JPS6046153B2 - Heavy oil pyrolysis method - Google Patents

Heavy oil pyrolysis method

Info

Publication number
JPS6046153B2
JPS6046153B2 JP15804781A JP15804781A JPS6046153B2 JP S6046153 B2 JPS6046153 B2 JP S6046153B2 JP 15804781 A JP15804781 A JP 15804781A JP 15804781 A JP15804781 A JP 15804781A JP S6046153 B2 JPS6046153 B2 JP S6046153B2
Authority
JP
Japan
Prior art keywords
column
tower
cracked
separated
heavy oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15804781A
Other languages
Japanese (ja)
Other versions
JPS5859286A (en
Inventor
慎二 魚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP15804781A priority Critical patent/JPS6046153B2/en
Publication of JPS5859286A publication Critical patent/JPS5859286A/en
Publication of JPS6046153B2 publication Critical patent/JPS6046153B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は重質油の熱分解方法に関し、詳しくは重質油
を熱分解して得られる生成物を分留塔に導入し、副生す
る高沸点の副生成物を、さらに減圧分離塔にて分留した
際に生成するナフタレン等を含む排ガスを凝縮塔に導い
て一旦凝縮させ、当該凝縮液を分留塔などに循環するこ
とによつて、装置内の各機器のナフタレンによる閉塞を
防止し、−長期間安定した運転が可能な熱分解方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for thermally decomposing heavy oil, and more specifically, a product obtained by thermally decomposing heavy oil is introduced into a fractionating column, and a high boiling point by-product is produced as a by-product. The exhaust gas containing naphthalene, etc., produced when it is further fractionated in a vacuum separation tower, is led to a condensation tower and condensed once, and the condensed liquid is circulated to the fractionation tower etc. This invention relates to a thermal decomposition method that prevents equipment from being blocked by naphthalene and allows stable operation over a long period of time.

一般に各種の常圧蒸留残渣油、減圧蒸留残渣油などの
重質油を水蒸気の存在下で熱分解して生成する熱分解生
成物を、分留塔で分留し、その塔底。
In general, the thermal decomposition products produced by thermally decomposing various heavy oils such as atmospheric distillation residue oil and vacuum distillation residue oil in the presence of steam are fractionated in a fractionating column, and the bottom of the column is distilled.

から得られる高沸点の副生成物中には、比較的多量のナ
フタレンと共に微量のガソリンならびに水が含有されて
いる。従つてさらにこれを減圧分離塔でナフタレンを主
成分とする留分およびアンド びにそれら以外の重質成
分である塔底留分に分離する場合、減圧分離塔の塔頂ガ
ス中には分留塔塔底油中に存在する水およびガソリン分
がナフタレンと共に存在する。そのためこの排ガスをそ
のまま装置の系外に排出すると配管の閉塞、環境の悪化
等を引き起すため、まずナフタレン凝縮塔に導いてナフ
タレンを凝縮させ、次いでスチームやガソリン分を該凝
縮塔の塔頂からエジェクター排水系に抜出すかあるいは
塔底から系外に抜出すこと・が必要である。この場合、
ナフタレン凝縮塔の温度に関しては、低すぎるとガソリ
ンが水分が蒸発せず、逆に高すぎるとナフタレンがガソ
リンに溶解したまま蒸発し、またミスト同伴するナフタ
レンの量自体も増加するためナフタレンによるエジェク
ターノズルの閉塞、エジェクター冷却器の閉塞さらには
配管、計装機器の閉塞をも引起しかねない。このように
、ナフタレン凝縮塔の塔頂から水分やガソリン分のみを
蒸発させて抜出すには、凝縮塔の温度管理に細心の注意
を払う必要があり、操作が煩雑である。 一方、ナフタ
レン凝縮塔の塔底から水分やガソリン分を抜出すにあた
つては、ナフタレンやガソリン分を含んだ凝縮液の比重
が1.000〜1.040(50/ 4℃)であり、水
の比重と非常に近接しているため、水と油の界面制御の
みによつてて水分とガソリン分を分離して抜出すことに
極めて困難である。
The high-boiling by-product obtained from the process contains a relatively large amount of naphthalene as well as trace amounts of gasoline and water. Therefore, when this is further separated into a fraction containing naphthalene as the main component and a bottom fraction containing heavy components other than these in a vacuum separation column, the top gas of the vacuum separation column contains Water and gasoline present in the bottom oil are present along with the naphthalene. Therefore, if this exhaust gas is directly discharged outside the equipment system, it will cause blockage of pipes and deterioration of the environment, so first it is led to a naphthalene condensation tower to condense the naphthalene, and then steam and gasoline are removed from the top of the condensation tower. It is necessary to drain it into the ejector drainage system or out of the system from the bottom of the tower. in this case,
Regarding the temperature of the naphthalene condensation tower, if the temperature is too low, the moisture in the gasoline will not evaporate, and if it is too high, the naphthalene will evaporate while remaining dissolved in the gasoline, and the amount of naphthalene entrained in the mist will also increase. This may cause blockage of the ejector cooler, and even blockage of piping and instrumentation equipment. In this way, in order to evaporate and extract only the moisture and gasoline from the top of the naphthalene condensation tower, it is necessary to pay close attention to the temperature control of the condensation tower, and the operation is complicated. On the other hand, when extracting moisture and gasoline from the bottom of the naphthalene condensation tower, the specific gravity of the condensate containing naphthalene and gasoline is 1.000 to 1.040 (50/4°C), Since the specific gravity is very close to that of water, it is extremely difficult to separate and extract the water and gasoline components only by controlling the water-oil interface.

