EP1046444B1 - Pressure diecasting method - Google Patents

Pressure diecasting method Download PDF

Info

Publication number
EP1046444B1
EP1046444B1 EP99107814A EP99107814A EP1046444B1 EP 1046444 B1 EP1046444 B1 EP 1046444B1 EP 99107814 A EP99107814 A EP 99107814A EP 99107814 A EP99107814 A EP 99107814A EP 1046444 B1 EP1046444 B1 EP 1046444B1
Authority
EP
European Patent Office
Prior art keywords
casting
piston
melt
pressure
mouth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99107814A
Other languages
German (de)
French (fr)
Other versions
EP1046444A1 (en
Inventor
Evgueni Dr.-Ing. Sterling
Gerhart Dr. Dipl.-Kfm. Peleschka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritter Aluminium Giesserei GmbH
Original Assignee
Ritter Aluminium Giesserei GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritter Aluminium Giesserei GmbH filed Critical Ritter Aluminium Giesserei GmbH
Priority to DE59900928T priority Critical patent/DE59900928D1/en
Priority to EP99107814A priority patent/EP1046444B1/en
Priority to AT99107814T priority patent/ATE213980T1/en
Priority to CN00106494A priority patent/CN1270863A/en
Priority to JP2000111666A priority patent/JP2000312958A/en
Priority to KR1020000020552A priority patent/KR20000071729A/en
Priority to BR0001645-4A priority patent/BR0001645A/en
Publication of EP1046444A1 publication Critical patent/EP1046444A1/en
Application granted granted Critical
Publication of EP1046444B1 publication Critical patent/EP1046444B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/2053Means for forcing the molten metal into the die using two or more cooperating injection pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • B22D17/10Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with horizontal press motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/2069Exerting after-pressure on the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/11Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of mechanical pressing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C

Definitions

  • the invention relates to a method and an apparatus for Manufacture of castings from Al and Mg alloys, in which in a horizontal casting chamber equipped with a casting piston there is a vacuum from the start of the casting process and in which the melt volume introduced into the casting chamber cools to the semi-rigid state and by means of an electromagnetic Field is stirred, then the melt volume accelerated for introduction into the die and before or at the latest when the gate of the die is reached is put under pressure.
  • a method of the type mentioned is from the EP 0733421A1 known.
  • the casting chamber can basically be horizontal or arranged vertically. From this arrangement there are specific advantages and disadvantages for the casting process, resulting from the respective characteristic flow of the melt Lead to the mold cavity before the pouring opening.
  • a distinguishing feature that is typical of the die casting process can be viewed with the horizontal casting chamber is the formation of a hydrodynamically unstable melt flow, that fills the die at a very high speed.
  • the filling process is more like a splash than a flow, whereby air and oxidic inclusions are introduced into the casting which will then crack inside the casting as well Create bubbles on the surface.
  • the cast metal only fills one Part of the horizontal cylindrical casting chamber and thereby forms a movable, non-cylindrical shape, one side surface is delimited by the plunger, while the other side surface in the direction of flow are referred to as open space can, because there is no geometrically defined dimensional limit.
  • a laminar inflow is intended thereby filling the die with the melt achieved that the melt, the temperature of which is somewhat higher than the liquidus temperature is in the casting chamber by cooling and then heating in a metallic suspension and is then pressed into the mold cavity under pressure.
  • the conditions mentioned are not sufficient, to achieve a laminar flow.
  • the melted material strikes on the wall of the movable mold half and flows (the shown Arrangement accordingly) in the die as one scattered free jet.
  • a quality improvement e.g. by a densification of the already crystallizing casting not possible after the arrangement described. Thereby becomes the practical use of the known method limited and not the production of improved end products allows.
  • the invention is therefore based on the object of a die casting method that described in the preamble of the skin claim To create type in which the filling of the die with a hydrodynamically stabilized melt flood occurs and the Crystallization of the casting under an additional compression pressure is effected without dispersing the inflow jet.
  • the casting chamber with a counter pressure piston and a compression piston provided that a geometrically restricted space form that does not end before the gate. This is through a special execution of the casting chamber has been made possible has a tee configuration.
  • the casting piston and the counter pressure piston are arranged opposite each other in the casting chamber, during the compression pistons in the vertical channel of the T-piece configuration is stored.
  • This piston arrangement is of great importance and determines the main technological process advantages.
  • the one in the casting chamber located melt is in the by shifting the opposite piston first into a cylindrical shape brought, so that a uniform pressure distribution at the "casting piston melt flood" contact surface he follows. Also occur in compressed cylindrical melt volume elastic liquid Waves on the formation of globular primary crystals stimulate in the casting chamber. Beyond that it is possible in the method according to the invention from the unstable Melt flood a hydrodynamically stable metallic suspension with specifically adjustable rheological properties.
  • the development and maintenance of the rheo effect is through the Introduction of a metallic cooling powder into the melt reached.
  • the crystallization conditions that occur in the Pouring chamber are created so that the morphology of the structure not mainly from heat dissipation through the walls of the Casting chamber depends, but on new solid, exogenous nuclei.
  • the nuclei bring the melt in a short period of time in the semi-rigid state and thereby ensure a crystallization rate that for the simultaneous and even appearance of solid phases leads in the entire melt volume and for temperature homogeneity the occurring metallic suspension.
  • the increasing external pressure in the closed melt volume plays a role in the creation of microporosity in the casting extremely important role, because on this stage laid the basis for the production of non-porous castings becomes.
  • the pores created by the nucleation process can only exist in the melt stable when the difference is out the gas pressure and the pressure of the melt is greater than the capillary pressure from the surface tension of the melt. Therefore will - to the nucleation of pores during solidification prevent - the melt pressure increases what the inventive Process in the casting chamber in the compressed material volume takes place.
  • the one occurring in the metallic suspension Pressure is the sum of the existing hydromechanical pressure and the internal hydrostatic pressure. It nucleates of pores almost impossible and creates crystallization conditions, which significantly affects the density value of the end product increases.
  • the melt which has a uniform temperature and is hydrodynamically stabilized, is moved with the counter-pressure piston in the gate direction.
  • This movement enables a type of inflow, which is offset frontally with respect to the flow front of the melt, and which can be referred to as laminar because of its filling from the mouth side.
  • This stage plays a very important role in filling the casting steps with a vortex-free melt jet.
  • Another advantageous embodiment of the method according to the invention also consists in the fact that the opposite surface or
  • End face of casting and counter pressure pistons are designed that it was concave ellipsoidal, and reversed Display profiles. In this way, such profiles in Gap a cylinder with two spherical sections each. Furthermore, the shape of the compressed melt volume referred to as a cylinder or as a cylindrical volume.
  • Diameter of the end face of the compression piston the inner Diameter of the cylindrical formed by casting and counter pressure pistons Contour must correspond. This will not only be a Avoiding scattering when flowing in, but it will also Metal loss reduced because there is no metal residue in the Gate opening is created. Targeted post-compression can also be used of the solidifying casting.
  • a melting tank 1 is provided by means of a suction pipe 2 is connected to a T-configuration casting chamber 3 (further: Casting).
  • a mouth 4 this stands with a Die casting chamber 5 connected between a movable Mold half 6 and a fixed mold half 7 is.
  • the area of the casting chamber 3 are casting pistons 8 and counterpressure pistons 9 arranged, while in the vertical channel a compression piston 10 is stored.
  • the suction pipe 2 and the casting chamber 3 are with a powder metering device 11 and an electromagnetic Stirring device 12 equipped, the casting chamber 3 encloses in a ring.
  • a practical application of the invention is illustrated Representation described in Figures 1 to 7.
  • a given one Melt volume of the melt 13 passes from the Melting container 1 into the T-configuration casting chamber by means of the suction pipe 2 3.
  • the molten material is included a cooling powder mixed in the suction pipe 2; this happens through the powder metering device 11 ( Figure 2).
  • the powder is calling a cooling effect, causing overheating areas in the melt and supercooling areas are balanced and the crystallization process and ultimately the homogeneity of the Casting can be improved.
  • the cooled melt gets into the casting chamber 3 in front of the casting piston 8, which has a position P8-1 occupied, and after a short time begins to primary crystals produce, which have a preferably round shape.
  • the positioning of the counter pressure piston 9th Before the Melt entry changes the positioning of the counter pressure piston 9th
  • a short-term pressure reduction - because of the withdrawal from Piston 9 - is by means of the casting piston displacement in the next Stage balanced ( Figure 5).
  • the change of position from P8-2 after P8-3 ends before the gate opening 4, being the movement of the piston 8 is coupled to the counter-pressure piston 9.
  • the metallic suspension fills the pouring passage and the mouth and is caused by hydromechanical piston action in the die casting chamber 5 pushed out.
  • the face of the plunger 8 just like the counter-pressure piston 9 a concave, ellipsoidal Profile, a small, cylindrical one is formed in the space Material area that is directly under the gate opening 4 and above the compression piston 10 in is in an elasto-plastic state. This "memory" serves to make up the already crystallizing casting can.
  • FIG. 7 shows an important embodiment of the deformation region in accordance with the invention when the metal flows in ( ⁇ M diameter of the cylindrical melt volume, ⁇ k diameter of the contour formed by the casting piston and counterpressure piston head surface).
  • the contour-closed design allows a vortex-free die-casting mold filling, feeding and post-compression of the end product. It also creates the possibility of considerably reducing the metal loss (reduction of the baling residue).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Forging (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

