting a molten matrix alloy to the particles to perform mixing under stirring. CONSTITUTION:A matrix alloy sump part 14 is provided to the upper part of the throttled part 11, which is provided above a slit shaped minute jet orifice 9, of a round tube 10 and a temorary sump part 13 of a mixture consisting of the matrix alloy and particles comprising WC is provided below the throttled part 11 and above the jet orifice 9. The sump parts 13, 14 are communicated with a bore 12 and a dish shaped particle receiver 15 is fixed to the inner wall of the sump part 13 at an intermediate position dividing said sump 13 into upper and lower two so as to provide a gap from said inner wall. At first, a head 6A is detached to place particles 17 on the receiver 15 and after the matrix alloy 3 apparatus is set and the leading end part of a nozzle is heated to perfectly melt only the alloy 3. In the next step, the jet orifice 9 is allowed to approach to a rotary roll 1 and the molten alloy is injected to the surface thereof by the pressure of Ar-gas. In this case, the alloy 3 is injected to the sump part 13 in a concentrated manner to be collided with the particles 17 which are, in turn, mixed with the alloy 3 under stirring to inject the uniformly dispersed molten alloy 18.

Description

【発明の詳細な説明】 〔技術分野〕 第1の発明は、急冷法によりWC(タングヌテンカーバ
イド)等の第2相物質を粒子分散させた非晶質複合材料
の製造方法゛に関するものであり、第2の発明はその製
造装置に関するものである。
[Detailed Description of the Invention] [Technical Field] The first invention relates to a method for manufacturing an amorphous composite material in which particles of a second phase material such as WC (tungnuten carbide) are dispersed by a quenching method. The second invention relates to an apparatus for manufacturing the same.

〔背景技術〕[Background technology]

粒子分散法による非晶質金属の複合化は、非晶質金属の
強度物性および磁気的性質などに関して新規な分野であ
り、この方面での新材料の開発が推められている。
Compositeization of amorphous metals using a particle dispersion method is a new field regarding the strength and magnetic properties of amorphous metals, and the development of new materials in this field is being promoted.

粒子分散型非晶質複合材料製造に際し、一般に行われて
いる方法は、最初に非晶質相を得るべき母合金(Fe 
、 Nt 、 Co 等の遷移金属と、B、Si。
In the production of particle-dispersed amorphous composite materials, the commonly used method is to first prepare a master alloy (Fe) from which an amorphous phase is to be obtained.
, Nt, Co, etc., and B, Si.

C2P等の半金属元素を所定の割合で合金化したもの)
を溶解し、しかる後に所定の粒度分布を有するWC等の
第2相粒子を添加し、短時間で攪拌した後、先端に丸孔
あるいはスリット孔を有するノズルより、不活性ガス等
のガス圧で高速回転するロール表面、あるいは水流層を
たくわえた円筒内周面に噴射することにより急冷凝固さ
せ、粒子分散型非晶質複合合金薄帯あるいはワイヤを得
ていた。
Alloyed with metalloid elements such as C2P in a predetermined ratio)
After that, second phase particles such as WC having a predetermined particle size distribution are added, stirred for a short time, and then heated with gas pressure such as inert gas through a nozzle having a round or slit hole at the tip. A particle-dispersed amorphous composite alloy ribbon or wire was obtained by rapidly solidifying the material by spraying it onto the surface of a roll rotating at high speed or the inner peripheral surface of a cylinder containing a water layer.

しかしながら、従来、粒子分散型非晶質複合材料を製造
する上で、WC等の第2相粒子を非晶質相のマトリック
ス中に固溶させることなく、均一に分散させることは極
めて困難であった。
However, in the production of particle-dispersed amorphous composite materials, it has been extremely difficult to uniformly disperse second-phase particles such as WC without forming a solid solution in the amorphous phase matrix. Ta.