上述したように、減圧分離塔の塔頂から出る排ガス中
のナフタレンを完全に捕捉しつつ水分やガソリン分を系
外に抜出すとは非常に難しく、これまでに様々な方法が
提案されているがいずれも満足すべきものではなかつた
As mentioned above, it is extremely difficult to completely capture the naphthalene in the exhaust gas coming out of the top of the vacuum separation tower while extracting moisture and gasoline from the system, and various methods have been proposed so far. However, none of them were satisfactory.

その一つの方法として、ナフタレン凝縮塔の塔底の凝縮
液を、減圧分離塔にリサイクルし、水分やガソリン分は
凝縮塔の塔頂からのみ抜出すことが考えられるが、この
方法では抜出す水分やガソリン分の量よりも、入つてく
る量の方が圧倒的に多く、その結果として、減圧分離塔
上部からナフタレン凝縮塔にかけて水が蓄積してしまい
、ついには減圧分離塔の運転変動を招くという欠点があ
る。本発明は、簡単な操作ならびに装置にて、ナフタレ
ンによる各機器の閉塞や水の蓄積による減圧分離塔の運
転変動や溢流等のトラブルがなく長期間安定した運転を
行なうことができる重質油の熱分解方法の開発を目的と
するものであり、その構成は、重質油をスチーム存在下
に熱分解して得られる熱分解生成物を、急冷器を通した
後に、分留塔に導入し、該分留塔において塔頂から分解
ガスおよび分解ガソリンを主とする分解主生成物を、塔
底から分解重質油を主とする分解副生成物をそれぞれ分
離し、次いで分離した分解副生成物を減圧分離塔に導入
して各留分に分けると共に、該減圧分離塔の塔頂から排
出される排ガスを凝縮塔に導いて凝縮させ、得られた凝
縮液を前記急冷器および/または分留塔へ戻すことを特
徴とする重質油の熱分解方法である。
One method is to recycle the condensate at the bottom of the naphthalene condensation tower to a vacuum separation tower, and extract water and gasoline only from the top of the condensation tower. The amount of water coming in is overwhelmingly larger than the amount of gasoline and gasoline, and as a result, water accumulates from the top of the vacuum separation tower to the naphthalene condensation tower, eventually causing fluctuations in the operation of the vacuum separation tower. There is a drawback. The present invention is a heavy oil that can be operated stably for a long period of time with simple operations and equipment, without troubles such as blockage of various equipment due to naphthalene or troubles such as operational fluctuations and overflow of the vacuum separation tower due to water accumulation. The purpose of this project is to develop a method for thermally decomposing heavy oil in the presence of steam.The thermal decomposition products obtained by thermally decomposing heavy oil in the presence of steam are passed through a quencher and then introduced into a fractionating column. In the fractionation column, the main cracked products, mainly cracked gas and cracked gasoline, are separated from the top of the column, and the cracked byproducts, mainly cracked heavy oil, are separated from the bottom of the column, and then the separated cracked byproducts are separated. The product is introduced into a vacuum separation tower and separated into each fraction, and the exhaust gas discharged from the top of the vacuum separation tower is led to a condensation tower and condensed, and the resulting condensate is passed through the quencher and/or This is a method for thermally decomposing heavy oil, which is characterized by returning it to a fractionation column.