A horizontal chamber die casting process comprises forming a stabilized and homogenized cylindrical melt volume for feeding additional compression of the solidifying cast product in the die. A horizontal chamber die casting process comprises applying a vacuum to the chamber and piston, accelerating the melt befor entry into the die and subjecting the die to pressure before or when the melt reaches the ingate opening. Before acceleration, t melt is formed to a cylindrical shape which is retained until achievement of hydrodynamic stabilization, temperature equalizatio and uniform pressure distribution in the cylindrical material volume and which is fed into the solidifying metal after filling o the die to provide additional compression during solidification of the cast product.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung von Gußstücken aus Al- und Mg-Legierungen, bei dem in einer horizontalen Gießkammer, die mit einem Gießkolben ausgerüstet ist, von Anfang des Gießvorganges an ein Vakuum besteht und bei dem das in die Gießkammer eingebrachte Schmelzevolumen zum halberstarrten Zustand abkühlt und mittels eines elektromagnetischen Feldes gerührt wird, sodann das Schmelzevolumen zum Einbringen in die Druckgießform beschleunigt und vor oder spätestens beim Erreichen der Anschnittmündung der Druckgießform unter Druck gesetzt wird.The invention relates to a method and an apparatus for Manufacture of castings from Al and Mg alloys, in which in a horizontal casting chamber equipped with a casting piston there is a vacuum from the start of the casting process and in which the melt volume introduced into the casting chamber cools to the semi-rigid state and by means of an electromagnetic Field is stirred, then the melt volume accelerated for introduction into the die and before or at the latest when the gate of the die is reached is put under pressure.

Ein Verfahren der eingangs genannten Art ist aus der EP 0733421A1 bekannt. Dabei kann grundsätzlich die Gießkammer horizontal oder vertikal angeordnet werden. Aus dieser Anordnung ergeben sich spezifische Vor- und Nachteile für den Gießprozeß, die sich aus dem jeweiligen charakteristischen Fluß der Schmelze vor der Eingießöffnung zur Formkavität ableiten.A method of the type mentioned is from the EP 0733421A1 known. The casting chamber can basically be horizontal or arranged vertically. From this arrangement there are specific advantages and disadvantages for the casting process, resulting from the respective characteristic flow of the melt Lead to the mold cavity before the pouring opening.

Ein Unterscheidungsmerkmal, das als typisch für das Druckgießverfahren mit der horizontalen Gießkammer angesehen werden kann, ist die Bildung eines hydrodynamisch instabilen Schmelzeflusses, der mit sehr hoher Geschwindigkeit die Druckgießform füllt. Der Füllvorgang gleicht dabei eher einem Spritzen als einem Fließen, wodurch Luft und oxidische Einschlüsse in das Gußstück eingebracht werden, die dann Risse im Inneren des Gußteils sowie Blasen an der Oberfläche erzeugen. A distinguishing feature that is typical of the die casting process can be viewed with the horizontal casting chamber is the formation of a hydrodynamically unstable melt flow, that fills the die at a very high speed. The The filling process is more like a splash than a flow, whereby air and oxidic inclusions are introduced into the casting which will then crack inside the casting as well Create bubbles on the surface.

Im praktischen Anwendungsfall füllt das Gießmetall nur einen Teil der horizontalen zylindrischen Gießkammer und bildet dabei eine bewegliche, nichtzylinderförmige Form, deren eine Seitenfläche vom Gießkolben begrenzt ist, während die andere Seitenfläche in der Strömungsrichtung als Freifläche bezeichnet werden kann, weil es keine geometrisch ausgeprägte Maßbegrenzung gibt. Die vorgegebene konstante hydromechanische Kraft, welche auf die instabile Kontaktfläche "Gießkolben - Schmelzeflut" einwirkt, kann sich nicht gleichmäßig auf diese verteilen. Dadurch wird eine Bewegung verursacht, die zum hydrodynamischen Stau vor der Anschnittmündung führt und als Ausströmungsbehinderung wirkt. Wenn der hydrodynamische Prozeß in diesem Verfahrensabschnitt nicht in einen stabilen Zustand gebracht wird, kann er auch nicht in der nächsten Etappe die gewünschte Stabilität erreichen. Der aus dem Ausflußquerschnitt austretende wirbelartige Strahl zerstiebt noch stärker in der nächsten Arbeitsphase, während der die schon turbulente Schmelzeflut mit der entsprechenden Druckkolbengeschwindigkeit an die Wand der beweglichen Formhälfte schlägt. Dabei tritt noch eine Erhöhung der Einströmungsgeschwindigkeit durch die Querschnittsverengung in der Anschnittsverengung auf.In practical applications, the cast metal only fills one Part of the horizontal cylindrical casting chamber and thereby forms a movable, non-cylindrical shape, one side surface is delimited by the plunger, while the other side surface in the direction of flow are referred to as open space can, because there is no geometrically defined dimensional limit. The predetermined constant hydromechanical force, which on the unstable contact surface "casting piston - melt flood" acts, cannot spread evenly over them. This will causes a movement that leads to hydrodynamic congestion before the Gate opening leads and acts as an outflow restriction. If the hydrodynamic process in this stage of the process is not brought into a stable state, it can also not achieve the desired stability in the next stage. The vortex-like emerging from the outflow cross-section Beam rubs even stronger in the next phase of work, during which the already turbulent flood of melt with the corresponding Pressure piston speed on the wall of the moving Half of the mold strikes. There is an increase in the inflow velocity due to the narrowing of the cross section in the Gate narrowing on.

