JPS6046096B2 - Method for producing cyclohexylbenzene - Google Patents

Method for producing cyclohexylbenzene

Info

Publication number
JPS6046096B2
JPS6046096B2 JP57113299A JP11329982A JPS6046096B2 JP S6046096 B2 JPS6046096 B2 JP S6046096B2 JP 57113299 A JP57113299 A JP 57113299A JP 11329982 A JP11329982 A JP 11329982A JP S6046096 B2 JPS6046096 B2 JP S6046096B2
Authority
JP
Japan
Prior art keywords
benzene
reaction
cyclohexylbenzene
acid
cyclohexane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57113299A
Other languages
Japanese (ja)
Other versions
JPS595130A (en
Inventor
一男 清水
修一 丹羽
富士夫 水上
寿一 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57113299A priority Critical patent/JPS6046096B2/en
Publication of JPS595130A publication Critical patent/JPS595130A/en
Publication of JPS6046096B2 publication Critical patent/JPS6046096B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明はベンゼンを水素化縮合することにより、ジグ
頭ヘキシルベンゼンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing jig-headed hexylbenzene by hydrogenation condensation of benzene.

従来、シクロヘキシルベンゼンの製造方法としては、
第8族金属を固体酸系担体(シリカアルミナまたはH型
ゼオライト)に担持した触媒を用いる方法(J、Cal
alysls、、J3、385(1969)、石油誌川
(1)、25(1976)や特許公開53−10895
2)、また、担持パラジウムと熔触塩(NaC1−AI
CI0)を触媒に用いる方法(Chem、Pharm、
Bull、皿(1)15(1981)が知られている。
Conventionally, the method for producing cyclohexylbenzene is as follows:
A method using a catalyst in which a Group 8 metal is supported on a solid acid support (silica alumina or H-type zeolite) (J, Cal
alysls, J3, 385 (1969), Yukishikawa (1), 25 (1976) and Patent Publication 53-10895
2), and supported palladium and catalytic salt (NaC1-AI
CI0) as a catalyst (Chem, Pharm,
Bull, Plate (1) 15 (1981) is known.

さらに、水素化触媒とヘテロポリ酸を担体に担持した触
媒を用いる方法 (U、S、P、3、153、678)
もある。しかし、これらは触媒活性が低く、ベンゼン転
化率を高めるためには長時間の反応を必要とするとか、
あるいは、生成したシクロヘキシルベンゼンがさらにア
ルキル化されてシンクロヘキシルペンテン等(C、O)
を多量に生成するなど、工業的なシクロヘキシルベンゼ
ンの製造方法としては満足すべき方法とは言えない。
本発明者らはベンゼンの水素化縮合によるシクロヘキシ
ルベンゼンの製造方法の欠点を克服するため、種々検討
を重ねた結果、けいタングステン酸、りんタングステン
酸およびりんモリブデン酸の内から選ばれるヘテロポリ
酸と、ニッケル、パラジウムおよびルテニウムの内から
選ばれた少くとも一種の金属(第8族金属)またはその
化合物を触媒に用いると共に、ゼオライトおよびシリカ
ゲルの内から選ばれる脱水乾燥剤を加えることにより、
きわめて容易に、しかもC、8化合物の生成を抑えて、
高選択率でシクロヘキシルベンゼンをJ製造し得ること
を見い出した。
Furthermore, a method using a catalyst in which a hydrogenation catalyst and a heteropolyacid are supported on a carrier (U, S, P, 3, 153, 678)
There is also. However, these have low catalytic activity and require a long reaction time to increase the benzene conversion rate.
Alternatively, the generated cyclohexylbenzene is further alkylated to form cyclohexylpentene (C, O), etc.
This method cannot be said to be satisfactory as an industrial method for producing cyclohexylbenzene, as it produces a large amount of cyclohexylbenzene.
In order to overcome the drawbacks of the method for producing cyclohexylbenzene by hydrogenation condensation of benzene, the present inventors have made various studies and found that a heteropolyacid selected from silicotungstic acid, phosphotungstic acid, and phosphomolybdic acid, By using at least one metal (Group 8 metal) selected from nickel, palladium, and ruthenium or a compound thereof as a catalyst, and adding a dehydration drying agent selected from zeolite and silica gel,
Extremely easily and suppressing the formation of C,8 compounds,
It has been found that cyclohexylbenzene can be produced with high selectivity.