次に、製造装置の従来例として第1図に示したものを説
明する。ノズル2内で母合金3を溶解した後、ノズル2
上方から挿入した円管7より、所定の粒度分布を有する
WC等の第2相粒子を添加し、一時的に前記円管7で攪
拌した後、高周波ワークコイル4による溶解により自己
攪拌作用で第2相粒子を均一に分散させる。ついでノズ
ル2の先端を高速回転するロールlの表面に近接させ、
流路6から供給したアルゴンガスのガス圧により前記ロ
ール1表面に溶融金属を噴射し、七−くレータ8により
剥離することにより粒子分散型非晶質複合合金薄帯を得
ていた。5はゲージボートである。
Next, a conventional example of a manufacturing apparatus shown in FIG. 1 will be described. After melting the master alloy 3 in the nozzle 2, the nozzle 2
Second phase particles such as WC having a predetermined particle size distribution are added through a circular tube 7 inserted from above, and after being temporarily stirred in the circular tube 7, the second phase particles are dissolved by a high frequency work coil 4 by self-stirring action. Uniformly disperse the two-phase particles. Next, bring the tip of the nozzle 2 close to the surface of the roll l rotating at high speed,
The molten metal was injected onto the surface of the roll 1 by the gas pressure of argon gas supplied from the flow path 6, and was peeled off by the separator 8 to obtain a particle-dispersed amorphous composite alloy ribbon. 5 is a gauge boat.

しかしながら、WC等の第2相粒子を添加してから攪拌
し噴射するまでに、第2相粒子の一部。
However, after adding the second phase particles such as WC and before stirring and spraying, some of the second phase particles.

あるいは全てが溶融母合金マトリックス中に固溶し、均
一分布の粒子分散型非晶質複合材料ができにくいという
問題があった。
Alternatively, there is a problem in that all of the particles are solidly dissolved in the molten master alloy matrix, making it difficult to form a uniformly distributed particle-dispersed amorphous composite material.

〔発明の目的〕[Purpose of the invention]

第1の発明の目的は、WC等の第2相粒子を非晶質相の
マトリックス中に、固溶させることなく均一に分散させ
ることができる非晶質複合材料の製造方法を提供するこ
とであり、第2の発明の目的は上記のような製造方法に
適した製造装置を提供することである。
The first object of the invention is to provide a method for producing an amorphous composite material in which second phase particles such as WC can be uniformly dispersed in an amorphous phase matrix without forming a solid solution. A second object of the invention is to provide a manufacturing apparatus suitable for the above manufacturing method.

〔発明の開示〕[Disclosure of the invention]

第1の発明の非晶質複合材料の製造方法は、微小噴射口
に連通ずる拘束空間内において、予めこの空間に装入し
ておいた粒子に対して溶融母金属を噴射することにより
これら粒子と溶融母金属とを攪拌混合しながらその混合
物を前記微小噴射口から噴射し、その直後に急冷するも
のである。
The method for producing an amorphous composite material according to the first invention includes injecting molten base metal onto particles that have been charged in advance in a restricted space that communicates with a micro-injection orifice. The mixture is injected from the micro injection port while stirring and mixing the molten base metal and the molten base metal, and immediately thereafter, the mixture is rapidly cooled.

また、第2の発明の製造装置は、微小噴射口の上部にこ
の微小噴射口に連通ずる状態で形成した粒子と溶融母金
属との混合物の一時溜め部(前記の拘束空間に相当)と
、この溜め部の上部にこの溜め部に連通ずる状態で形成
した絞り部と、この絞シ部の上部に形成した母金属溜め
部と、この溜め部に噴射用ガスを供給する流路部と、前
記混合物溝め部内に形成された粒子のせ部とを備えたも
のである。
Further, the manufacturing apparatus of the second invention includes a temporary storage part (corresponding to the above-mentioned restricted space) for a mixture of particles and molten base metal formed above the micro-injection port in a state communicating with the micro-injection port; a constriction part formed in the upper part of the reservoir part in communication with the reservoir part, a base metal reservoir part formed in the upper part of the constriction part, and a flow path part for supplying injection gas to the reservoir part; and a particle resting part formed within the mixture groove part.

第1の発明、第2の発明の何れにおいても、溶融した母
金属を粒子に噴射してから、攪拌・混合を経て微小噴射
口より噴射させる寸での時間を従来に比べて大幅に短縮
して粒子の固溶を抑制することができる。
In both the first invention and the second invention, the time required for injecting the molten base metal onto the particles, stirring and mixing them, and then injecting them from the micro-injection orifice is significantly shortened compared to the conventional method. solid solution of particles can be suppressed.