Nach der EP 0 733 421 A1 soll jedoch eine laminare Einströmung bei der Auffüllung der Druckgießform mit der Schmelze dadurch erreicht werden, daß die Schmelze, deren Temperatur etwas höher als Liquidustemperatur ist, in der Gießkammer durch Abkühlung und danach Erwärmen in eine metallische Suspension gebracht und dann in die Formkavität unter Druck eingepreßt wird. Für die Beibehaltung der bei Druckguß erforderlichen Formfüllzeiten von 5 bis 100 ms sind die genannten Bedingungen jedoch nicht ausreichend, um eine laminare Strömung zu erzielen. Es gibt keine Hinweise, ob und wie in der Gießkammer ein Ausgleich der Strömungsgeschwindigkeit erfolgen könnte. Es wird daher in der die Gießkammer entlang fließenden Strömung ein turbulenter Charakter vorherrschen, der im Bereich des Ambosses zu einer Wirbelbildung und einem Metallstau führt. Das Schmelzegut schlägt an die Wand der beweglichen Formhälfte auf und fließt (der dargestellten Anordnung entsprechend) in die Druckgießform als ein zerstiebter Freistrahl. Eine Qualitätsverbesserung, z.B. durch eine Nachverdichtung des schon kristallisierenden Gußstücks, ist nach der beschriebenen Anordnung auch nicht möglich. Dadurch wird die praktische Verwendung des bekannten Verfahrens beschränkt und die Herstellung verbesserter Endprodukte nicht ermöglicht.According to EP 0 733 421 A1, however, a laminar inflow is intended thereby filling the die with the melt achieved that the melt, the temperature of which is somewhat higher than the liquidus temperature is in the casting chamber by cooling and then heating in a metallic suspension and is then pressed into the mold cavity under pressure. For the Maintaining the mold filling times required for die casting 5 to 100 ms, however, the conditions mentioned are not sufficient, to achieve a laminar flow. There is none Indications whether and how in the casting chamber a compensation of the Flow rate could take place. It is therefore in the flowing along the casting chamber is a turbulent character predominate, that in the area of the anvil to a vortex formation and a metal jam. The melted material strikes on the wall of the movable mold half and flows (the shown Arrangement accordingly) in the die as one scattered free jet. A quality improvement, e.g. by a densification of the already crystallizing casting not possible after the arrangement described. Thereby becomes the practical use of the known method limited and not the production of improved end products allows.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Druckgießverfahren der im Oberbegriff des Hautanspruches beschriebenen Art zu schaffen, bei welchem die Füllung der Druckgießform mit einer hydrodynamisch stabilisierten Schmelzeflut erfolgt und die Kristallisation des Gußstücks unter einem zusätzlichen Verdichtungsdruck bewirkt wird, ohne den Einströmungsstrahl zu zerstieben.The invention is therefore based on the object of a die casting method that described in the preamble of the skin claim To create type in which the filling of the die with a hydrodynamically stabilized melt flood occurs and the Crystallization of the casting under an additional compression pressure is effected without dispersing the inflow jet.

Erfindungsgemäß wird diese Aufgabe durch den in den Patentansprüchen 1 und 6 angegebenen Merkmalen gelöst. Mit dem erfindungsgemäßen Verfahren wird aus der in die Gießkammer eintretenden Schmelze vor der Beschleunigung ein flüssiger Zylinder gebildet und dessen Gestalt bis zur hydrodynamischen Stabilisierung, dem Temperaturausgleich und der gleichmäßigen Druckverteilung im Vormaterial erhalten, wobei das kristallisierende Metall nach der Auffüllung der Druckgießform mit dem speziell dafür gebildeten Schmelzevolumen zugespeist und das Erstarren des Gußstücks unter dem zusätzlichen gezielten Verdichtungsdruck durchgeführt wird.According to the invention, this object is achieved by the in the claims 1 and 6 specified features solved. With the invention Process is from the one entering the casting chamber Melt a liquid cylinder before acceleration and its shape up to hydrodynamic stabilization, temperature compensation and even pressure distribution obtained in the input material, the crystallizing Metal after filling the die with the special volume of melt formed for this purpose and solidification of the casting under the additional targeted compression pressure is carried out.

Um das Herstellungsverfahren auf solche Weise zu verwirklichen, ist die Gießkammer mit einem Gegendruckkolben und einem Verdichtungskolben versehen, die einen geometrisch beschränkten Raum bilden, der nicht vor Anschnittmündung endet. Dies ist durch eine besondere Ausführung der Gießkammer ermöglicht worden, die eine T-Stück-Konfiguration hat. Der Gießkolben und der Gegendruckkolben sind in der Gießkammer gegenüberliegend angeordnet, während der Verdichtungskolben im senkrechten Kanal der T-Stück-Konfiguration gelagert ist. To implement the manufacturing process in such a way, is the casting chamber with a counter pressure piston and a compression piston provided that a geometrically restricted space form that does not end before the gate. This is through a special execution of the casting chamber has been made possible has a tee configuration. The casting piston and the counter pressure piston are arranged opposite each other in the casting chamber, during the compression pistons in the vertical channel of the T-piece configuration is stored.

Diese Kolbenanordnung ist von großer Bedeutung und bestimmt die wichtigsten technologischen Verfahrensvorteile. Die in der Gießkammer befindliche Schmelze wird in der durch Verschiebung des gegenüberliegenden Kolbens zuerst in eine zylindrische Form gebracht, so daß eine gleichmäßige Druckverteilung an der "Gießkolben-Schmelzeflut"-Kontaktfläche erfolgt. Außerdem treten im zusammengedrückten zylinderförmigen Schmelzevolumen elastischflüssige Wellen auf, die die Bildung von globularen Primärkristallen schon in der Gießkammer stimulieren. Darüber hinaus ist es bei dem erfindungsgemäßen Verfahren möglich, aus der unstabilen Schmelzeflut eine hydrodynamisch stabile metallische Suspension mit gezielt einstellbaren rheologischen Eigenschaften herzustellen.This piston arrangement is of great importance and determines the main technological process advantages. The one in the casting chamber located melt is in the by shifting the opposite piston first into a cylindrical shape brought, so that a uniform pressure distribution at the "casting piston melt flood" contact surface he follows. Also occur in compressed cylindrical melt volume elastic liquid Waves on the formation of globular primary crystals stimulate in the casting chamber. Beyond that it is possible in the method according to the invention from the unstable Melt flood a hydrodynamically stable metallic suspension with specifically adjustable rheological properties.

Die Entwicklung und Erhaltung des Rheo-Effektes wird durch die Einführung eines metallischen Abkühlungspulvers in die Schmelze erreicht. Die Kristallisationsbedingungen, die dabei in der Gießkammer entstehen, sind so, daß die Morphologie des Gefüges nicht hauptsächlich von der Wärmeableitung durch die Wände der Gießkammer abhängt, sondern von neuen festen, exogenen Kristallisationskeimen. Die Kristallisationskeime bringen die Schmelze in einem kurzen Zeitabschnitt in den halberstarrten Zustand und stellen dadurch eine Kristallisationsgeschwindigkeit sicher, die zum gleichzeitigen und gleichmäßigen Auftreten von festen Phasen im ganzen Schmelzevolumen führt und für die Temperaturhomogenität der auftretenden metallischen Suspension sorgt.The development and maintenance of the rheo effect is through the Introduction of a metallic cooling powder into the melt reached. The crystallization conditions that occur in the Pouring chamber are created so that the morphology of the structure not mainly from heat dissipation through the walls of the Casting chamber depends, but on new solid, exogenous nuclei. The nuclei bring the melt in a short period of time in the semi-rigid state and thereby ensure a crystallization rate that for the simultaneous and even appearance of solid phases leads in the entire melt volume and for temperature homogeneity the occurring metallic suspension.