本発明はこの知見に基づいてなされるに至つたものであ
る。 けいタングステン酸、りんタングステン酸および
りんモリブデン酸の内から選ばれた少くとも一種のヘテ
ロポリ酸と、ニッケル、パラジウムおよびルテニウムの
内から選ばれた少くとも一種の金属またはその化合物か
らなる触媒の存在下に、ベンゼンを水素化縮合するにあ
たり、反応系にゼオライトおよびシリカゲルの内から選
ばれた少くとも一種の脱水乾燥剤を存在させることを特
徴とするシクロヘキシルベンゼンの製造方法を提供する
ものである。
The present invention has been made based on this knowledge. In the presence of a catalyst consisting of at least one heteropolyacid selected from silicotungstic acid, phosphotungstic acid and phosphomolybdic acid and at least one metal selected from nickel, palladium and ruthenium or a compound thereof. Another object of the present invention is to provide a method for producing cyclohexylbenzene, which is characterized in that at least one dehydrating and drying agent selected from zeolite and silica gel is present in the reaction system when hydrogenating and condensing benzene.

本発明方法の触媒系は反応原料と共に触媒各成分を反応
系に加えるだけでよく、特別な調製方法を必要としない
The catalyst system used in the method of the present invention requires only adding each catalyst component to the reaction system together with the reaction raw materials, and does not require any special preparation method.

触媒成分のうち、けいタングステン酸がよい。Among the catalyst components, silicotungstic acid is preferred.

水分を多く含むと触媒活性は低い。過剰の水分を除く方
法としては、例えば、乾燥箱中で110℃で恒量に達す
るまで乾燥するなどの通常の方法が用いられる。過剰の
水分を除いた前記ヘテロポリ酸を用いることが本発明の
大きな特徴の一つである。本反応系において、該ヘテロ
ポリ酸の存在がシクロヘキシルベンゼンの生成に必須で
あることは、比較例2から明らかである。反応系に添加
する際には出来る限り、微細な粒子(200メッシュ以
下)に粉砕して用いることが望ましい。このヘテロポリ
酸の濃度としては0.01〜5n1m01/20gベン
ゼンの範囲が適当であり、0.05〜1mm01/20
gのベンゼンが好ましい。前記第8族金属成分は金属ま
たはギ酸、酢酸等の有機酸塩、炭酸塩、塩化物、硝酸塩
、水酸化物、酸化物等の形で加えることが出来、その他
の化合物でも、反応条件下でそのまま、または還元され
て、水素やベンゼンを活性化させる化合物に.変化する
ものは使用出来る。
If the water content is high, the catalytic activity will be low. Excess moisture can be removed by a conventional method such as drying in a drying box at 110° C. until a constant weight is reached. One of the major features of the present invention is to use the above-mentioned heteropolyacid from which excess water has been removed. It is clear from Comparative Example 2 that the presence of the heteropolyacid is essential for the production of cyclohexylbenzene in this reaction system. When adding it to the reaction system, it is desirable to grind it into as fine particles (200 mesh or less) as possible. The appropriate concentration of this heteropolyacid is in the range of 0.01 to 5n1m01/20g benzene, and 0.05 to 1mm01/20g.
g of benzene is preferred. The Group 8 metal components can be added in the form of metals or organic acid salts such as formic acid and acetic acid, carbonates, chlorides, nitrates, hydroxides, oxides, etc., and other compounds can also be added under the reaction conditions. A compound that activates hydrogen and benzene either as it is or when reduced. Anything that changes can be used.