第1.第2の両発明の第1の実施例を第2図ないし第6
図に基いて説明する。第2図、第3図および第4図はノ
ズル先端部の縦断正面、縦断側面および底面を示す。ス
リット状の微小噴出口9の上方適当部位において円管1
0に絞り部1】が形成されておシ、絞9部IJの上部に
母合金の溜め部14が形成されるとともに、絞り部II
の下部で微小噴出口9の上部に母合金と第2相粒子との
混合物を一時的に溜める溜め部】3が形成されている。
1st. The first embodiment of the second invention is shown in FIGS.
This will be explained based on the diagram. FIGS. 2, 3, and 4 show a vertical front view, a vertical side view, and a bottom view of the nozzle tip. At an appropriate position above the slit-shaped micro-spout 9, the circular pipe 1
A reservoir 14 for the master alloy is formed in the upper part of the drawing 9 part IJ, and a drawing part 1 is formed in the drawing part II.
A reservoir section 3 for temporarily storing a mixture of the master alloy and second phase particles is formed above the micro ejection port 9 at the bottom of the microspout 9 .

上下の溜め部14.13は絞り部1】における連通孔1
2を介して連通している。下位の溜め部13内において
上下中間位置に皿状の粒子のせ部15が溜め部13の内
壁に固定された状態で設けられている。粒子のせ部15
(/′i円管10を塞かないように溜め部J3内壁との
間に隙間のある状態て設けられている(第4図参照)。
The upper and lower reservoir parts 14.13 are the communication holes 1 in the constriction part 1]
It communicates via 2. A dish-shaped particle resting part 15 is provided in the lower reservoir part 13 at an intermediate position between the upper and lower sides and is fixed to the inner wall of the reservoir part 13. Particle loading section 15
(/'i) It is provided with a gap between it and the inner wall of the reservoir J3 so as not to block the circular pipe 10 (see FIG. 4).

絞り部】1の連通孔J2の断面積は微小噴出口9の断面
積よりも大きい。高周波ワークコイル4は円管10の下
端部の上下の溜め部14.13の周囲に配置されている
。円管]0はゲージボート5に上下摺動自在に内挿され
ており、ゲージボート5の上端には不活性ガス(アルゴ
ンガス)の供給流路6をもつヘッド6Aが螺合されてい
る。
The cross-sectional area of the communicating hole J2 of the throttle part 1 is larger than the cross-sectional area of the micro ejection port 9. The high frequency work coil 4 is arranged around upper and lower reservoirs 14.13 at the lower end of the circular tube 10. The circular tube] 0 is inserted into a gauge boat 5 so as to be able to slide vertically, and a head 6A having a supply channel 6 for inert gas (argon gas) is screwed onto the upper end of the gauge boat 5.

以下、粒子分散型複合合金薄帯の製造過程を説明する。The manufacturing process of the particle-dispersed composite alloy ribbon will be explained below.

最初に、ヘッド6Aを外した状態で所定の粒度分布を有
するWC等の粒子17を、例えば別の細い円管内を通し
て上下位の溜め部14.13の内壁に付着しないように
しながら粒子のせ15上に配置する(第5図参照)。次
に母合金3を上位の溜め部】4内に挿入し、第5図に示
すように冷却ロール】上に配置し、高周波ワークコイル
4によってノズル先端部を加熱する。この際、WC等の
粒子17は非常に融点が高く、母合金3が完全傾溶解し
た後(1200〜1300℃)も粒子状を保ち、かつ溶
解した母合金3も表面張ブフにより溜め部14に保たれ
る。
First, with the head 6A removed, particles 17 such as WC having a predetermined particle size distribution are passed through, for example, another thin circular tube onto the particle stack 15 while being careful not to adhere to the inner walls of the upper and lower reservoirs 14 and 13. (See Figure 5). Next, the master alloy 3 is inserted into the upper reservoir 4, placed on the cooling roll 4 as shown in FIG. 5, and the nozzle tip is heated by the high frequency work coil 4. At this time, the particles 17 such as WC have a very high melting point and remain in a particle form even after the master alloy 3 is completely tilted (1200 to 1300°C), and the melted master alloy 3 is also held in the reservoir 14 by the surface tension buf. is maintained.