Der zunehmende äußere Druck im geschlossenen Schmelzevolumen spielt bei der Entstehung von Mikroporosität im Gußstück eine außerordentlich wichtige Rolle, weil nämlich auf dieser Etappe die Basis für die Herstellung vor porenfreien Gußteilen gelegt wird. Die durch den Keimbildungsprozeß entstehenden Poren können nur in der Schmelze stabil existieren, wenn die Differenz aus dem Gasdruck und dem Druck der Schmelze größer ist als der Kapillardruck aus der Oberflächenspannung der Schmelze. Deshalb wird - um die Keimbildung von Poren während der Erstarrung zu verhindern - der Schmelzedruck vergrößert, was beim erfindungsgemäßen Verfahren in der Gießkammer im komprimierten Materialvolumen stattfindet. Der in der metallischen Suspension auftretende Druck ist die Summe des vorhandenen hydromechanischen Drucks und des inneren hydrostatischen Drucks. Er macht eine Keimbildung von Poren nahezu unmöglich und schafft Kristallisationsbedingungen, die den Dichtewert des Endproduktes wesentlich steigert.The increasing external pressure in the closed melt volume plays a role in the creation of microporosity in the casting extremely important role, because on this stage laid the basis for the production of non-porous castings becomes. The pores created by the nucleation process can only exist in the melt stable when the difference is out the gas pressure and the pressure of the melt is greater than the capillary pressure from the surface tension of the melt. Therefore will - to the nucleation of pores during solidification prevent - the melt pressure increases what the inventive Process in the casting chamber in the compressed material volume takes place. The one occurring in the metallic suspension Pressure is the sum of the existing hydromechanical pressure and the internal hydrostatic pressure. It nucleates of pores almost impossible and creates crystallization conditions, which significantly affects the density value of the end product increases.

Im geschlossenen, zusammengedrückten Schmelzevolumen laufen während des Kolbeneinsatzes bezüglich der speziellen Schmelzebehandlung gleichzeitig folgende Prozesse ab: eine hydrodynamische Stabilisierung, ein Temperaturausgleich und eine gleichmäßige Druckverteilung im ganzen zylindrischen Materialvolumen. Eine Materialbeschleunigung, die dieser Stabilisierungsetappe nachfolgt, wird erfindungsgemäß aber nicht vom hydromechanischen Druck des Gießkolbens beeinflußt, sondern sie kommt aus dem hydrodynamischen Gegendruck, der durch den Einsatz des Gegendruckkolbens bewirkt wird. Im Zusammenhang damit steht eine besondere Ausgestaltung der Gießkammer, wobei es auf den Rückzug des Gegendruckkolbens bis zum Anschnitt bzw. bis zu der Position, an der die Anschnittmündung freigelassen ist, ankommt. Wegen der schnellen Kolbenverschiebung entsteht auf der freien Kontaktfläche des flüssigen Zylinders ein Druckabfall und die Schmelze ist bestrebt, in den freigelassenen Kammerraum einzufließen. Die eine gleichmäßige Temperatur aufweisende und hydrodynamisch stabilisierte Schmelze wird mit dem Gegendruckkolben in Anschnittrichtung bewegt. Diese Bewegung ermöglicht durch eine im Bezug auf die Strömungsfront der Schmelze frontal versetzte Kolbenfront eine Einströmungsart, die wegen ihrer von der Mündungsseite her erfolgenden Auffüllung als laminar bezeichnet werden kann. Diese Etappe spielt eine ganz wichtige Rolle, um die Gießgänge mit einem wirbelfreien Schmelzestrahl zu füllen.
Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens besteht auch darin, daß die gegenliegende Fläche bzw.
In the closed, compressed melt volume, the following processes take place simultaneously during the piston operation with regard to the special melt treatment: hydrodynamic stabilization, temperature compensation and an even pressure distribution in the entire cylindrical material volume. According to the invention, an acceleration of material that follows this stabilization stage is not influenced by the hydromechanical pressure of the casting piston, but rather comes from the hydrodynamic back pressure that is brought about by the use of the back pressure piston. In connection with this there is a special design of the casting chamber, the retraction of the counterpressure piston up to the gate or to the position at which the gate opening is left open. Because of the rapid piston displacement, there is a pressure drop on the free contact surface of the liquid cylinder and the melt strives to flow into the released chamber space. The melt, which has a uniform temperature and is hydrodynamically stabilized, is moved with the counter-pressure piston in the gate direction. This movement enables a type of inflow, which is offset frontally with respect to the flow front of the melt, and which can be referred to as laminar because of its filling from the mouth side. This stage plays a very important role in filling the casting steps with a vortex-free melt jet.
Another advantageous embodiment of the method according to the invention also consists in the fact that the opposite surface or

Stirnfläche von Gieß- und Gegendruckkolben so ausgeführt sind, daß sie konkave ellipsoidförmige, und zwar seitenvertauschte Profile darstellen. Auf diese Weise gestalten solche Profile im Zwischenraum einen Zylinder mit jeweils zwei Kugelabschnitten. Im weiteren wurde die Gestalt des zusammengedrückten Schmelzevolumens als Zylinder bzw. als zylinderförmiges Volumen bezeichnet.End face of casting and counter pressure pistons are designed that it was concave ellipsoidal, and reversed Display profiles. In this way, such profiles in Gap a cylinder with two spherical sections each. Furthermore, the shape of the compressed melt volume referred to as a cylinder or as a cylindrical volume.

Die besondere Kolbenausführung schafft weitere technologische Vorteile:

  • Bei einer kurzzeitigen Druckreduzierung - wegen des Rückzuges vom Gegendruckkolben - wird der Druck mittels der Gießkolbenverschiebung nivelliert. Die Druckgießform wird schon mit den nächsten Schmelzeportionen unter dem hydromechanischen Druck der Gießkolbenbeschleunigung aufgefüllt. Der Kolbenweg endet im Mündungsbereich mit einer Aufkopplung an dem Gegendruckkolben, wodurch ein kleines zylinderförmiges Schmelzevolumen geschaffen wird, das unter der Anschnittmündung und oberhalb des Verdichtungskolbens angeordnet ist. Das Schmelzevolumen hat im zusammengedrückten Zustand eine gemeinsame Achse mit der Mündung und dem Verdichtungskolben. Hierdurch wird in der Nähe der Druckgießform bzw. dem Mündungsanschnitt ein zusätzliches Schmelzevolumen ausgebildet, das in das schon kristallisierende Gußstück noch vor seinem letztendlichen Erstarren zugespeist werden kann.
  • Durch das Einpressen des Schmelzevolumens findet zusätzlich ein gezieltes Verpressen des kristallisierenden Gußstücks mittels des Verdichtungskolbens statt. Um die geschilderten technologischen Operationen zu realisieren, ist der Verdichtungskolben in den senkrechten Teil der T-Konfiguration-Gießkammer so eingebaut, daß er eine senkrechte Verschiebung in Richtung Mündungsbereich durchführen kann. Das zwischen den Gieß- und Gegendruckkolben geformte Schmelzevolumen wird aufgrund dieser Anordnung durch die Beschleunigung des Verdichtungskolbens in die Druckgießform mit der entsprechenden hydromechanischen Kraft gepreßt.
  • The special piston design creates further technological advantages:
  • In the event of a brief pressure reduction - due to the withdrawal from the counter-pressure piston - the pressure is leveled by means of the casting piston displacement. The die is already filled with the next melt portions under the hydromechanical pressure of the piston acceleration. The piston path ends in the mouth area with a coupling to the counter-pressure piston, which creates a small cylindrical melt volume which is arranged under the gate and above the compression piston. In the compressed state, the melt volume has a common axis with the mouth and the compression piston. As a result, an additional melt volume is formed in the vicinity of the die or the gate, which can be fed into the already crystallizing casting before it finally solidifies.
  • By pressing in the melt volume, there is also a targeted pressing of the crystallizing casting by means of the compression piston. In order to implement the described technological operations, the compression piston is installed in the vertical part of the T-configuration casting chamber in such a way that it can carry out a vertical displacement in the direction of the mouth area. Due to this arrangement, the melt volume formed between the casting and counterpressure pistons is pressed into the die with the corresponding hydromechanical force by the acceleration of the compression piston.
  • Eine dafür obligatorische konstruktive Bedingung ist, daß der Durchmesser der Stirnfläche des Verdichtungskolbens dem inneren Durchmesser der von Gieß- und Gegendruckkolben geformten zylindrischen Kontur entsprechen muß. Dadurch wird nicht nur ein Zerstieben beim Einströmen vermieden, sondern es wird auch der Metallverlust herabgesetzt, weil kein Metallrest in der Anschnittmündung entsteht. Ferner kann eine gezielte Nachverdichtung des erstarrenden Gußstücks durchgeführt werden.A compulsory constructive condition for this is that the Diameter of the end face of the compression piston the inner Diameter of the cylindrical formed by casting and counter pressure pistons Contour must correspond. This will not only be a Avoiding scattering when flowing in, but it will also Metal loss reduced because there is no metal residue in the Gate opening is created. Targeted post-compression can also be used of the solidifying casting.

    Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichung. Diese zeigt in

    Figur 1
    eine schematische Darstellung der erfindungsgemäßen Vakuum-Druckgießmachine, in T-Konfiguration ausgerüstet, mit Gießkammer, Gieß-, Gegendruck- und Verdichtungskolben,
    Figur 2
    die Kolbenposition bei der Füllung der Gießkammer mit der Schmelze,
    Figur 3
    die Kolbenposition, bei der die Schmelze in eine zylindrische Form und einen zusammengedrückten Zustand gebracht ist,
    Figur 4
    die Kolbenposition, bei der die entstehende metallische Suspension unter dem hydrodynamischen Druck in die Druckgießform einströmt,
    Figur 5
    die Kolbenposition, bei der unter der Mündung ein "Speicher" angelegt wird,
    Figur 6
    die Kolbenposition, bei der die Zuspeisung und die Verdichtung des kristallisierenden Gußstücks durchgeführt werden und
    Figur 7
    einen horizontalen Schnitt durch die in T-Konfiguration angeordneten Gießkolben, Gegendruckkolben und Verdichtungskolben nach Abschluß des Füllvorgangs.
    Further advantages, features and details of the invention result from the following description of preferred exemplary embodiments and from the drawing. This shows in
    Figure 1
    1 shows a schematic representation of the vacuum die casting machine according to the invention, equipped in a T configuration, with a casting chamber, casting, counterpressure and compression pistons,
    Figure 2
    the piston position when the casting chamber is filled with the melt,
    Figure 3
    the piston position at which the melt is brought into a cylindrical shape and a compressed state,
    Figure 4
    the piston position at which the resulting metallic suspension flows into the die under the hydrodynamic pressure,
    Figure 5
    the piston position at which a "reservoir" is created under the mouth,
    Figure 6
    the piston position at which the feeding and the compression of the crystallizing casting are carried out and
    Figure 7
    a horizontal section through the pouring pistons, counterpressure pistons and compression pistons arranged in a T configuration after the filling process has been completed.

    Bei der in Figur 1 schematisch gezeigten Druckgießmaschine ist ein Schmelzbehälter 1 vorgesehen, der mittels eines Saugrohres 2 mit einer T-Konfiguration-Gießkammer 3 verbunden ist (im weiteren: Gießkammer). Durch eine Mündung 4 steht diese mit einer Druckgießkammer 5 in Verbindung, die zwischen einer beweglichen Formhälfte 6 und einer festen Formhälfte 7 liegt. Im horizontalen Bereich der Gießkammer 3 sind Gießkolben 8 und Gegendruckkolben 9 angeordnet, während im senkrechten Kanal ein Verdichtungskolben 10 gelagert ist. Das Saugrohr 2 und die Gießkammer 3 sind mit einer Pulverdosiervorrichtung 11 und einer elektromagnetischen Rühreinrichtung 12 ausgerüstet, die die Gießkammer 3 ringförmig umschließt.In the die casting machine shown schematically in FIG a melting tank 1 is provided by means of a suction pipe 2 is connected to a T-configuration casting chamber 3 (further: Casting). Through a mouth 4, this stands with a Die casting chamber 5 connected between a movable Mold half 6 and a fixed mold half 7 is. In the horizontal The area of the casting chamber 3 are casting pistons 8 and counterpressure pistons 9 arranged, while in the vertical channel a compression piston 10 is stored. The suction pipe 2 and the casting chamber 3 are with a powder metering device 11 and an electromagnetic Stirring device 12 equipped, the casting chamber 3 encloses in a ring.

    Eine praktische Anwendung der Erfindung wird mit der zeichnerischen Darstellung in den Figuren 1 bis 7 beschrieben. Ein vorgegebenes Schmelzevolumen der Schmelze 13 gelangt aus dem Schmelzbehälter 1 mittels des Saugrohres 2 in die T-Konfiguration-Gießkammer 3. Das geschmolzene Material wird dabei mit einem kühlenden Pulver im Saugrohr 2 vermischt; dies erfolgt durch die Pulverdosiervorrichtung 11 (Figur 2). Das Pulver ruft einen Abkühlungseffekt hervor, wodurch Überhitzungsbereiche in der Schmelze und Unterkühlungsbereiche ausgeglichen werden und der Kristallisationsprozeß und letztendlich die Homogenität des Gußstücks verbessert werden. Die abgekühlte Schmelze gelangt in die Gießkammer 3 vor den Gießkolben 8, der eine Position P8-1 besetzt, und fängt schon nach kurzer Zeit an, Primärkristalle zu produzieren, die eine vorzugsweise runde Gestalt haben. Vor dem Schmelzeeintritt ändert sich aber die Positionierung des Gegendruckkolbens 9.A practical application of the invention is illustrated Representation described in Figures 1 to 7. A given one Melt volume of the melt 13 passes from the Melting container 1 into the T-configuration casting chamber by means of the suction pipe 2 3. The molten material is included a cooling powder mixed in the suction pipe 2; this happens through the powder metering device 11 (Figure 2). The powder is calling a cooling effect, causing overheating areas in the melt and supercooling areas are balanced and the crystallization process and ultimately the homogeneity of the Casting can be improved. The cooled melt gets into the casting chamber 3 in front of the casting piston 8, which has a position P8-1 occupied, and after a short time begins to primary crystals produce, which have a preferably round shape. Before the Melt entry changes the positioning of the counter pressure piston 9th

    Mit einer Verschiebung entlang der Gießkammer 3 läßt der Kolben 8 seine Ausgangsposition P8-1 hinter sich, um die Position P8-2 zu besetzen (Fig.3). Hierdurch bildet sich in der Gießkammer 3 ein geometrisch begrenzter Raum, enthaltend die eingeschlossene Schmelze zwischen dem Gieß- und Gegendruckkolben, die dabei nicht in Berührung mit der Anschnittmündung 4 kommt.With a shift along the casting chamber 3, the piston 8 its starting position P8-1 behind to position P8-2 to occupy (Fig. 3). This forms in the casting chamber 3 a geometrically limited space containing the enclosed one Melt between the casting and counterpressure pistons that come with it does not come into contact with the gate opening 4.