まず本発明の方法において熱分解の原料油として用いる
ことのてきる重質油は、様々なものがあり、特に制御は
ないが、例えば各種の常圧蒸留残渣油、減圧蒸留残渣油
、石油ナフサ留分を熱分解する際に副生する分解重質油
などがある。
First, there are various types of heavy oil that can be used as feedstock oil for thermal cracking in the method of the present invention, and although there are no particular controls, examples include various types of atmospheric distillation residue oil, vacuum distillation residue oil, and petroleum naphtha. There is cracked heavy oil, which is a by-product when fractions are thermally decomposed.

次に、本発明の方法を図面に基いてさらに詳しく説明す
る。
Next, the method of the present invention will be explained in more detail based on the drawings.

第1図は本発明の方法に用いる装置の一例を示す概略図
でる。本発明の方法によれば、ます原料油である重質油
をスチームと共にあるいは別々に分解反応塔1に導入す
る。この分解反応塔1では、導入した重質油をスチーム
の存在下で熱分解する。この熱分解の際の条件は用いる
重質油の種類、所望する生成物などに応じて適宜定めれ
ばよいが、通常は650℃〜850℃、好ましくは72
0〜780℃程度とする。次いでこの熱分解によつて得
られた生成物(スチームが混合している。)を急冷器2
に導いて、ここで急速に冷却する。冷却温度は各種条件
に応じて異なるが、通常は200〜400℃程度に冷却
する。冷却後、熱分解生成物を分留塔3に導いて、ここ
で分解ガスおよび分解ガソリンを主とする分解主生成物
ならびにスチームを塔頂から分離し、一方、分解重質油
を主とする分解副生成物を塔底から分離する。ここて分
解主生成物は一般に約150〜250゜C以下の沸点を
有し、分解副生成物は約150〜250′C以上の沸点
を有する。なお、この分留塔3における運転条件は、適
宜定めればよいが、一般的には塔頂圧力0.4〜1.0
kgIcIt−G1塔頂温度90〜120゜C1塔底温
度180〜250′Cとする。またこの分留塔3の塔底
から分離した分解副生成物中には、ナフタレン、アント
ラセン、フェナントレン等が比較的多く含まれており、
その他ガソリン分や水分も少量含まれている。続いて上
記分解反応副生成物を、必要に応じて加熱炉4で300
〜400℃に加熱した後、減圧分離塔5に導入して各留
分に分け、塔側の適宜位置および塔底等からそれぞれの
留分を分離する。
FIG. 1 is a schematic diagram showing an example of an apparatus used in the method of the present invention. According to the method of the present invention, heavy oil, which is a raw material oil, is introduced into the cracking reaction tower 1 together with steam or separately. In this decomposition reaction tower 1, the introduced heavy oil is thermally decomposed in the presence of steam. The conditions for this thermal decomposition may be determined as appropriate depending on the type of heavy oil used, the desired product, etc., but are usually 650°C to 850°C, preferably 72°C.
The temperature should be approximately 0 to 780°C. Next, the product obtained by this thermal decomposition (mixed with steam) is transferred to a quencher 2.
where it is rapidly cooled. Although the cooling temperature varies depending on various conditions, it is usually cooled to about 200 to 400°C. After cooling, the pyrolysis products are led to the fractionation column 3, where the main cracking products mainly consisting of cracked gas and cracked gasoline and steam are separated from the top of the column, while the main cracking products mainly consisting of cracked heavy oil are separated from the top of the column. Decomposition by-products are separated from the bottom of the column. The main decomposition product generally has a boiling point of about 150-250°C or less, and the decomposition by-product has a boiling point of about 150-250'C or more. Note that the operating conditions in this fractionating column 3 may be determined as appropriate, but generally the column top pressure is 0.4 to 1.0.
kgIcIt-G1 The top temperature is 90 to 120°C, and the bottom temperature is 180 to 250'C. In addition, the decomposition byproducts separated from the bottom of the fractionator 3 contain relatively large amounts of naphthalene, anthracene, phenanthrene, etc.
It also contains small amounts of gasoline and water. Subsequently, the decomposition reaction by-products are heated in a heating furnace 4 for 300 min as required.
After heating to ~400° C., the mixture is introduced into a vacuum separation column 5 and separated into each fraction, and each fraction is separated from an appropriate position on the column side, the bottom of the column, etc.

ここで分離すべき留分の種類は適宜定めればよいが、一
般的には塔側上段からはナフタレンを主体とする沸点2
00〜270℃の分解軽質軽油、塔側中段からはアント
ラセン、フェナントレン等を主体とする沸点270〜3
50℃の分解重質軽油が分離回収され、塔底からは、沸
点350℃以上の分解重質油が抜出される。なお減圧分
離塔5における運転条件としては、各種条件に応じて適
宜定めればよいが、通常はO−0.8k9ノd−A1好
ましくは0.05〜0.4k91d・Aの減圧下とすべ
きである。上述のように分留塔3からの分解副生成物を
減圧分離塔5にて分留すると、塔頂からは排ガスが排出
される。
The type of fraction to be separated here may be determined as appropriate, but in general, from the upper column side, boiling point 2
00~270℃ cracked light gas oil, boiling point 270~3 containing mainly anthracene, phenanthrene, etc. from the middle stage of the tower side
The cracked heavy gas oil at 50°C is separated and recovered, and the cracked heavy oil with a boiling point of 350°C or higher is extracted from the bottom of the column. The operating conditions in the vacuum separation column 5 may be determined as appropriate depending on various conditions, but are usually under a reduced pressure of O-0.8k9d-A1, preferably 0.05 to 0.4k91d-A. Should. As described above, when the decomposition byproducts from the fractionator 3 are fractionated in the vacuum separation column 5, exhaust gas is discharged from the top of the column.

この排ガス中には水分をはじめガソリン分、ナフタレン
分等が含有されており、そのまま系外に排出することが
好ましくない。また、この減圧分離塔5内の減圧は、通
常スチームを使用したエジェクター7によつて行なわれ
ており、そのままでは塔頂からの排ガス中に含まれるナ
フタレンがエジェクター7等に析出して閉塞トラブルを
管こすおそれがあるた、途中にナフタレン等の凝縮塔6
を設置することが必要となる。従つて本発明の方法によ
れば、減圧分離塔5の塔頂から排出される排ガスを凝縮
塔6へ導いて凝縮させることとなる。
This exhaust gas contains moisture, gasoline, naphthalene, etc., and it is not preferable to discharge it as it is out of the system. In addition, the pressure inside the vacuum separation tower 5 is normally achieved by an ejector 7 using steam, and if left as is, naphthalene contained in the exhaust gas from the top of the tower will precipitate in the ejector 7 etc., causing blockage problems. There is a risk of pipe strain, so there is a condensation tower 6 for naphthalene etc.
It is necessary to install Therefore, according to the method of the present invention, the exhaust gas discharged from the top of the vacuum separation tower 5 is led to the condensation tower 6 and condensed.

この凝縮塔6において、排ガス中のガソリン分、水分は
蒸気のままとして、ナフタレン分を凝縮させることも可
能であるが、温度制御がむずかしく、また若干のナフタ
レン分が蒸気のままエジェクター等へ飛出すおそれがあ
り、そかも水分とガソリン分の分離にも手間を要すると
いう難点がある。そのため本発明の方法においては、こ
の凝縮塔6において排ガス中のガソリン分、水分、ナフ
タレン分の大部分を凝縮させ、特にナフタレン分がエジ
ェクター等へ飛出すのを防止している。続いて、この凝
縮塔6で得られた凝縮液は、そのまま系外へ抜出すこと
も可能であるが、ガソリン分、ナフタレン分等の有用な
成分が含まれているため、再度分留することが好ましい
In this condensation tower 6, it is possible to condense the naphthalene while leaving the gasoline and water in the exhaust gas as vapor, but it is difficult to control the temperature, and some naphthalene still escapes to the ejector etc. as vapor. In addition, there is a problem in that it takes time and effort to separate the water and gasoline components. Therefore, in the method of the present invention, most of the gasoline, water, and naphthalene in the exhaust gas are condensed in the condensation tower 6, and the naphthalene in particular is prevented from flying out to the ejector or the like. Next, the condensate obtained in the condensation column 6 can be directly extracted from the system, but since it contains useful components such as gasoline and naphthalene, it is necessary to fractionally distill it again. is preferred.

そこで凝縮液を減圧分離塔5へ循環することも考えられ
るが(第1図の破線部B参照)、このような循環系で長
期間運転を継続すると、凝縮塔6内に多量の水分が蓄積
し、運転トラブルを引起こすおそれがある。そのため、
本発明の方法では、凝縮塔6内の凝縮液を、前述した急
冷器2および分留塔3のいずれか一方あるいは両方へ戻
すわけである。戻された凝縮液は分留塔3において、そ
の中の水分およびガソリン分の大部分が分留塔3の塔頂
より分離され、さらに減圧分離塔5にてナフタレン分の
ほとんどが分離される。それ故、長期間の連続運転を行
なつても、凝縮塔6内に水分や他の成分を含む凝縮液が
蓄積増加するというおそれはなく、運転トラブルは生じ
ない。また、本発明の方法の如く、凝縮液を急冷器2や
分留塔3へ戻すことは次の点でも極めて有益なことであ
る。
Therefore, it is conceivable to circulate the condensate to the vacuum separation tower 5 (see broken line B in Figure 1), but if the operation continues for a long time with such a circulation system, a large amount of moisture will accumulate in the condensation tower 6. This may cause driving problems. Therefore,
In the method of the present invention, the condensate in the condensation tower 6 is returned to either or both of the aforementioned quencher 2 and fractionation tower 3. The returned condensate is sent to the fractionator 3, where most of the moisture and gasoline are separated from the top of the column 3, and further, most of the naphthalene is separated from the reduced pressure separation column 5. Therefore, even if continuous operation is performed for a long period of time, there is no fear that condensate containing water and other components will accumulate in the condensation tower 6, and no operational trouble will occur. Further, as in the method of the present invention, returning the condensate to the quench cooler 2 or the fractionating column 3 is extremely beneficial in the following respects.

すなわち、一般に分留塔3における*1塔底液、つまり
分解重質油を主とする分解副生成物は、粘度が非常に高
く、そのままでは熱交換器等の各機器を閉塞させるおそ
れがあるため、何らかの液体で稀釈して粘度を低下させ
ることが必要である。しかし本発明の方法によれば、凝
縮液を分留塔3等へ戻すため、この凝縮液が分解副生成
物の粘度低下に大きく貢献し、従来必要とした稀釈液(
灯、軽油留分など)を省略あるいは節約することができ
る。以上の如く、本発明の方法によれば、簡単な操作に
てまた経済的な運転コストにて長期間にわたる安定した
連続運転を行なうことができる。
That is, in general, the *1 bottom liquid in the fractionating column 3, that is, the cracked byproducts mainly composed of cracked heavy oil, has a very high viscosity, and if left as it is, there is a risk of clogging various equipment such as the heat exchanger. Therefore, it is necessary to reduce the viscosity by diluting it with some kind of liquid. However, according to the method of the present invention, since the condensate is returned to the fractionating column 3, etc., this condensate greatly contributes to reducing the viscosity of the decomposition byproducts, and the diluent (
lights, diesel distillate, etc.) can be omitted or saved. As described above, according to the method of the present invention, stable continuous operation can be performed over a long period of time with simple operation and economical operating costs.

次に、本発明の方法の効果を、実施例および比較例に基
いて具体的に説明する。比較例 第1図に示す装置(但し、凝縮液の循環ラインとしては
実線Aのラインではなく破線Bのライン使用)にて、重
油の熱分解を行なつた。
Next, the effects of the method of the present invention will be specifically explained based on Examples and Comparative Examples. Comparative Example Heavy oil was thermally decomposed using the apparatus shown in FIG. 1 (however, the line indicated by the broken line B was used instead of the line indicated by the solid line A as the condensate circulation line).

各種条件および結果を第1表に示す。この結果から次の
ことがわかる。(1)凝縮塔の塔底の凝縮液には蓄積さ
れた水が10WL%以上も存在している。
Various conditions and results are shown in Table 1. The following can be seen from this result. (1) The condensate at the bottom of the condensation tower contains 10 WL% or more of accumulated water.

またこの凝縮液の比重は凝縮塔の温度を0.998とな
り、水の比重0.978と非常に近接している。(2)
エジェクター排水中には30wt%程度の油が存在する
が、その油の性状は凝縮塔底部の凝縮液の性状とほとん
ど同じであり、この凝縮液が少なからずエジェクター排
水中に飛出していたことがわかる。
Further, the specific gravity of this condensate is 0.998, which is very close to the specific gravity of water, which is 0.978. (2)
Approximately 30 wt% of oil is present in the ejector drainage water, but the properties of this oil are almost the same as those of the condensate at the bottom of the condensation tower, indicating that a considerable amount of this condensate had leaked out into the ejector drainage water. Recognize.

実施例 第1図に示す装置(但し、凝縮液の循環ラインとしては
実線Aのライン使用)にて、重油の熱分解を行なつた。
EXAMPLE Heavy oil was thermally decomposed using the apparatus shown in FIG. 1 (where the solid line A was used as the condensate circulation line).

各種条件および結果を第2表に示す。この結果から次の
ことがわかる。なお実施例と前記比較例との操作上の大
きな相違点は、凝縮塔6の温度が実施例の方が低いこと
および当該凝縮塔6の塔底の凝縮液の循環ラインが異な
ることの二点である。(1)エジェクター排水に含まれ
る油量が極端に減少している。
Various conditions and results are shown in Table 2. The following can be seen from this result. The two major operational differences between the example and the comparative example are that the temperature of the condensation tower 6 is lower in the example and that the circulation line for the condensate at the bottom of the condensation tower 6 is different. It is. (1) The amount of oil contained in the ejector waste water is extremely reduced.

このことは凝縮塔の塔頂からエジ,エクター排水系に飛
出すナフタレン量が無視できるほど少なくなつたことを
示す。(2)凝縮塔底部の凝縮液の比重が大きくかつ初
留点が高くなつて、水/油が小さくなつている。
This indicates that the amount of naphthalene leaking from the top of the condensation tower to the Eddy and Ector drainage systems has become negligible. (2) The specific gravity of the condensate at the bottom of the condensation tower is large and the initial boiling point is high, resulting in a small water/oil ratio.

このことは、凝縮塔で水、軽質油が蓄積しなくなつたこ
とを示している。(3)分留塔3の下部へ供給する稀釈
油量をゼロとしても、分留塔の塔底油の粘度は上昇せす
、かえつて減少している。
This indicates that water and light oil no longer accumulate in the condensation tower. (3) Even if the amount of diluent oil supplied to the lower part of the fractionating column 3 is zero, the viscosity of the bottom oil of the fractionating column does not increase, but rather decreases.

このことは、凝縮塔から分留塔へ循環する凝縮液が、分
留塔の塔底油の粘度低下に有効に作用することを示して
いる。示す概略図である。1・・・・・・分解反応塔、
2・・・・・・急冷器、3・・・・・・分留塔、4・・
・・・・加熱炉、5・・・・・・減圧分離塔、6・・・
・・・凝縮塔、7・・・・・・エジェクター、A・・・
・・・実施例で用いる循環ライン、B・・・・・・比較
例で用いる循環ライン。
This indicates that the condensate circulated from the condensation tower to the fractionation tower effectively reduces the viscosity of the bottom oil of the fractionation tower. FIG. 1... decomposition reaction tower,
2... Rapid cooler, 3... Fractionating column, 4...
... Heating furnace, 5 ... Vacuum separation tower, 6 ...
... Condensation tower, 7... Ejector, A...
...Circulation line used in Examples, B...Circulation line used in Comparative Examples.

Claims (1)

【特許請求の範囲】[Claims] 1 重質油をスチームの存在下に熱分解して得られる熱
分解生成物を、急冷器を通した後に、分留塔に導入し、
該分留塔において塔頂から分解ガスおよび分解ガソリン
を主とする分解主生成物を、塔底から分解重質油を主と
する分解副生成物をそれぞれ分離し、次いで分離した分
解副生成物を減圧分離塔に導入して各留分に分けると共
に、該減圧分離塔の塔頂から排出される排ガスを凝縮塔
に導いて凝縮させ、得られた凝縮液を前記急冷器および
/または分留塔へ戻すことを特徴とする重質油の熱分解
方法。
1. The thermal decomposition product obtained by thermally decomposing heavy oil in the presence of steam is passed through a quencher and then introduced into a fractionating column,
In the fractionation column, cracked main products, mainly cracked gas and cracked gasoline, are separated from the top of the column, and cracked byproducts, mainly cracked heavy oil, are separated from the bottom of the column, and then the separated cracked byproducts are separated. is introduced into the vacuum separation tower and separated into each fraction, and the exhaust gas discharged from the top of the vacuum separation tower is led to the condensation tower and condensed, and the resulting condensate is passed through the quencher and/or the fractionator. A method for thermally decomposing heavy oil, which is characterized by returning it to a column.
JP15804781A 1981-10-06 1981-10-06 Heavy oil pyrolysis method Expired JPS6046153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15804781A JPS6046153B2 (en) 1981-10-06 1981-10-06 Heavy oil pyrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15804781A JPS6046153B2 (en) 1981-10-06 1981-10-06 Heavy oil pyrolysis method

Publications (2)

Publication Number Publication Date
JPS5859286A JPS5859286A (en) 1983-04-08
JPS6046153B2 true JPS6046153B2 (en) 1985-10-14

Family

ID=15663125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15804781A Expired JPS6046153B2 (en) 1981-10-06 1981-10-06 Heavy oil pyrolysis method

Country Status (1)

Country Link
JP (1) JPS6046153B2 (en)

Also Published As

Publication number Publication date
JPS5859286A (en) 1983-04-08

Similar Documents

Publication Publication Date Title
EP1114126B1 (en) Integration of solvent deasphalting and gasification
JP4267722B2 (en) Quench oil viscosity control method
JPH0118119B2 (en)
GB1586877A (en) Distillation method and apparatus
CA2102718C (en) Process for the further processing of the vacuum residue in a crude oil refinery
US4670133A (en) Heavy oil coking process
KR101410502B1 (en) a method and system for purify in waste oil and waste plastic
CS259521B2 (en) Method of used oil regeneration
US2748063A (en) Distillation of coal tar
US1847597A (en) Treatment of crude pyroligneous acid
JPS6046153B2 (en) Heavy oil pyrolysis method
KR101493966B1 (en) a method and system for purify in waste oil
CN85106304A (en) Viscosity breaking method
US5223152A (en) Recovered oil dewatering process and apparatus with water vaporizing in blowdown drum
US2299283A (en) Treatment of enriched benzol wash oil or the like
US2101641A (en) Method of producing coke
US2913374A (en) Debenzolizing and purifying wash oil with steam
US2922751A (en) Debenzolizing wash oil
US4737264A (en) Heavy oil distillation system
US2054777A (en) Treatment of hydrocarbon oil
CA1314258C (en) Process for the extraction of low-temperature carbonization oil
JPS6249917B2 (en)
US2748061A (en) Thermal treatment and separation process
RU2796004C1 (en) Installation for atmospheric oil distillation
US1839087A (en) Process of desulphurizing hydrocarbons