しかる後K、ノズル先端の微小噴射口9を高速回転する
ロールJの表面に近接させ、アルコ゛ンガス圧によりロ
ール1の表面に溶融金属を晴々す1−る(第6図参照)
。この際、連通孔12と微小噴身す口9の断面積の差異
により上位の溜め1414内の溶融母合金3は、集中的
に下位の溜め音じ13内に噴射され、粒子のせ15上の
粒子17と衝突する。
After that, the minute injection port 9 at the tip of the nozzle is brought close to the surface of the roll J rotating at high speed, and the molten metal is spread onto the surface of the roll 1 using alcohol gas pressure (see Figure 6).
. At this time, the molten master alloy 3 in the upper reservoir 1414 is intensively injected into the lower reservoir 13 due to the difference in cross-sectional area between the communication hole 12 and the micro jet opening 9, and the molten master alloy 3 is injected onto the particle stack 15. collides with particle 17;

これによって粒子17が溶融母合金3 P9に1伐り込
まれ激しく攪拌混合される。すなJフち、粒子17は溶
融母合金3内に均一に分散混合される。そしてソノ直後
においてスリット状の微小噴射口9カ・ら、粒子37が
分散混合している溶融金属18力τ冷却ロール1の表面
に噴射され、ロール1−ヒで冷却されて分散型非晶質複
合合金薄帯]9となりセパレータ8によってロール1か
ら剥離さtr、る(第6図参照)。
As a result, the particles 17 are pierced into the molten master alloy 3P9 and mixed with vigorous stirring. In other words, the particles 17 are uniformly dispersed and mixed within the molten master alloy 3. Immediately after sowing, the molten metal 18 force τ in which the particles 37 are dispersed and mixed is injected from the slit-shaped micro injection ports 9 onto the surface of the cooling roll 1, which is cooled by the roll 1-A to form a dispersed amorphous metal. The composite alloy ribbon becomes 9 and is peeled off from the roll 1 by the separator 8 (see FIG. 6).

次に第2の実施例を第7図ないし第9図に基いて説明す
る。この場合、粒子受け157%底笥320と周壁部2
】からなる有底筒状に形成され、溜め部J3の中央部に
置かれた状態で継手部23.23により固定されている
。周壁部21には多数の微小な貫通孔22を有している
。これらの貫通孔22の総断面積は、絞り部j】におけ
る連通孔】2の断面積よりも小さく、かつ微小噴出口9
の断面積よりも大きくなっている。
Next, a second embodiment will be explained based on FIGS. 7 to 9. In this case, the particle receiver 157% bottom tray 320 and the peripheral wall part 2
], and is fixed by a joint part 23.23 while being placed in the center of the reservoir J3. The peripheral wall portion 21 has a large number of minute through holes 22 . The total cross-sectional area of these through-holes 22 is smaller than the cross-sectional area of the communicating hole ]2 in the constriction part j], and
is larger than the cross-sectional area of

この場合、アルゴンガス圧によって下位溜め部13内に
噴射された溶融母合金3け有底筒状の粒子のせ15内に
激流状態で一時的に滞留し1粒子のせj5上の粒子17
の分散混合が第1実施例よりも一層均一なものとなる。
In this case, the molten master alloy is injected into the lower reservoir 13 by the argon gas pressure, and temporarily stays in a turbulent state in the bottomed cylindrical particle tray 15, and one particle 17 on the tray j5.
The dispersion and mixing becomes more uniform than in the first embodiment.

また1粒子のせ150強度は第1実施例よりも高い。Moreover, the 150 strength of one particle is higher than that of the first example.

上記第1.第2の何れの実施例にあっても、溶融母合金
3′c粒子J7に対し拘束空間(溜め部)13内で衝突
させ激しく攪拌混合させるため、混合開始から外部噴射
に至る才での時間を従来例と比べて大幅に短縮すること
ができ粒子」7の溶融母合金3中への固溶を実質的に完
全に阻止し、粒子17と均一に分散させた状態の非晶質
複合材料を得ることができる。なお皿状の粒子のせ部1
5に微小貫通孔を多数形成してもよい。また、微小噴射
口9をスリット状のものに代え丸孔、角孔にしてもよい
Above 1st. In any of the second embodiments, the molten master alloy 3'c particles J7 are collided with each other in the restraint space (reservoir) 13 to be vigorously stirred and mixed, so that the time from the start of mixing to the external injection is shortened. can be significantly shortened compared to conventional examples, substantially completely preventing solid solution of the particles 7 into the molten master alloy 3, and creating an amorphous composite material in which the particles 17 are uniformly dispersed. can be obtained. Note that the plate-shaped particle placement part 1
A large number of minute through-holes may be formed in 5. Further, instead of the slit-like micro-injection port 9, a round hole or a square hole may be used.