    Beim herkömmlichen Verfahren weist die Schmelzeflut beim Eintritt in die Gießkammer 3 eine stark ausgeprägte hydrodynamische Instabilität auf, welche sich während des Druckanstiegs entwikkelt. Erfindungsgemäß wird durch die Verschiebung des Gießkolbens 8 nicht nur eine Stabilisierung, sondern auch eine Temperaturhomogenität im Schmelzevolumen erreicht. Der Gießkolben 8 bewegt sich nach vorn und dabei dem Gegendruckkolben 9 entgegen und besetzt eine Position P8-2. Er wirkt auf die instabile Schmelze mit einer konstanten Antriebskraft, schiebt sie vor sich und zwingt sie (Figur 3) hiermit

    • eine zylindrische Form anzunehmen,
    • sich hydrodynamisch zu stabilisieren und
    • durch den zunehmenden Druck die Kristallisationsprozesse zu aktivieren.
    In the conventional method, the melt flood when entering the casting chamber 3 has a pronounced hydrodynamic instability, which develops during the pressure increase. According to the invention, not only stabilization but also temperature homogeneity in the melt volume is achieved by the displacement of the casting piston 8. The casting piston 8 moves forward and in the process towards the counter-pressure piston 9 and occupies a position P8-2. It acts on the unstable melt with a constant driving force, pushes it in front of it and thus forces it (Figure 3)
    • to assume a cylindrical shape
    • to stabilize itself hydrodynamically and
    • to activate the crystallization processes by increasing pressure.

    Bei der Aktivierung werden elastische Druckwellen im Schmelzevolumen 14 erzeugt. Es tritt eine Erhöhung der Dichte- und Energiefluktuation auf, wodurch die Kristallisationsentwicklung stimuliert wird. Dies setzt jedoch voraus, dass in der Gießkammer 3 ein fest-flüssiger Schmelzezylinder gebildet und eine homogene Druckverteilung erzielt wird.When activated, there are elastic pressure waves in the melt volume 14 generated. There is an increase in density and energy fluctuation on, causing crystallization development is stimulated. However, this presupposes that in the casting chamber 3 a solid-liquid melt cylinder is formed and one homogeneous pressure distribution is achieved.

    Der Temperaturausgleich erfolgt durch elektromagnetisches Rühren, wofür eine ringförmige Rühreinrichtung 12 um die Gießkammer 3 angeordnet ist. Es entsteht eine Kreisbewegung der schon mit dem kühlenden Pulver abgekühlten Schmelze und dadurch ein Temperaturausgleich im zylindrischen Materialvolumen, was zur Entwicklung von Kristallisationsbedingungen für runde (globularische) Kristalle führt. In der nächsten Verfahrensetappe erfolgt der Rückzug des Gegendruckkolbens aus der Position P9-2 auf der Ausgangsposition P9-1. Dadurch wird die Anschnittmündung 4 geöffnet (Figur 4), wobei nach dem Abstoppen das Kolbenprofil an das Mündungsprofil anschließt. Die schon temperaturausgeglichene und hydrodynamisch stabilisierte Suspension wird in den freien Kammerraum geschoben und an dem Gegendruckkolben 9 zur Anschnittmündung 4 umgelenkt. Diese Arbeitsetappe besteht somit darin, daß

    • im axial verschobenen Schmelzevolumen 14 homogene Druck- und Temperaturverhältnisse herrschen,
    • die hydrodynamisch stabilisierte Suspension die Anschnittmündung 4 erreicht, ohne einen Aufschlag eines stationären Freistrahls an eine senkrechte Wand der beweglichen Formhälfte hervorzurufen bzw. ohne daß der Strahl zerstiebt und
    • der Gießgang ebenso wie die Mündung laminar mit der Schmelze aufgefüllt werden.
    The temperature compensation takes place by electromagnetic stirring, for which purpose an annular stirring device 12 is arranged around the casting chamber 3. There is a circular movement of the melt, which has already been cooled with the cooling powder, and thus a temperature compensation in the cylindrical material volume, which leads to the development of crystallization conditions for round (globular) crystals. In the next stage of the process, the counterpressure piston is withdrawn from position P9-2 to starting position P9-1. As a result, the gate opening 4 is opened (FIG. 4), the piston profile connecting to the mouth profile after stopping. The already temperature-balanced and hydrodynamically stabilized suspension is pushed into the free chamber space and deflected on the counter-pressure piston 9 to the gate opening 4. This stage of the work is therefore that
    • 14 homogeneous pressure and temperature conditions prevail in the axially shifted melt volume,
    • the hydrodynamically stabilized suspension reaches the gate opening 4 without causing a stationary free jet to strike a vertical wall of the movable mold half or without the jet being destroyed and
    • the casting passage and the mouth are filled with the melt in a laminar manner.

    Eine kurzzeitige Druckreduzierung - wegen des Rückzuges vom Kolben 9 - wird mittels der Gießkolbenverschiebung in der nächsten Etappe ausgeglichen (Figur 5). Die Positionsänderung von P8-2 nach P8-3 endet vor der Anschnittmündung 4, wobei die Bewegung des Kolbens 8 mit dem Gegendruckkolben 9 gekoppelt ist. Die metallische Suspension füllt den Gießgang und die Mündung auf und wird durch hydromechanische Kolbeneinwirkung in die Druckgießkammer 5 hinausgedrückt. Da die Stirnfläche des Gießkolbens 8 genauso wie der Gegendruckkolben 9 ein konkaves, ellipsoidförmiges Profil hat, bildet sich im Zwischenraum ein kleiner, zylindrischer Materialbereich aus, der sich direkt unter der Anschnittmündung 4 und oberhalb des Verdichtungskolbens 10 in einem elasto-plastischen Zustand befindet. Dieser "Speicher" dient dazu, das schon kristallisierende Gußstück nachspeisen zu können. In der letzten Arbeitsetappe, die als das Nachverdichten des Endproduktes bezeichnet werden kann, wird eine senkrechte Verschiebung des Verdichtungskolbens 10 in der Mündungsrichtung durchgeführt und damit der Druckgießvorgang abgeschlossen. Der Verdichtungskolben verläßt seine Ausgangsposition P10-1 und verdrängt damit die zylindrische Metallportion über die Mündung 4, bis die neue Position P10-2 erreicht ist (Figur 6). Dadurch erfolgt eine Zuspeisung des schon kristallisierenden Gußstücks. Durch die in der Mündung befindliche Stirnfläche des Verdichtungskolbens wird das halberstarrte Gußstück vorgepreßt.A short-term pressure reduction - because of the withdrawal from Piston 9 - is by means of the casting piston displacement in the next Stage balanced (Figure 5). The change of position from P8-2 after P8-3 ends before the gate opening 4, being the movement of the piston 8 is coupled to the counter-pressure piston 9. The metallic suspension fills the pouring passage and the mouth and is caused by hydromechanical piston action in the die casting chamber 5 pushed out. Because the face of the plunger 8 just like the counter-pressure piston 9 a concave, ellipsoidal Profile, a small, cylindrical one is formed in the space Material area that is directly under the gate opening 4 and above the compression piston 10 in is in an elasto-plastic state. This "memory" serves to make up the already crystallizing casting can. In the last stage of work, which is called the densification of the end product can be called a vertical Displacement of the compression piston 10 in the mouth direction carried out and thus the die casting process is completed. The Compression piston leaves its starting position P10-1 and this displaces the cylindrical metal portion over the mouth 4 until the new position P10-2 is reached (Figure 6). Thereby the already crystallizing casting is fed. Through the end face of the compression piston located in the mouth the semi-rigid casting is pressed.

    In der Figur 7 ist eine wichtige erfindungsgemäße Ausgestaltung des Deformationsbereiches bei der Metalleinströmung dargestellt (øM-Durchmesser des zylindrischen Schmelzevolumens, øk-Durchmesser der durch Gießkolben- und Gegendruckkolbenkopffläche gebildeten Kontur). Die konturgeschlossene Ausführung gestattet eine wirbelfreie Druckgießformauffüllung, die Zuspeisung und das Nachverdichten des Endproduktes. Sie schafft ferner die Möglichkeit, den Metallverlust (Verkleinerung des Preßrestes) beträchtlich zu verringern.FIG. 7 shows an important embodiment of the deformation region in accordance with the invention when the metal flows in (ø M diameter of the cylindrical melt volume, ø k diameter of the contour formed by the casting piston and counterpressure piston head surface). The contour-closed design allows a vortex-free die-casting mold filling, feeding and post-compression of the end product. It also creates the possibility of considerably reducing the metal loss (reduction of the baling residue).