金属として用いる場合、これらの化合物を環元し、金属
粉末として用いるか、適当な担体に担持して用いてもよ
い。さらに、これら金属の活性を制御するために、他の
金属と共に担持した形で用いてもよい。反応系中.の前
記第8族金属塩の濃度は、0.01〜5n1m01/2
0gベンゼンの範囲が適当であり、好ましくは、0.0
5〜1mm01/20gベンゼンである。本発明の方法
を実施する場合、反応系に、ゼオライトおよびシリカゲ
ルの内から選ばれた少くとも一種の脱・水・乾燥剤を添
加する。例えば、酢酸ニッケルとゼオライトだけを触媒
として(けいタングステン酸を除いて)反応を行つても
、本反応条件ではシクロヘキシルベンゼンは生成しない
が(比較例2)、けいタングステン酸と酢酸ニッケルを
触媒として反応を行う際に、シリカゲルを脱水乾燥剤と
して共存させると、シクロヘキシルベンゼンの収率、選
択率を著しく向上させ得る(実施例1と比較例1)。脱
水乾燥剤としては、工業的に乾燥剤として用いられるも
のはいずれも用いられるが、モレキユラーシーブ10X
113Xシリカゲルが特に良い。
When used as a metal, these compounds may be converted into a ring and used as a metal powder, or supported on a suitable carrier. Furthermore, in order to control the activity of these metals, they may be used in a supported form together with other metals. In the reaction system. The concentration of the Group 8 metal salt is 0.01 to 5n1m01/2
A range of 0g benzene is suitable, preferably 0.0g benzene.
5-1mm01/20g benzene. When carrying out the method of the present invention, at least one dehydration, water and desiccant agent selected from zeolite and silica gel is added to the reaction system. For example, even if the reaction is carried out using only nickel acetate and zeolite as catalysts (excluding silicotungstic acid), cyclohexylbenzene will not be produced under these reaction conditions (Comparative Example 2); If silica gel is used as a dehydrating and desiccant agent during this process, the yield and selectivity of cyclohexylbenzene can be significantly improved (Example 1 and Comparative Example 1). As the dehydration desiccant, any desiccant that is used industrially can be used, but Molecular Sieve 10X
113X silica gel is particularly good.

使用量は0.05〜5g/20gベンゼンの範囲が適当
であノリ、0.1〜2g/20gベンゼンが好ましい。
本発明の方法は無触媒でも溶媒中でも行われ得る。シク
ロヘキサン等の反応に不活性な溶媒はいづれも用いられ
る。原料のベンゼンは出来る限り水分含量の少いものが
望ましい。本発明の方法において反応温度は通常50〜
300℃、好ましくは100〜250℃であり、反応水
素圧は1〜300kg/Cltl好ましくは10〜15
0k9/Cltである。
The amount used is suitably in the range of 0.05 to 5 g/20 g benzene, preferably 0.1 to 2 g/20 g benzene.
The process of the invention can be carried out without a catalyst or in a solvent. Any solvent inert to the reaction, such as cyclohexane, can be used. It is desirable that the raw material benzene has as little water content as possible. In the method of the present invention, the reaction temperature is usually 50~
300℃, preferably 100-250℃, reaction hydrogen pressure is 1-300kg/Cltl, preferably 10-15
It is 0k9/Clt.

反応温度が低いとシクロヘキサンの選択率が高くなり、
また反応温度が高すぎると、反応生成物の分解が起つて
不利である。次に、本発明を実施例に基づき、さらに詳
細に説明する。
The lower the reaction temperature, the higher the selectivity of cyclohexane;
Moreover, if the reaction temperature is too high, decomposition of the reaction products will occur, which is disadvantageous. Next, the present invention will be explained in more detail based on examples.