〔発明の効果〕〔Effect of the invention〕

第1の発明の非晶質複合材料の製造方法によれば、溶融
母金属に対する粒子の混合開始から外部噴射に至る時間
が大幅に短縮され、粒子の溶融母金属に対する固溶を確
実に抑制して粒子を均一な分布状態で混合した非晶質複
合材料を得ることができるという効果がある。
According to the method for manufacturing an amorphous composite material of the first invention, the time from the start of mixing particles in the molten base metal to the external injection is significantly shortened, and solid solution of the particles in the molten base metal is reliably suppressed. This has the effect that it is possible to obtain an amorphous composite material in which particles are mixed in a uniformly distributed state.

また、第2の発明の製造装置(tCよれば、上記第1の
発明の製造方法がもつ効果を比較的簡単な構造のもので
しかも容易かつ十分に発揮させることができるという効
果がある。
Further, the manufacturing apparatus (tC) of the second invention has the advantage that the effects of the manufacturing method of the first invention can be easily and fully exerted with a relatively simple structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の断面図、第2図は第1の実施例の要部
の縦断正面図、第3図はその縦断側面図、第4図はその
底面図、第5図および第6図は動作説明とともに全体構
成を示す断面図、第7図は第2の実施例の要部の縦断正
面図、第8図はその縦断側面図、第9図は横断面図であ
る。 3・・溶融母合金(溶融母金属)、6 噴射用ガスの供
給流路、9・・・微小噴射口、1】・・・絞り部、】2
・・連通孔、13.14・・・溜め部、15・・粒子の
せ、J7・・・粒子 第2図 第3図 第4図 ソ 第7図 第8図 t 第9図 手続補正書([l1lI如 1、事件の表示 ■部l]58年特許願第155619号2、発明の名称 非晶質複合材料の製造方法および製造装置3、補正をす
る者 事件との関係 出願人 4、代理人 5、補正命令の日付 自発補正 (1) 明細書の特許請求の範囲の記載を別紙のとおり
補正する。 (2)明細書第5頁第9行、第1θ行、第15行、第1
8行、第6頁第3行、第10頁第7行、第8〜9行、「
母金属」とあるを「母合金」と訂正する。 (3)明細書第11頁第3行、「(溶融母金属)」とあ
るを削除する。 2、特許請求の範囲 (1)微小噴射口に連通ずる拘束空間内において、予め
この空間に装入しておいた粒子に対して溶融H金を頓射
することによりこれら粒子と溶融母合金とを攪拌混合し
ながらその混合物を前記微小噴射口から噴射し、その直
後に急冷する非晶質複合材料の製造方法。 (2)微小噴射口の上部にこの微小噴射口に連通ずる状
態で形成した粒子と溶融1企との混合物の一時溜め部と
、この溜め部の上部にこの溜め部に連通ずる状態で形成
した絞り部と、この絞り部の上部に形成した母金属溜め
部と、この溜め部に噴射用ガスを供給する流路部と、前
記混合物溜め部内に形成された粒子のせ部とを備えた非
晶質複合材料の製造装置。 (3)前記絞り部は、そこにおける連通孔の断面積が前
記微小噴射口の断面積よりも大きい状態で形成されてい
る特許請求の範囲第(2)項記載の製造装置。 (4)前記粒子のせ部が皿状のものである特許請求の範
囲第(2)項記載の製造装置。 (5)前記粒子のせ部が有底皿状のものである特許請求
の範囲第(2)項記載の製造装置。 (6)前記粒子のせ部が多数の微小な貫通孔を有するも
のである特許請求の範囲第(4)項または第(5)項記
載の製造装置。 (7〕 前記多数の微小な貫通孔の総断面積が、前記絞
り部における連通孔の断面積よりも小さくかつ前記微小
噴射口の断面積よりも大きい特許請求の範囲第(6)項
記載の製造装置。
Fig. 1 is a sectional view of the conventional example, Fig. 2 is a longitudinal sectional front view of main parts of the first embodiment, Fig. 3 is a longitudinal sectional side view thereof, Fig. 4 is a bottom view thereof, and Figs. 5 and 6. 7 is a longitudinal sectional front view of the main part of the second embodiment, FIG. 8 is a longitudinal sectional side view thereof, and FIG. 9 is a horizontal sectional view. 3... Molten mother alloy (molten mother metal), 6 Injection gas supply channel, 9... Micro injection port, 1]... Throttle part, ]2