    Erste Versuche mit dem erfindungsgemäßen Verfahren haben anschaulich gezeigt:

    • Mit der räumlich beschränkten Gießkammer, die T-Konfiguration der Kolben, und den konturgeschlossenen Kolbenkopfflächen wird die Metalleinströmung verbessert.
    • Im Gußstück dominiert ein homogenes feinzelliges Gefüge.
    • Typische Gußfehler, wie verteilte Schrumpfungsporen, Lunker und undichtes Gefüge, werden durch die Zuspeisung und das Nachverdichten des kristallisierenden Gußstücks verringert. Der Dichteindex der nach dem erfindungsgemäßen Verfahren hergestellten Gußstücke erhöht sich auf das Fünffache.
    Initial tests with the method according to the invention have clearly shown:
    • The inflow of metal is improved with the spatially restricted casting chamber, the T-configuration of the pistons, and the contour-closed piston head surfaces.
    • The casting is dominated by a homogeneous fine-cell structure.
    • Typical casting defects, such as distributed shrinkage pores, voids and a leaky structure, are reduced by feeding in and re-compacting the crystallizing casting. The density index of the castings produced by the process according to the invention increases five times.

    Claims (10)

    1. A pressure die casting process for producing castings from aluminium and magnesium alloys, wherein, in a horizontal casting chamber (3) equipped with a casting piston (8), a vacuum exists from the beginning of the casting operation and wherein the melt volume introduced into the casting chamber is cooled down to the semi-solidified condition and stirred by means of an electro-magnetic field, whereafter the melt volume is accelerated for the purpose of being introduced into the mould and subjected to pressure either before or, at the latest, when reaching the ingate mouth of the mould,
      characterised in that, prior to being accelerated, the liquid melt is introduced into a cylindrical mould and stabilised hydro-dynamically, wherein a temperature balance and a uniform distribution of pressure take place in the cylindrical melt volume and wherein, after the mould has been filled, the crystallising metal is fed in from a melt volume especially formed for this purpose and wherein the casting is formed under an additional specific compression pressure.
    2. A pressure die casting process according to claim 1,
      characterised in that a cooling powder is introduced into the melt and that, in the process, primary crystals are formed in the cooled melt, which primary crystals transfer the melt into a semi-solidified condition.
    3. A pressure die casting process according to any one of the preceding claims,
      characterised in that, while the melt is cooling, electromagnetic stirring takes place in the casting chamber until the temperature of the cylindrical melt volume has been balanced completely.
    4. A pressure die casting process according to any one of the preceding claims,
      characterised in that, after the completion of the hydro-dynamic stabilising process, the liquid melt introduced into a cylindrical mould is accelerated in the direction of the ingate along the casting chamber until the melt volume in the compressed condition underneath the ingate mouth forms an additional melt volume which comprises a joint axis with the mouth and with a compression piston, wherein the compression piston presses the melt volume through the mouth into the mould, and, by means of its end face, moves forward into the mouth and compresses the crystallising casting to form a casting before the latter finally solidifies in the mould.
    5. A pressure die casting process according to any one of the preceding claims,
      characterised in that the melt volume is accelerated in the direction of the pressure decrease between the counter pressure piston face and the free face of the melt volume after the rapid withdrawal of the counter pressure piston as far as the ingate mouth, wherein the counter pressure piston comprising a concave, ellipsoidal profile at the piston head end is stopped at the ingate mouth and thus forms the mouth profile.
    6. A pressure die casting device for producing castings from aluminium and magnesium alloys, having a horizontal casting chamber (3) which comprises a casting piston (8), in which there exists a vacuum from the start and wherein the melt volume introduced via a suction pipe (2) is cooled to a semi-solidified condition and stirred by means of an electro-magnetic field, whereafter the melt volume is accelerated for the purpose of being introduced into the mould and subjected to pressure either before or, at the latest, when reaching the ingate mouth of the mould,
      characterised in that the casting chamber (3) comprises a T-piece configuration and is provided with a counter pressure piston (9) movable in the direction of the casting piston (8), wherein, underneath the mouth (4), in the casting chamber there is arranged the T-shaped connecting piece whose horizontal T-axis corresponds to the horizontal axis of the casting chamber and in whose vertical T-axis there is arranged a compression piston (10).
    7. A pressure die casting device according to the preceding claims 6,
      characterised in that the movement of the casting piston (8) and the movement of the counter pressure piston (9) are coupled, wherein, the melt volume to be stabilised between the pistons is enclosed in a cylindrical mould and wherein the compression piston (10) in the vertical T-axis is movable from a lower position (casting chamber base) into an upper position (ingate mouth of the mould).
    8. A pressure die casting device according to any one of the preceding claims 6 or 7,
      characterised in that a powder dispensing device (11) is connected in the suction pipe (2) of the casting chamber (3).
    9. A pressure die casting device according to any one of the preceding claims 6, 7 or 8,
      characterised in that the ingate mouth comprises a mouth profile which is formed by the end faces of the casting piston (8), of the counter pressure piston (9) and of the compression piston (10) and that, underneath the mouth (4), there is provided a cylindrical storage chamber for the melt material to be supplied by the compression piston.
    10. A pressure die casting device according to any one of the preceding claims,
      characterised in that the end faces of the casting piston and of the counter pressure piston each comprise a concave ellipsoidal profile, wherein the space between the pistons is cylindrical, with two spherical portions being provided in the piston end faces.
    EP99107814A 1999-04-20 1999-04-20 Pressure diecasting method Expired - Lifetime EP1046444B1 (en)

    Priority Applications (7)

    Application Number Priority Date Filing Date Title
    DE59900928T DE59900928D1 (en) 1999-04-20 1999-04-20 diecasting
    EP99107814A EP1046444B1 (en) 1999-04-20 1999-04-20 Pressure diecasting method
    AT99107814T ATE213980T1 (en) 1999-04-20 1999-04-20 DIE CASTING PROCESS
    CN00106494A CN1270863A (en) 1999-04-20 2000-04-11 Pressure casting process and its device
    JP2000111666A JP2000312958A (en) 1999-04-20 2000-04-13 Method and device for pressurizing die cast
    KR1020000020552A KR20000071729A (en) 1999-04-20 2000-04-19 Pressure die-casting method and device for carrying out same
    BR0001645-4A BR0001645A (en) 1999-04-20 2000-04-19 Pressure molding process and device for its execution

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP99107814A EP1046444B1 (en) 1999-04-20 1999-04-20 Pressure diecasting method

    Publications (2)

    Publication Number Publication Date
    EP1046444A1 EP1046444A1 (en) 2000-10-25
    EP1046444B1 true EP1046444B1 (en) 2002-03-06

    Family

    ID=8238002

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99107814A Expired - Lifetime EP1046444B1 (en) 1999-04-20 1999-04-20 Pressure diecasting method

    Country Status (7)

    Country Link
    EP (1) EP1046444B1 (en)
    JP (1) JP2000312958A (en)
    KR (1) KR20000071729A (en)
    CN (1) CN1270863A (en)
    AT (1) ATE213980T1 (en)
    BR (1) BR0001645A (en)
    DE (1) DE59900928D1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2008152665A1 (en) * 2007-06-15 2008-12-18 Giorgio Benzi Die casting machine with double injection cylinder