実施例1 ガス導入口、圧力計、温度計挿入管を備えた内容積80
mt(7)SUS3l6製オートクレーブに、ケイタン
グステン酸0.6620g(0.2rI1m01)(1
10℃て恒量になるまで乾燥した試薬を、SiO2・1
2W03・26H20=3310.64と仮定)、酢酸
ニッケル0.1245g(4).5mm01)、モレキ
ユラーシーブ13X(1/16ペレット)1g1ベンゼ
ン20gとテフロンコート攪拌子を入れ、内部を窒素て
置換した後、水素ガスを室温で50k9/Crlまで圧
入した。
Example 1 Internal volume 80 equipped with gas inlet, pressure gauge, and thermometer insertion tube
mt(7) SUS3l6 autoclave, 0.6620g (0.2rI1m01) (1
The reagent dried at 10°C until constant weight was added to SiO2.1
2W03・26H20=3310.64), nickel acetate 0.1245g (4). 5mm01), 1g of Molecular Sieve 13X (1/16 pellets), 20g of benzene, and a Teflon-coated stirrer were added, and after purging the inside with nitrogen, hydrogen gas was pressurized to 50k9/Crl at room temperature.

マグネチツクスターラーで攪拌しながら、反応温度20
0℃まで加熱した。反応温度到達時をもつて反応開始と
した。反応時間9紛後、水冷ついで氷冷して反応を停止
し、反応液をろ過してPEG2OMを充填剤とするガス
クロマトグラフィーにより定量し、シクロヘキシルベン
ゼン3.46g1シクロヘキサン1.04gを得た。C
l8化合物の生成は僅少であつた。比較例1 実施例1の方法で、モレキユラーシーブ13X(1/1
6ペレット)だけを除いて反応させ、シクロヘキシルベ
ンゼツ1.60g1シクロヘキサン0.60gを得た。
While stirring with a magnetic stirrer, the reaction temperature was 20°C.
Heated to 0°C. The reaction was started when the reaction temperature was reached. After a reaction time of 9 minutes, the reaction was stopped by water cooling and then ice cooling, and the reaction solution was filtered and quantitatively determined by gas chromatography using PEG2OM as a packing material to obtain 3.46 g of cyclohexylbenzene and 1.04 g of cyclohexane. C
The production of the 18 compound was minimal. Comparative Example 1 Using the method of Example 1, molecular sieve 13X (1/1
6 pellets) were reacted to obtain 1.60 g of cyclohexylbenzet and 0.60 g of cyclohexane.

比較例2実施例1の方法で、けいタングステン酸を除い
て反応を行つた結果、シクロヘキサン0.13g1シク
ロヘキセン0.02gが生成し、シクロヘキシルベンゼ
ンの生成は痕跡であつた。
Comparative Example 2 As a result of carrying out the reaction in the same manner as in Example 1 except for silicotungstic acid, 0.13 g of cyclohexane and 0.02 g of cyclohexene were produced, with only a trace of cyclohexylbenzene produced.

実施例2 実施例1の方法で、けいタングステン酸 0.6620g1塩基性炭酸ニッケル0.0567g(
イ).2rT1m01)、モレキユラーシーブ13×(
1/16ペレット)1g1ベンゼン20gを用い、反応
温度200℃、反応時間6紛で反応した結果、シクロヘ
キシルベンゼン3.96g1シクロヘキサン0.60g
を得た。
Example 2 Using the method of Example 1, 0.6620 g of silicotungstic acid 0.0567 g of basic nickel carbonate (
stomach). 2rT1m01), molecular sieve 13×(
1/16 pellets) Using 1 g of benzene, 20 g of benzene, reaction temperature of 200°C, reaction time of 6 particles, the result was 3.96 g of cyclohexylbenzene and 0.60 g of cyclohexane.
I got it.

Cl8化合物の生成は僅少であつた(1・4ージシクロ
ヘキシルベンゼン0.17g)。実施例3 実施例1の方法で、けいタングステン酸 0.6620g1酢酸パラジウム0.0224g(イ)
.1mm01)、モレキユラーシーブ13×、(1/1
6ペレット)1g1ベンゼン20gを用い、反応温度1
80℃、反応時間1紛で、シクロヘキシルベンゼン2.
37g1シクロヘキサン2.00gを得た。
The production of Cl8 compound was small (0.17 g of 1,4-dicyclohexylbenzene). Example 3 Using the method of Example 1, 0.6620 g of silicotungstic acid 1 0.0224 g of palladium acetate (a)
.. 1mm01), molecular sieve 13x, (1/1
6 pellets) using 1 g and 20 g of benzene at a reaction temperature of 1
80°C, reaction time: 1 drop of cyclohexylbenzene, 2.
37g/2.00g of cyclohexane was obtained.