...Communication hole, 13.14...Reservoir, 15...Particle placement, J7...Particle Figure 2 Figure 3 Figure 4 So Figure 7 Figure 8 t Figure 9 Procedure amendment ([ 1, Case Description Part 1] 1958 Patent Application No. 155619 2, Title of Invention Method and Apparatus for Manufacturing Amorphous Composite Materials 3, Person Making Amendment Relationship to the Case Applicant 4, Agent 5. Voluntary amendment of date of amendment order (1) Amend the claims in the specification as shown in the attached sheet. (2) Page 5 of the specification, line 9, line 1θ, line 15, line 1
Line 8, page 6, line 3, page 10, line 7, lines 8-9, “
Correct the phrase ``base metal'' to ``base alloy.'' (3) Delete "(molten base metal)" on page 11, line 3 of the specification. 2. Claims (1) In a restricted space communicating with a micro-injection orifice, molten H gold is injected onto the particles charged in advance in this space, whereby these particles and the molten master alloy are combined. A method for producing an amorphous composite material, in which the mixture is injected from the micro injection port while stirring and mixed, and immediately thereafter, the mixture is rapidly cooled. (2) A temporary reservoir for a mixture of particles and molten material formed in the upper part of the micro-injection port in communication with the micro-injection port, and a temporary storage part in communication with the micro-injection port formed in the upper part of this reservoir. An amorphous material comprising a constriction part, a base metal reservoir formed in the upper part of the constriction part, a flow path part for supplying injection gas to this reservoir, and a particle holding part formed in the mixture reservoir. Quality composite material manufacturing equipment. (3) The manufacturing apparatus according to claim (2), wherein the throttle part is formed such that the cross-sectional area of the communication hole therein is larger than the cross-sectional area of the micro-injection port. (4) The manufacturing apparatus according to claim (2), wherein the particle loading portion is dish-shaped. (5) The manufacturing apparatus according to claim (2), wherein the particle loading portion is shaped like a bottomed dish. (6) The manufacturing apparatus according to claim (4) or (5), wherein the particle loading portion has a large number of minute through holes. (7) Claim (6), wherein the total cross-sectional area of the large number of minute through-holes is smaller than the cross-sectional area of the communication hole in the constriction part and larger than the cross-sectional area of the minute injection port. Manufacturing equipment.