    Families Citing this family (22)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10033166A1 (en) * 2000-07-07 2002-01-24 Hengst Walter Gmbh & Co Kg Device for producing castings, with a wall that can be guided into the casting mold
    DE10062436A1 (en) * 2000-12-15 2002-06-20 Buehler Druckguss Ag Uzwil Casting device used for pressure casting liquid or partially liquid metallic materials has a nozzle, and a nozzle housing having a chamber in which the nozzle is able to move linearly between a casting position and a filling position
    WO2002090020A1 (en) * 2001-05-04 2002-11-14 Alcast S.R.L. Method and device for quickly and economically forming at least one die casting without casting material wastage
    DE10122028A1 (en) * 2001-05-07 2002-11-14 Buehler Druckguss Ag Uzwil Process for die casting and die casting machine
    DE102004008157A1 (en) * 2004-02-12 2005-09-01 Klein, Friedrich, Prof. Dr. Dr. h.c. Casting machine for the production of castings
    CN1322950C (en) * 2004-08-11 2007-06-27 杨然森 Warm house low pressure casting method for alloy casting and casting machine thereof
    DE102005047515A1 (en) * 2005-10-04 2007-04-05 Bühler Druckguss AG Pressure casting process for casting light metal melts in pressure casting machine, in production of Al castings has melt heated to temperature higher than liquidus temperature and then directed into casting chamber with removal of heat
    KR100682372B1 (en) * 2006-05-26 2007-02-16 주식회사 퓨쳐캐스트 Hot chamber die casting apparatus for semi-solid metal alloy and the manufacturing method using the same
    JP5768616B2 (en) * 2011-09-20 2015-08-26 トヨタ自動車株式会社 Die casting equipment
    CN103752796A (en) * 2014-02-13 2014-04-30 江苏博众汽车部件有限公司 Piston air cylinder for pressure casting
    CN103878339B (en) * 2014-04-03 2017-07-18 东莞台一盈拓科技股份有限公司 A kind of extrusion process of non-crystaline amorphous metal
    EP3613520B1 (en) * 2018-08-21 2021-09-29 GF Casting Solutions AG Method and appartus for casting metals under pressure using a cold chamber
    IT201800009961A1 (en) * 2018-10-31 2020-05-01 Livio Zamperin Injection unit for machines at foundries and method of use of the same
    LU101305B1 (en) * 2019-07-12 2021-01-14 Phoenix Contact Gmbh & Co Casting device and method for producing a component from a melt
    DE102020204634A1 (en) 2020-04-09 2021-10-14 Oskar Frech Gmbh + Co. Kg Casting piston system and casting process for a die casting machine
    DE102020113633B3 (en) 2020-05-20 2021-05-20 Universität Kassel Die casting cell and die casting process
    CN112548057B (en) * 2021-02-01 2021-11-05 莆田市荣兴机械有限公司 Extrusion die-casting method of double-pressurizing cold chamber die-casting machine
    CN112719245A (en) * 2021-03-08 2021-04-30 金雅豪精密金属科技(深圳)股份有限公司 Perpendicular die-casting ranking structure of cell-phone medium plate and perpendicular die casting machine
    CN114453561B (en) * 2022-02-11 2024-06-28 常州大学 Three-way isobaric flexible molding sand box device with internal osmotic pressure
    CN114653917B (en) * 2022-03-07 2023-09-26 山东嘉来顿机械科技有限公司 Cylinder sleeve processing mode
    CN116140580B (en) * 2023-04-17 2023-09-05 宁波力劲科技有限公司 Cold chamber die casting machine with large injection quantity
    CN116851700B (en) * 2023-07-06 2024-04-05 东莞市铭能五金有限公司 Aluminum alloy die-casting structural component forming die

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE935147C (en) * 1954-01-24 1955-11-10 Mahle Werk G M B H Press casting machine
    JPH0667545B2 (en) * 1988-06-10 1994-08-31 宇部興産株式会社 Injection molding machine
    FR2665654B1 (en) * 1990-08-09 1994-06-24 Armines PRESSURE CASTING MACHINE OF A THIXOTROPIC METAL ALLOY.
    DE4101592A1 (en) * 1991-01-21 1992-07-23 Mueller Weingarten Maschf DIE CASTING MACHINE
    EP0733421B1 (en) * 1995-03-22 2000-09-06 Hitachi Metals, Ltd. Die casting method

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2008152665A1 (en) * 2007-06-15 2008-12-18 Giorgio Benzi Die casting machine with double injection cylinder

    Also Published As

    Publication number Publication date
    KR20000071729A (en) 2000-11-25
    EP1046444A1 (en) 2000-10-25
    CN1270863A (en) 2000-10-25
    BR0001645A (en) 2000-10-31
    DE59900928D1 (en) 2002-04-11
    JP2000312958A (en) 2000-11-14
    ATE213980T1 (en) 2002-03-15

    Similar Documents

    Publication Publication Date Title
    EP1046444B1 (en) Pressure diecasting method
    DE60111190T2 (en) METHOD AND DEVICE FOR PRODUCING CAST FOAM BODIES
    DE69508581T3 (en) METHOD AND DEVICE FOR INJECTION MOLDING METALS IN SEMI-SOLID CONDITION
    DE69916708T2 (en) Method and device for injection molding semi-liquid metals
    DE69227915T2 (en) MOLDING PROCESS
    DE60128114T2 (en) PRESSURE PIPING OF ALUMINUM
    EP1900456A1 (en) Apparatus for manufacturing molded parts
    EP1354651B1 (en) Light weight component comprising a metal foam and process and apparatus for manufacturing same
    EP0413885B1 (en) Low pressure die casting process for casting non ferrous metal casting parts
    DE60213977T2 (en) SYSTEM FOR THE SUPPLY OF METAL MELT UNDER CONSTANT PRESSURE AND METHOD FOR THE PRODUCTION OF FINAL METAL ARTICLES
    DE69916707T2 (en) Method and device for injection molding semi-liquid metals
    DE69110532T2 (en) Process and device for indirect casting of billets from metallic alloys in the semi-liquid or pasty state.
    EP1100640B1 (en) Casting system for thixoforms
    WO2007107223A1 (en) Method for filling the impression of a pressure diecasting device with casting material and pressure diecasting device for carrying out the method
    DE112004000708B4 (en) Process for producing a metal foam body
    DE2823330C2 (en)
    EP1318884B1 (en) Method for producing a moulded body from foamed metal
    DD265994A3 (en) diecasting
    EP2983848A1 (en) Pore die casting
    DE3206094C2 (en) Discontinuous continuous casting plant
    WO2001055464A1 (en) Diecasting method and device for carrying out the same
    DE2144025A1 (en) Method of pouring melts
    DE69108306T2 (en) Process, casting mold and device for multi-stage low pressure casting of metal.
    DE3044992A1 (en) Pressure die casting of metals - where feeder cavity is located in mobile die half so movement of injector is not impeded during final feeding of casting
    DE3013226C2 (en)

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19991119

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT CH DE ES FR GB IT LI NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17Q First examination report despatched

    Effective date: 20010129

    AKX Designation fees paid

    Free format text: AT CH DE ES FR GB IT LI NL PT SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: PELESCHKA, GERHART, DR. DIPL.-KFM.

    Inventor name: STERLING, EVGUENI, DR.-ING.

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT CH DE ES FR GB IT LI NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020306

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20020306

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020306

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020306

    REF Corresponds to:

    Ref document number: 213980

    Country of ref document: AT

    Date of ref document: 20020315

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59900928

    Country of ref document: DE

    Date of ref document: 20020411

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020420

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020606

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020606

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20020306

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020925

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021101

    EN Fr: translation not filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20021209

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: AEN

    Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 21.01.2004 REAKTIVIERT WORDEN.

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: AEN

    Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 19.01.2005 REAKTIVIERT WORDEN.

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20050629

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060430

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL