JPS6046149B2 - Fluorescent material for slow electron beam - Google Patents

Fluorescent material for slow electron beam

Info

Publication number
JPS6046149B2
JPS6046149B2 JP57038549A JP3854982A JPS6046149B2 JP S6046149 B2 JPS6046149 B2 JP S6046149B2 JP 57038549 A JP57038549 A JP 57038549A JP 3854982 A JP3854982 A JP 3854982A JP S6046149 B2 JPS6046149 B2 JP S6046149B2
Authority
JP
Japan
Prior art keywords
phosphor
composition
zns
median value
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57038549A
Other languages
Japanese (ja)
Other versions
JPS58157888A (en
Inventor
兼雄 上原
明彦 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57038549A priority Critical patent/JPS6046149B2/en
Publication of JPS58157888A publication Critical patent/JPS58157888A/en
Publication of JPS6046149B2 publication Critical patent/JPS6046149B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

【発明の詳細な説明】 本発明は青色の発光を呈する低速電子線用螢光体に関
し、さらに詳しくは特定の粒子径分布を有する導電性金
属酸化物(In。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a phosphor for low-speed electron beams that emits blue light, and more specifically to a conductive metal oxide (In) having a specific particle size distribution.

O。、SnO。、ZnO)のうち少くとも1つと、特定
の青色螢光体のうち少くとも1つとを適当量混合してな
る低速電子線用螢光体に関するものである。 従来、低
速電子線励起によつて高輝度の青色発光を示す発光組成
物としては、酸化インジウム(In。
O. , SnO. , ZnO) and at least one specific blue phosphor in appropriate amounts. Conventionally, indium oxide (In.

O0)と、銀付活硫化亜鉛螢光体(ZnS:Ag)とを
1:9〜9:1の重量比で混合してなる発光組成物(特
公昭52−23911号公報参照)、および酸化亜鉛(
ZnO)とZnS:Agとを1:9〜9:1の重量比て
混合してなる発光組成物(特公昭53一257m号公報
および特定の粒子径分布を有するIn。O。あるいはS
nO。、ZnOI■、ZnS1Agとを1/99〜1/
4の重量比で混してなる発光組成物(特開昭55−23
106号公報参照)が知られている。これらの発光組成
物は加速電圧IKV以下、特に100V以下の低速電子
線励起下て青色発光を示すが、実用的な面からさらに発
光輝度の向上が望まれている。 本発明は加速電圧がI
KV以下、特に100V以下の低速電子線励起下におい
て、発光輝度を向上させる青色発光組成物を提供するこ
とを目的とするものてあり、以下、本発明の一実施例を
図面によつて説明する。
O0) and a silver-activated zinc sulfide phosphor (ZnS:Ag) in a weight ratio of 1:9 to 9:1 (see Japanese Patent Publication No. 52-23911), and an oxidized zinc(
A luminescent composition prepared by mixing ZnO) and ZnS:Ag at a weight ratio of 1:9 to 9:1 (Japanese Patent Publication No. 53-257M and In.O. or S having a specific particle size distribution)
nO. , ZnOI■, ZnS1Ag from 1/99 to 1/
Luminescent composition (Japanese Unexamined Patent Application Publication No. 1986-23)
106) is known. These light-emitting compositions emit blue light under slow electron beam excitation at an accelerating voltage of IKV or less, particularly 100V or less, but from a practical standpoint, further improvement in luminance is desired. In the present invention, the accelerating voltage is I
The object of the present invention is to provide a blue light-emitting composition that improves luminescence brightness under slow electron beam excitation of KV or less, particularly 100V or less.Hereinafter, one embodiment of the present invention will be explained with reference to the drawings. .

本発明者等は螢光体と導電性金属酸化物とを混合して
なる青色発光組成物の発光輝度を何上させるためには導
電性金属酸化物の粒子径ができるだけ小さい方が好まし
いとの視点から、従来知られている特定の粒子径分布を
もつ導電性金属酸化物と青色発光螢光体とを混合した青
色発光組成物(特願昭55−23106号公報参照)に
注目し、種々の研究を行つた。
The present inventors believe that in order to increase the luminance of a blue light-emitting composition formed by mixing a phosphor and a conductive metal oxide, it is preferable that the particle size of the conductive metal oxide be as small as possible. From this point of view, we focused on the conventionally known blue-emitting composition (see Japanese Patent Application No. 55-23106), which is a mixture of a conductive metal oxide with a specific particle size distribution and a blue-emitting phosphor, and various conducted research on

この結果導電性金属酸化物の粒子径のみならず質の向上
を計りより低い低速電子線励起でも発光効率の高い材料
を作る必要性のあることを見い出した。 従来の導電性
金属酸化物を得る方法は一般試薬をそのまま用いる方法
や、一般試薬あるいは市販の金属イオンを含んだ炭酸塩
、硫酸塩、蓚酸塩、水酸化物等を空気中で焼成して得る
方法である。
As a result, we found that it is necessary to improve not only the particle size but also the quality of conductive metal oxide particles to create a material that has high luminous efficiency even under low-speed electron beam excitation. Conventional methods for obtaining conductive metal oxides include using general reagents as they are, or by calcining general reagents or commercially available carbonates, sulfates, oxalates, hydroxides, etc. containing metal ions in air. It's a method.

これらの方法では一般試薬に含まれる不純物および市販
の金属イオンを含む炭酸塩、硫酸塩、蓚酸塩、水酸化物
等ではこれら化合物を生成する過程に混入する不純物等
によつて導電性金属酸化物の純度が低下し、純度を高め
ることは出来なかつた。本発明者等は、一般試薬を硝酸
あるいは塩酸等により溶解し、蓚酸あるいはアンモニア
水等により蓚酸化合物あるいは水酸化合物を作成し水洗
、乾燥した後この化合物を空気中で焼成し、〔これらを
全てクリーンルームで処理すると共に専用電気炉の試作
等により〕高純度な導電性金属酸化物を得た。
In these methods, impurities contained in general reagents and commercially available carbonates, sulfates, oxalates, hydroxides, etc. containing metal ions are mixed into the process of producing these compounds, resulting in conductive metal oxides. The purity of the product decreased and it was not possible to increase the purity. The present inventors dissolved a general reagent in nitric acid or hydrochloric acid, etc., prepared an oxalic acid compound or hydroxyl compound with oxalic acid or aqueous ammonia, washed with water, dried, and then calcined this compound in air. Highly pure conductive metal oxides were obtained by processing in a clean room and prototyping a special electric furnace.

即ち、高純度てしかも特定の粒子径分布を有するIrl
2O3あるいはZnOを適当量用いた場合には、発光輝
度の向上した発光組成物が得られることを見出し、さら
にこのような効果はIn2O3、ZnOに限らず、これ
らの代りに酸化錫(SnO2)酸化チタン(TiO2)
、酸化タングステン(WO3)、酸化ニオブ(Nb,O
3)等の高純度な導電性金属酸化物を用いた場合につい
ても得られ、また組成物のもう一方の構成成分である青
色発光螢光体についても、硫化亜鉛螢光体(ZnS:A
g)に限らず、銀およびアルミニウム付活硫化亜鉛螢光
体(ZnS:Ag,.Al)、銀付活硫セレン化亜鉛螢
光体〔Zn(SlSe):Ag〕、銀およびアルミニウ
ム付活硫セレン化亜鉛螢光体〔Zn(S..Se):A
glN〕について上記と同様の効果が得られることを見
い出したものであり、本発明はその研究結果に基いてな
されたものである。本発明の発光組成物の構成成分であ
る導電性物質に用いられる導電性金属酸化物としては、
In2O3、ZnO..snO2、TlO2、WO3、
NY)205等が挙げられる。
That is, Irl having high purity and a specific particle size distribution.
It has been discovered that when a suitable amount of 2O3 or ZnO is used, a luminescent composition with improved luminance can be obtained, and furthermore, this effect is not limited to In2O3 and ZnO, but also when tin oxide (SnO2) oxide is used instead of these. Titanium (TiO2)
, tungsten oxide (WO3), niobium oxide (Nb,O
Zinc sulfide phosphor (ZnS:A
g), silver- and aluminum-activated zinc sulfide phosphor (ZnS:Ag,.Al), silver-activated zinc sulfide selenide phosphor [Zn(SlSe):Ag], silver- and aluminum-activated sulfur Zinc selenide phosphor [Zn(S..Se):A
glN], it was discovered that the same effect as above can be obtained, and the present invention was made based on the results of this research. The conductive metal oxide used in the conductive substance that is a component of the luminescent composition of the present invention includes:
In2O3, ZnO. .. snO2, TlO2, WO3,
NY) 205 and the like.