Claims (7)

【特許請求の範囲】[Claims] (1)微小噴射口に連通ずる拘束空間内において、予め
この空間に装入しておいた粒子に対して溶融母金属全噴
射することによシこれら粒子と溶融母金属とを攪拌混合
しながらその混合物を前記微小噴射口から噴射し、その
直後に急冷する非晶質複合材料の製造方法。
(1) In a restricted space communicating with a micro-injection port, all of the molten base metal is injected onto the particles that have been charged into this space in advance, while stirring and mixing these particles and the molten base metal. A method for producing an amorphous composite material, in which the mixture is injected from the micro-injection orifice and immediately thereafter rapidly cooled.
(2)微小噴射口の上部にこの微小噴射口に連通ずる状
態で形成した粒子と溶融母金属との混合物の一時溜め部
と、この溜め部の上部にこの溜め部に連通ずる状態で形
成した絞り部と、この絞り部の上部に形成した母金属溜
め部と、この溜め部に噴゛射用ガスを供給する流路部と
、前記混合物溜め部内に形成された粒子のせ部とを4え
た非晶質複合材料の製造装置。
(2) A temporary reservoir for a mixture of particles and molten base metal formed in the upper part of the micro-injection orifice in communication with the micro-injection orifice, and a temporary reservoir in communication with the micro-injection A constriction part, a base metal reservoir formed in the upper part of the constriction part, a flow path part for supplying the injection gas to this reservoir, and a particle resting part formed in the mixture reservoir were formed. Manufacturing equipment for amorphous composite materials.
(3) 前記絞り部は、そこにおける連通孔の断面積が
前記微小噴射口の断面積よシも大きい状態で形成されて
いる特許請求の範囲第(2)項記載の製造装置。
(3) The manufacturing apparatus according to claim (2), wherein the throttle part is formed such that the cross-sectional area of the communication hole therein is larger than the cross-sectional area of the micro-injection port.
(4)前記粒子のせ部が皿状のも?である特yF 請求
の範囲第(2)項記載の製造装置。
(4) Is the particle placement part shaped like a plate? A manufacturing apparatus according to claim (2).
(5)前記粒子のせ部が有底筒状のものである特許請求
の範囲第(2)項記載の製造装置。
(5) The manufacturing apparatus according to claim (2), wherein the particle loading portion is cylindrical with a bottom.
(6) 前記粒子のせ部が多数の微小な貫通孔を有する
ものである特許請求の範囲第(4)項または第(5)項
記載の製造装置。
(6) The manufacturing apparatus according to claim (4) or (5), wherein the particle loading portion has a large number of minute through holes.
(7)前記多数の微小な貫通孔の総F面積が、前記絞り
部における連通孔の断面桁よりも小さくかつ前記微小噴
出口の断面積よりも大きい特許請求の範囲第(6)項記
載の製造装置。
(7) Claim (6), wherein the total F area of the large number of minute through holes is smaller than the cross-sectional area of the communication hole in the constriction part and larger than the cross-sectional area of the minute jet orifice. Manufacturing equipment.
JP58155619A 1983-08-25 1983-08-25 Method and apparatus for preparing amorphous composite material Pending JPS6046338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58155619A JPS6046338A (en) 1983-08-25 1983-08-25 Method and apparatus for preparing amorphous composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58155619A JPS6046338A (en) 1983-08-25 1983-08-25 Method and apparatus for preparing amorphous composite material

Publications (1)

Publication Number Publication Date
JPS6046338A true JPS6046338A (en) 1985-03-13

Family

ID=15609964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58155619A Pending JPS6046338A (en) 1983-08-25 1983-08-25 Method and apparatus for preparing amorphous composite material

Country Status (1)

Country Link
JP (1) JPS6046338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722832B2 (en) * 2003-03-28 2011-07-13 シャフト−フォルム−エンジニアリング・ゲーエムベーハー Reliable connection structure between shaft member and ring member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722832B2 (en) * 2003-03-28 2011-07-13 シャフト−フォルム−エンジニアリング・ゲーエムベーハー Reliable connection structure between shaft member and ring member

Similar Documents

Publication Publication Date Title
EP1046444B1 (en) Pressure diecasting method
GB2155048A (en) Apparatus and method for atomization of unstable melt streams
EP0265235B1 (en) Continuous casting of composite metal material
JPS6046338A (en) Method and apparatus for preparing amorphous composite material
DE10129868B4 (en) Thermal spraying with mixed powder
JPH1180812A (en) Production of amorphous metal powder and device therefor
CA2112585A1 (en) Process for casting double-layered slab
CA2999637C (en) Continuous casting process of metal
US6109335A (en) Ingot mould for the continuous vertical casting of metals
CN111593286B (en) High-performance powder steel thermal spraying deposition forming process
DE2113521C3 (en) Process for electroslag remelting and permanent molds for carrying out the process
KR102034438B1 (en) Manufacturing apparatus for metal material and method thereof
KR100413282B1 (en) Melt reaction spray casting device
JPS63309360A (en) Production of super alloy strip
JPS6013575Y2 (en) Injection nozzle of quenched metal ribbon manufacturing equipment
JPS6025216B2 (en) Nozzle for manufacturing amorphous alloy thin wire
JPS63260664A (en) Production of dispersed reinforcing material
JP2002001514A (en) Injection nozzle and apparatus for quenching melt
JPS61119353A (en) Production of compoiste material
JPH05208244A (en) Method for continuously casting plural layer cast slab
JPS60261642A (en) Apparatus for continuous casting of thin metallic sheet
JPS59130654A (en) Device for producing fine wire
JPH02155545A (en) Device for preventing involution of powder at initial stage of starting in continuous casting
JPH02185022A (en) Method of forming polycrystalline silicon onto semiconductor substrate
JPS58116954A (en) Method and device for production of ribbon