実施例4 実施例1の方法で、けいタングステン酸 0.4965g1塩化ルテニウム0.1307g(0.
5m1m0りゼオラムA5(球状、4〜6メッシュ、東
洋曹達製)1q1ベンゼン20yを用い反応温度200
℃、反応時間32分で、シクロヘキシルベンゼン2.8
3g1シクロヘキサン1.59gを得た。
Example 4 Using the method of Example 1, 0.4965 g of silicotungstic acid 1 0.1307 g of ruthenium chloride (0.4965 g)
Using 1 q1 20 y of benzene, the reaction temperature was 200.
℃, reaction time 32 minutes, cyclohexylbenzene 2.8
3g1 1.59g of cyclohexane was obtained.

実施例5実施例1の方法で、110℃で恒量になるまで
乾燥したりんタングステン酸0.6139g(0.1m
m01)、ギ酸ニッケル0.0370g(0.2mm0
り、シルビードN一4(水沢化学製シリカゲル)、ベン
ゼン20gを加え、反応温度210℃、反応時間90分
で、シクロヘキシルベンゼン0.23g1シクロヘキサ
ン0.10gを得た。
Example 5 0.6139 g (0.1 m
m01), nickel formate 0.0370g (0.2mm0
Then, Silbeed N-4 (silica gel manufactured by Mizusawa Chemical Co., Ltd.) and 20 g of benzene were added, and 0.23 g of cyclohexylbenzene and 0.10 g of cyclohexane were obtained at a reaction temperature of 210° C. and a reaction time of 90 minutes.

実施例6 実施例1の方法で、110℃で恒量になるまで乾燥した
りんモリブデン酸0.8453g(0.2rnm01)
、塩基性炭酸ニッケル0.0567g(0.2rnm0
り、モレキユラーシーブ13×(1/16ペレット)0
.5g1ベンゼン20gを加え、反応温度190℃で反
応時間90分で、シクロヘキシルベンゼン0.11g1
シクロヘキサン0.67gを得た。
Example 6 0.8453g (0.2rnm01) of phosphomolybdic acid dried at 110°C until constant weight according to the method of Example 1
, basic nickel carbonate 0.0567g (0.2rnm0
Molecular sieve 13 x (1/16 pellet) 0
.. Add 5g1 benzene 20g, reaction temperature 190°C, reaction time 90 minutes, cyclohexylbenzene 0.11g1
0.67 g of cyclohexane was obtained.

実施例7 実施例1の方法で、けいタングステン酸 0.6620g1400℃で賦活したニッケル−スズー
ケイソウ土(45:5:50)0.5g1シリカゲル1
g1ベンゼン20gを加え、窒素雰囲気下で反応温度2
00℃まで加熱後、水素を68k9/CFli圧入して
反応を行・い、反応時間30分で、シクロヘキシルベン
ゼン3.39g1シクロヘキサン0.96gを得た。
Example 7 0.6620 g of silicotungstic acid 1 0.5 g of nickel-tin diatomaceous earth (45:5:50) activated at 1400°C 1 silica gel 1 by the method of Example 1
g1 20g of benzene was added and the reaction temperature was increased to 2 under nitrogen atmosphere.
After heating to 00° C., hydrogen was introduced under pressure at 68k9/CFli to carry out the reaction, and in a reaction time of 30 minutes, 3.39 g of cyclohexylbenzene and 0.96 g of cyclohexane were obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 けいタングステン酸、りんタングステン酸およびり
んモリブデン酸の内から選ばれた少くとも一種のヘテロ
ポリ酸と、ニッケル、パラジウムおよびルテニウムの内
から選ばれた少くとも一種の金属またはその化合物から
なる触媒の存在下に、ベンゼンを水素化縮合するにあた
り、反応系にゼオライトおよびシリカゲルの内から選ば
れた少くとも一種の脱水乾燥剤を存在させることを特徴
とするシクロヘキシルベンゼンの製造方法。
1. Presence of a catalyst consisting of at least one heteropolyacid selected from silicotungstic acid, phosphotungstic acid, and phosphomolybdic acid and at least one metal selected from nickel, palladium, and ruthenium or a compound thereof. The following is a method for producing cyclohexylbenzene, which is characterized in that at least one dehydrating and drying agent selected from zeolite and silica gel is present in the reaction system when hydrogenating and condensing benzene.
JP57113299A 1982-06-30 1982-06-30 Method for producing cyclohexylbenzene Expired JPS6046096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57113299A JPS6046096B2 (en) 1982-06-30 1982-06-30 Method for producing cyclohexylbenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57113299A JPS6046096B2 (en) 1982-06-30 1982-06-30 Method for producing cyclohexylbenzene