特に得られる組成物の発光輝度の点からIrl2O3、
SnO2、およびZnOがより好ましい。なお、In2
O3とSnO2とを比較すると、青色発光螢光体が同一
である場合、一般に加速電圧が60V以下の場合はIn
2O3を用いた組成物の方がSnO2を用いた組成物よ
りも発光輝度が高く、加速電圧が60Vよりも高い楊合
にはその逆となる。これら導電性金属酸化物は中央値が
0.1〜2.4μ、標準偏差値(以下標準偏差はすべて
10gσをいう)が0.7以下の粒子径分布を有するも
のが用いられる。
In particular, Irl2O3, from the viewpoint of luminescence brightness of the resulting composition,
SnO2 and ZnO are more preferred. In addition, In2
Comparing O3 and SnO2, if the blue emitting phosphor is the same, generally if the acceleration voltage is 60V or less, In
The composition using 2O3 has higher luminance than the composition using SnO2, and the opposite is true when the acceleration voltage is higher than 60V. These conductive metal oxides used have a particle size distribution with a median value of 0.1 to 2.4 μ and a standard deviation value (hereinafter all standard deviations refer to 10 gσ) of 0.7 or less.

央央値が上記範囲外であり、標準偏差値が0.7より大
きい粒度分布を有するものは得られる組成物の発光輝度
が低く使用に適さない。より好ましい中央値範囲は導電
性物質と混合される青色発光螢光体の種類等によつて異
るが、一般には0.4〜0.9μである。また標準偏差
値は中央値が一定である場合に、できるだけ小さい方が
好ましく、一般には0.5以下であるのが好ましい。上
記のような粒子径分布を有する導電性金属酸化物は一般
試薬を硝酸あるいは塩酸等で溶解し、蓚酸あるいはアン
モニア水等で蓚酸化合物、水酸″化合物を作成し水洗乾
燥した後空気中で焼成して金属酸化物を得る。又はこれ
を分級することによつて得る。本発明のような方法によ
つて得た金属酸化物は従来からの金属酸化物に比較して
本発明の方法によつて得た金属酸化物の方が非常に高純
度でありかつ粒子径の揃つた金属酸化物が得られるから
であり、従つて本発明の方法により得られる金属酸化物
を用いた方が従来から知られている方法て作成した金属
酸化物を用いた場合より発光効率の高くしかも安定性の
よい発光組成物を得ることができる。一方本発明の発光
組成物のもう1つの構成成分である青色発光成分螢光体
に用いられるZnS:Ag螢光体、ZnS:Ag,.A
l螢光体、Zn(SlSe):Ag螢光体、Zn(S.
.Se):Ag.Al螢光体は従来知られている製造方
法によつて、製造されたものである。
Particle size distributions in which the median value is outside the above range and the standard deviation value is greater than 0.7 are unsuitable for use due to the low luminance of the resulting composition. A more preferable median value range varies depending on the type of blue-emitting phosphor mixed with the conductive material, but is generally 0.4 to 0.9 μ. Further, when the median value is constant, the standard deviation value is preferably as small as possible, and is generally preferably 0.5 or less. Conductive metal oxides with the above particle size distribution are prepared by dissolving general reagents in nitric acid or hydrochloric acid, etc., creating oxalic acid compounds and hydroxyl compounds with oxalic acid or aqueous ammonia, washing with water, drying, and then calcining in air. The metal oxide obtained by the method of the present invention is obtained by the method of the present invention compared to the conventional metal oxide. This is because the metal oxide obtained by the method of the present invention is of much higher purity and has a uniform particle size. It is possible to obtain a luminescent composition with higher luminous efficiency and better stability than when using a metal oxide prepared by a known method.On the other hand, the blue color, which is another component of the luminescent composition of the present invention, can be obtained. ZnS:Ag phosphor used for luminescent component phosphor, ZnS:Ag,.A
l phosphor, Zn(SlSe):Ag phosphor, Zn(SlSe)
.. Se): Ag. The Al phosphor was manufactured by a conventionally known manufacturing method.