Publications (2)

Publication Number Publication Date
JPS595130A JPS595130A (en) 1984-01-12
JPS6046096B2 true JPS6046096B2 (en) 1985-10-14

Family

ID=14608685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57113299A Expired JPS6046096B2 (en) 1982-06-30 1982-06-30 Method for producing cyclohexylbenzene

Country Status (1)

Country Link
JP (1) JPS6046096B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246615A (en) * 1985-04-24 1986-11-01 Mitsubishi Electric Corp Optical gyroscope
US5391532A (en) * 1993-05-06 1995-02-21 Exxon Research And Engineering Company Zirconium hydroxide supported metal and heteropolyacid catalysts
US5420092A (en) * 1993-05-06 1995-05-30 Exxon Research And Engineering Company Silica supported metal and heteropolyacid catalysts
CN109364982B (en) * 2018-10-19 2020-06-16 浙江大学 Method for preparing aviation oil by catalyzing algae oil with nickel-based molecular sieve loaded with phosphotungstic acid

Also Published As

Publication number Publication date
JPS595130A (en) 1984-01-12

Similar Documents

Publication Publication Date Title
RU2198869C2 (en) Selective acetic acid production process and catalyst utilized
CA1136651A (en) Process for the catalytic hydrogenation of nitrobenzene
US4780552A (en) Preparation of furan by decarbonylation of furfural
US6316383B1 (en) Moldings based on silica
US7847129B2 (en) Method for dehydrogenating alcohols
EP0369902A1 (en) Selective monoepoxidation of styrene, styrene analogs, and styrene derivatives to the corresponding oxide with molecular oxygen
EP0076504B1 (en) Silver catalyst and method for the manufacture of ethylene oxide
JPH0511096B2 (en)
JPS6046096B2 (en) Method for producing cyclohexylbenzene
US5684207A (en) Preparation of methyl isobutyl ketone
JPH10180111A (en) Catalyst and production of 2-butene-1-ol
US4288558A (en) Process for the manufacture of oxygen-containing carbon compounds from synthesis gas
US20060272501A1 (en) Sintered adsorbents, preparation method thereof and use of same for the drying of organic compounds
JPS63119436A (en) Production of methyl isobutyl ketone
US4478948A (en) Process for improving the activity of used supported silver catalysts
US4940829A (en) Hydrodemethylation of neohexane
RU2190468C2 (en) Catalyst for dehydrogenation of cyclohexanol into cyclohexanone and method of its production
JPH04270112A (en) Method for production of cyanamide
JP3266332B2 (en) Method for producing hydroxydiphenyls
JPS6046098B2 (en) Method for producing cyclohexylbenzene
JP4359447B2 (en) Method for producing monohydroxyacetone
CN101547887A (en) Method of producing alpha,beta-unsaturated aldehyde and/or alpha,beta-unsaturated carboxylic acid
JP2882561B2 (en) Method for producing carbonic acid diester
JPH062702B2 (en) Method for producing methyl isobutyl ketone
JPS61186332A (en) Production of cyclohexylbenzene