これら螢光体は一般に中央値が1μ〜20μ、標準偏差
値が0.7以下の粒子径分布を有している。本発明にお
いて特に好ましいのは中央値が3μ〜10μのものであ
る。これらの螢光体の中で特に得られる組成物の発光輝
度の点からZnS:Ag螢光体、ZnS:Ag..Al
螢光体を用いるのが好ましい。本発明の発光組成物は上
述の導電性物質と青色発光螢光体とを乳鉢、ボールミル
、ミキサーミル等によつて得ることができる。
These phosphors generally have a particle size distribution with a median of 1 to 20 microns and a standard deviation of 0.7 or less. Particularly preferred in the present invention are those with a median value of 3μ to 10μ. Among these phosphors, ZnS:Ag phosphor, ZnS:Ag. .. Al
Preferably, a phosphor is used. The luminescent composition of the present invention can be obtained by combining the above-mentioned conductive substance and blue luminescent phosphor in a mortar, ball mill, mixer mill, or the like.

両者は導電性物質/青色発光螢光体の値が1/14〜1
4/1となる重量比で混合される導電物質の値が1/1
4より小さいとき、導電物質によるチャージアップ防止
効果は得られず、従つて組成物はその特性が青色発光螢
光体に近いものとなり、低速電子線励起下で発光しなく
なる。一方導電性物質/青色発光螢光体の値が14/1
より大きいとき、得られる組成物は発光は非常に弱いそ
のとなる。これはチャージアップ防止効果は充分である
が、導電物質によつて螢光体からの発光が遮われるため
であると考えられる。本発明で得られる発光組成物を例
えば第1図に示すような低速電子線励起装置1内にセッ
トして、カソード2からの熱電子3をグリッド4を通し
て発光面5に照射することにより低速電子線で十分明る
い発光をさせることができる。
For both, the value of conductive material/blue emitting phosphor is 1/14 to 1
The value of the conductive material mixed at a weight ratio of 4/1 is 1/1.
When it is less than 4, the effect of preventing charge-up by the conductive material cannot be obtained, and therefore the composition has properties close to those of a blue-emitting phosphor and does not emit light under excitation with a slow electron beam. On the other hand, the value of conductive material/blue emitting phosphor is 14/1
When it is larger, the resulting composition will have very weak luminescence. This is considered to be because, although the charge-up prevention effect is sufficient, the light emission from the phosphor is blocked by the conductive material. The luminescent composition obtained according to the present invention is set in a low-speed electron beam excitation device 1 as shown in FIG. A line can produce sufficiently bright light.

第2図はIn2O3とZnS:Ag螢光体とを混合して
発光組成物におけるIn2O3含有量(重量%)と組成
物の発光輝度との関係を示すグラフであり、曲線A,b
およびcはそれぞれ標準偏差値はいずれも0.4である
が中央値がそれぞれ0.3μ、0.6μ、1.5μであ
るIrl2O3を用いた場合である。
FIG. 2 is a graph showing the relationship between the In2O3 content (wt%) in a luminescent composition prepared by mixing In2O3 and a ZnS:Ag phosphor and the luminescence brightness of the composition.
and c are the cases using Irl2O3 whose standard deviation values are 0.4, but whose median values are 0.3μ, 0.6μ, and 1.5μ, respectively.

なお第2図において、発光輝度(縦軸)は曲線での最大
発光輝度を100%とした相対値で表わしてある。第2
図から明らかなように、In2O3の中央値が小さくな
ればなるほど、最大発光輝度を得るのに必要なIrl2
O3含有量は小さくなる。すなわち、中央値が小さいI
n2O3を用いれば、中央値がより大きいIn2O3を
用いた場合よりも少いIn2O3含有量で高輝度の発光
を得ることができる。また第2図から明らかなように各
中央値における最大発光輝度を比較した場合、In2O
3の中央値が0.6μで最大発光輝度は最も高くなる。
第3図は、第2図と同じくIn2O3とZnS:Ag螢
光体とを混合した発光組成物において、標準偏差を一定
(10gσ=0.4)とした場合のIn2O3の中央値
と組成物の最大発光輝度との関係を示すグラフてある。
In FIG. 2, the luminance (vertical axis) is expressed as a relative value with the maximum luminance on the curve as 100%. Second
As is clear from the figure, the smaller the median value of In2O3, the more Irl2 required to obtain the maximum luminance.
O3 content becomes smaller. That is, I
If n2O3 is used, high-brightness light emission can be obtained with a lower In2O3 content than when In2O3, which has a larger median value, is used. Furthermore, as is clear from Figure 2, when comparing the maximum luminance at each median value, In2O
When the median value of 3 is 0.6μ, the maximum luminance is the highest.
Figure 3 shows the median value of In2O3 and the composition when the standard deviation is constant (10gσ = 0.4) in a luminescent composition in which In2O3 and ZnS:Ag phosphor are mixed as in Figure 2. There is a graph showing the relationship with maximum luminance.

第3図において最大発光輝度(縦軸)は、中央値が1.
5μであるIn2O3を用いた組成物の,最大発光輝度
を100%とした相対値で表わしてある。第3図から明
らかなように、央央値がおよそ0.5μまでは中央値が
小さくなればなるほど、最大発光輝度は向上し、およそ
0.5〜0.6μて極大となるが、中央値をさらに小さ
くすると、最大輝度は逆に低下しはじめる傾向にある。
In FIG. 3, the maximum luminance (vertical axis) has a median value of 1.
It is expressed as a relative value with the maximum luminance of a composition using In2O3 having a particle diameter of 5μ as 100%. As is clear from Figure 3, the smaller the median value is until the median value is approximately 0.5μ, the higher the maximum luminance is, and the maximum luminance is reached at approximately 0.5 to 0.6μ. If the value is further reduced, the maximum brightness tends to start to decrease.

従来の方法により作成されたIrl2O3は通常20μ
〜30μの中央値を有しかつ純度が悪いこのIn2O3
を用いた発光組成物の発光輝度を基準として考えれば本
発明による方法により作成した金属酸化物の中央値が0
.1〜2.4μの1f03を選択的に用いた場合に発光
輝度の向上した発光組成物を得ることができることがわ
かる。特に中央値が0.4〜0.9μのIn2O3を用
いた場合、発光輝度は著るしく向上した組成物を得るこ
とができる。なお標準偏差値もまた組成物の発光輝度に
影響を及ぼす。
Irl2O3 prepared by conventional methods is usually 20μ
This In2O3 has a median value of ~30μ and poor purity.
Considering the luminance of the luminescent composition using the luminescent composition as a standard, the median value of the metal oxide produced by the method of the present invention is 0.
.. It can be seen that when 1f03 of 1 to 2.4 μm is selectively used, a luminescent composition with improved luminance can be obtained. In particular, when In2O3 having a median value of 0.4 to 0.9μ is used, a composition with significantly improved luminance can be obtained. Note that the standard deviation value also affects the luminance of the composition.

すなわち、上記0.1〜2.4pの中央値範囲において
は標準偏差値が大きくなるに従つて、発光輝度は低下す
る傾向にある。これは標準偏差値が大きくなればなる程
発光輝度への寄与率の低い大きな粒子および小さな粒子
をより多く含むようになるためである。この点から標準
偏差値は0.7以下と定められる。より好ましくは0.
5以下である。なお第2図、第3図はIn2O3とZn
S:Ag螢光体とを混合した発光組成物についてのグラ
フであるが、In2O3の代りに他の導電粉を用いた楊
合、あ門るいはZnS:Ag螢光体の代りに他の青色螢
光体を用いた場合も第2図、第3図と同じ傾向が得られ
た。
That is, in the median range of 0.1 to 2.4p, the luminance tends to decrease as the standard deviation value increases. This is because the larger the standard deviation value is, the more large particles and small particles that have a low contribution to luminance are included. From this point, the standard deviation value is determined to be 0.7 or less. More preferably 0.
5 or less. Note that Figures 2 and 3 show In2O3 and Zn.
This is a graph of luminescent compositions mixed with S:Ag phosphor, but when other conductive powders are used instead of In2O3, Amon Rui or ZnS:Ag phosphor is used instead of other blue light emitting compositions. The same tendency as in FIGS. 2 and 3 was obtained when a fluorescent substance was used.

本発明の発光組成物において、導電性金属酸化物の中央
値が0.1μ〜2.4μ、標準偏差値が0.7以下の粒
子径分布を有するものと限定し、また導・電性物質と青
色螢光体との混合重量比を14/1〜1/14と限定し
たのは上述の知見に基いている。以上述べたように本発
明は加速電圧が1K■以下特に100■以下の低速電子
線励起下における発光輝度の向上した青色発光組成物を
提供するものてあり、その工業的利用価値は大きい。次
に本発明の具体的実施例を説明する。
In the luminescent composition of the present invention, the conductive metal oxide is limited to having a particle size distribution with a median value of 0.1 μ to 2.4 μ and a standard deviation value of 0.7 or less, and the conductive metal oxide It is based on the above-mentioned knowledge that the mixing weight ratio of blue phosphor and blue phosphor is limited to 14/1 to 1/14. As described above, the present invention provides a blue light-emitting composition with improved luminance under slow electron beam excitation at an accelerating voltage of 1K or less, particularly 100 or less, and has great industrial utility value. Next, specific examples of the present invention will be described.

実施例1 1Rl2O3試薬を溶解し、アンモニア水を加えて、水
酸化物を沈澱させ、水洗し?過乾燥した後、1200′
Cで1時間空気中で焼成した後、粉砕し、その後分級し
中央値が1.5μ、標準偏差値が0.4の粒子径分布を
有するIn2O36gと通常の製造方法で製造した中央
値が6μ、標準偏差値が0.35の粒子径分布を有する
ZnS:Ag螢光体4fとを乳鉢を用い充分混合した後
、混合物から30mgをとり第1図に示す装置内に装着
した。
Example 1 Dissolve 1Rl2O3 reagent, add ammonia water to precipitate hydroxide, and wash with water. After over-drying, 1200'
After firing in air at C for 1 hour, pulverizing, and then classifying, 36g of In2O had a particle size distribution with a median of 1.5μ and a standard deviation of 0.4, and 36g of In2O with a median of 6μ produced by a normal manufacturing method. , and a ZnS:Ag phosphor 4f having a particle size distribution with a standard deviation value of 0.35 were thoroughly mixed using a mortar, and then 30 mg of the mixture was taken and placed in the apparatus shown in FIG.

装着は真空室1内に設置されている絶縁基板7上の陽極
6の上にその組成物5を設けることにより行つた。この
装置の内部を1×10−9T0rr以下に排気した後、
酸化物コートフィラメント2を活性化し、フィラメント
電流0.09rr1,Aで熱電子3を発生させ、グリッ
ド4と陽極6の間にO〜150■の電圧を印加したとこ
ろ15V付近から青色発光がみられ、30Vで70F′
T.Lの輝度が得られた。実施例2 実施例1と同様にして作成したIn2O3を分級し、中
央値が0.6μ、標準偏差0.4の粒子径分布を有すI
n2O33Vと、実施例1と同じZnS:Ag螢光体7
yとを乳鉢を用い混合した。
The mounting was carried out by providing the composition 5 on the anode 6 on the insulating substrate 7 placed in the vacuum chamber 1. After evacuating the inside of this device to below 1×10-9T0rr,
When the oxide-coated filament 2 was activated and thermionic electrons 3 were generated with a filament current of 0.09rr1.A, and a voltage of O~150cm was applied between the grid 4 and the anode 6, blue light emission was observed from around 15V. , 70F' at 30V
T. A brightness of L was obtained. Example 2 In2O3 prepared in the same manner as in Example 1 was classified to obtain I having a particle size distribution with a median value of 0.6μ and a standard deviation of 0.4.
n2O33V and the same ZnS:Ag phosphor 7 as in Example 1
y were mixed using a mortar.

得られる組成物を用い実施例1と同様にして低速電子線
で励起したところ、15V付近から青色発光がみられ、
30Vで120F′T.Lの輝度が得られた。実施例3 実施例1と同様にして作成したSnO2を分級し、中央
値が0.5μ標準偏差0.4の粒子径分布を有するSn
O23yと実施例1と同じZnS:Ag螢光体7yとを
乳鉢を用い混合した。
When the obtained composition was excited with a slow electron beam in the same manner as in Example 1, blue light emission was observed from around 15V.
120F'T. at 30V. A brightness of L was obtained. Example 3 SnO2 produced in the same manner as in Example 1 was classified to obtain Sn having a particle size distribution with a median of 0.5μ and a standard deviation of 0.4.
O23y and the same ZnS:Ag phosphor 7y as in Example 1 were mixed using a mortar.

得られる組成分を用い実施例1と同様にして低速電子線
で励起したところ18V付近から青色発光がみられ30
Vで90Ft.Lの輝度が得られた。したがつて、本発
明によれば、低速電子線励起下における青色発光組成物
の発光輝度を向上できる効果を有するものである。
When the obtained composition was excited with a slow electron beam in the same manner as in Example 1, blue light emission was observed from around 18V.
90Ft. A brightness of L was obtained. Therefore, the present invention has the effect of improving the luminance of the blue light-emitting composition under low-speed electron beam excitation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は低速電子線励起用デマウンタブル装置を示す断
面図、第2図はIn2O3と、ZnS:Agとの混合重
量比に対する発光強度を示す図、第3図は・In2O3
とZnS:Ag螢光体とを混合した発光組成物において
標準偏差を一定とした場合のIn2O3の中央値と組成
物の最大発光輝度との関係を示すグラフである。
Figure 1 is a cross-sectional view showing a demountable device for excitation with low-speed electron beams, Figure 2 is a diagram showing the luminescence intensity with respect to the mixing weight ratio of In2O3 and ZnS:Ag, and Figure 3 is a diagram showing ・In2O3.
2 is a graph showing the relationship between the median value of In2O3 and the maximum luminance of the composition when the standard deviation is kept constant in a luminescent composition in which ZnS:Ag and ZnS:Ag phosphor are mixed.

Claims (1)

【特許請求の範囲】 1 中央値が0.1μ〜2.4μ、標準偏差(logθ
)が0.7以下である粒子径分布を有する導電性金属酸
化物(In_2O_3、SnO_2、ZnO)のうち少
くとも一つと、青色発光螢光体である銀付活硫化亜鉛螢
光体(ZnS:Ag)、銀およびアルミニウム付活螢光
体(ZnS:Ag、Al)、銀付活硫セレン化亜鉛螢光
体〔Zn(S、Se):Ag〕、銀およびアルミニウム
付活硫セレン化亜鉛螢光体〔Zn(S、Se):Ag)
Al〕のうち少くとも1つとを14:1〜1:14の重
量比で混合してなる低速電子線用螢光体。 2 前記青色発光螢光体の中央値が3μ〜10μである
ことを特徴とする特許請求の範囲第1項記載の低速電子
線用螢光体。
[Claims] 1. The median value is 0.1 μ to 2.4 μ, the standard deviation (log θ
) at least one of conductive metal oxides (In_2O_3, SnO_2, ZnO) having a particle size distribution of 0.7 or less, and a silver-activated zinc sulfide phosphor (ZnS: Ag), silver and aluminum activated phosphor (ZnS:Ag,Al), silver activated zinc sulfur selenide phosphor [Zn(S,Se):Ag], silver and aluminum activated zinc sulfate selenide phosphor Light body [Zn (S, Se):Ag)
A phosphor for low-speed electron beams, which is formed by mixing at least one of Al] with a weight ratio of 14:1 to 1:14. 2. The phosphor for low-speed electron beams according to claim 1, wherein the blue-emitting phosphor has a median value of 3 μ to 10 μ.
JP57038549A 1982-03-11 1982-03-11 Fluorescent material for slow electron beam Expired JPS6046149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57038549A JPS6046149B2 (en) 1982-03-11 1982-03-11 Fluorescent material for slow electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57038549A JPS6046149B2 (en) 1982-03-11 1982-03-11 Fluorescent material for slow electron beam

Publications (2)

Publication Number Publication Date
JPS58157888A JPS58157888A (en) 1983-09-20
JPS6046149B2 true JPS6046149B2 (en) 1985-10-14

Family

ID=12528366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57038549A Expired JPS6046149B2 (en) 1982-03-11 1982-03-11 Fluorescent material for slow electron beam

Country Status (1)

Country Link
JP (1) JPS6046149B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523106A (en) * 1978-03-22 1980-02-19 Dainippon Toryo Co Ltd Blue luminescent composition and low speed electron beam-exciting fluorescent display tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523106A (en) * 1978-03-22 1980-02-19 Dainippon Toryo Co Ltd Blue luminescent composition and low speed electron beam-exciting fluorescent display tube

Also Published As

Publication number Publication date
JPS58157888A (en) 1983-09-20

Similar Documents

Publication Publication Date Title
US4275333A (en) Fluorescent compositions and low-velocity electron excited fluorescent display devices utilizing the same
JPH08504871A (en) Luminescent material produced by coating luminescent composition on substrate particles
US4208299A (en) Method of preparing zinc sulfide phosphor coactivated with copper and gold
JPH01104684A (en) Luminous composition
JPH0747732B2 (en) Slow electron beam excited phosphor
JPH0352515B2 (en)
KR100457621B1 (en) Yellow phosphor achieved by ZnS-based host material and process for preparing the same
JPS6046149B2 (en) Fluorescent material for slow electron beam
JPH0352516B2 (en)
JPS6253554B2 (en)
JPS5933153B2 (en) Luminescent composition and slow electron beam excitation fluorescent display tube
DE2660891C2 (en) Use of a mixture of ZnO and ZnS: Ag as luminous material
JP2001303042A (en) Fluorescent substance for rapid starting type fluorescent lamp and rapid starting type fluorescent lamp using the same
JP4207368B2 (en) LIGHT EMITTING MANUFACTURING METHOD, LIGHT EMITTING MATERIAL PRODUCED BY THE MANUFACTURING METHOD, DISPLAY SUBSTRATE HAVING THE LIGHT EMITTING UNIT, AND DISPLAY DEVICE
JPH03234789A (en) Phosphor excited by slow electron beam and fluorescent film
JPS6295376A (en) Luminescent material
JPS6244035B2 (en)
KR820001593B1 (en) Blue fluorescent compositions
JPS5933155B2 (en) Green luminescent composition and slow electron beam excitation fluorescent display tube
JP2519890B2 (en) Method for producing luminescent composition
KR100280993B1 (en) Low voltage phosphor and its manufacturing method
JPS6015485A (en) Green color phosphorescent material
JPS6039310B2 (en) Red luminescent composition and slow electron beam excitation fluorescent display tube
JPS62100578A (en) Luminescent material
JP2007084723A (en) Red light-emitting phosphor for low-velocity electron beam, red light-emitting composition and fluorescent display using the same