JPS6046056A - Cooling structure - Google Patents

Cooling structure

Info

Publication number
JPS6046056A
JPS6046056A JP15388583A JP15388583A JPS6046056A JP S6046056 A JPS6046056 A JP S6046056A JP 15388583 A JP15388583 A JP 15388583A JP 15388583 A JP15388583 A JP 15388583A JP S6046056 A JPS6046056 A JP S6046056A
Authority
JP
Japan
Prior art keywords
stud
cap
lsi
thermal resistance
contacting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15388583A
Other languages
Japanese (ja)
Inventor
Tsuneaki Tajima
田島 恒明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP15388583A priority Critical patent/JPS6046056A/en
Publication of JPS6046056A publication Critical patent/JPS6046056A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4338Pistons, e.g. spring-loaded members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To improve cooling capacity in a cooling structure for cooling a heat sink unit such as an LSI placed on a substrate by contacting under pressure a semispherical cap contacted with the unit and a stud projected at one end to a liquid coolant passage. CONSTITUTION:Heat generated from heat sink units such as a plurality of LSIs or LSI chip carriers 1' mounted on a high density LSI substrate 2 is dissipated in a route of a cap 6, a stud 7 and liquid coolant 13 in the passage of a cold plate 8, and the total thermal resistance of the route depends upon the magnitude of the contacting thermal resistance R of the cap 6 with the stud 7. The contacting surface of the cap 6 with the stud 7 is formed in a spherical shape, pressed by a spring 10, and the contacting area and pressure are increased. Accordingly, the roundness of the round corner can be reduced, the temperature difference from the coolant 13 to a heat generator 1 can be reduced, and the temperature of an LSI1' can be suppressed to limiting temperature or lower.

Description

【発明の詳細な説明】 不発明は基板に搭載した大規模集積回路(μ下、LSI
と称す)等の発熱体を冷却するための冷却構造に関する
[Detailed description of the invention] The invention is based on large-scale integrated circuits (μ, LSI) mounted on a substrate.
It relates to a cooling structure for cooling a heating element such as

従来、この種の冷却構造においては、LSI基板のLS
I非搭載面にヒートシンクが取シ付けられ、これを送風
機により強制空冷しておfi、LsIから発生する熱は
LSI基板を介してヒートシンクは伝導し、ヒートシン
クから空気に伝達されている。
Conventionally, in this type of cooling structure, the LS of the LSI board
A heat sink is attached to the non-I mounting surface, and is forcedly cooled by a blower.The heat generated from the LSI is conducted to the heat sink via the LSI board, and is transferred from the heat sink to the air.

一般に、LSIには、その動作保証の点から厳しい温度
制限があシ、LSIの温度は、ある制限温度以下に押え
る必要がある。、LSIの年積度が飛躍的に増大してい
る現在、その発熱量も増大する傾向にあシ、送風機を大
型化するだけではLSIの温度を前記制限温度以下に押
えられなくなってきている・ 本発明の目的は冷却効果の大きい冷却構造を提供するこ
とにある。
Generally, LSIs have strict temperature limits in order to guarantee their operation, and the temperature of the LSI must be kept below a certain temperature limit. Nowadays, as the annual accumulation of LSIs increases dramatically, the amount of heat generated by them also tends to increase, and it is no longer possible to keep the temperature of LSIs below the above-mentioned limit temperature simply by increasing the size of the blower. An object of the present invention is to provide a cooling structure with a large cooling effect.

本発明の構造は、基板に搭載した大規模集積回路等の発
熱体を冷却するための冷却構造において・それぞれ平面
部および球面部を有し該平面部で前記発熱体と直接また
は介在物を介しC接する少なくとも一つの半球状のキャ
ップと、一端が該キャップの球面部と直接または介在物
を介して面接触する棒状のスタッドと、内部に液体冷媒
が流れる流路を有し前記スタッドの他端が該流路に突出
したコールドプレートと、前記キャップの球面部と前記
スタッドの一端とを圧接させる圧接手段とから構成され
る。
The structure of the present invention is a cooling structure for cooling a heating element such as a large-scale integrated circuit mounted on a substrate. Each of the cooling structures has a flat part and a spherical part, and the flat part connects with the heating element directly or through an intervening object. at least one hemispherical cap in contact with C, a rod-shaped stud whose one end is in surface contact with the spherical portion of the cap directly or through an intervening object, and the other end of the stud having a channel through which a liquid refrigerant flows. The cold plate is constructed of a cold plate projecting into the flow path, and pressure contact means for bringing the spherical portion of the cap into pressure contact with one end of the stud.

次に本発明について図面を参照して詳細に説明する。Next, the present invention will be explained in detail with reference to the drawings.

第1図および第1図のA−A線部分断面図である第2図
を参照すると、本発明の第1の実施例は、複数のLSI
I’またはLSIチップキャリア1′等の発熱体lをハ
ンダ付は等の接層手段にょシ搭載した高密度LSI基板
2と、高密度コネクタ3を介して高密度LSI基板2と
電気的に接続された高密度プリント板4と、発熱体lに
ハンダ等の良熱伝導体5にょル固着された半球状のキャ
ップ6と・このキャップ6の球面部と対向する面をキャ
ップ6の球面部と同程度の曲率の球面に形成した棒状の
スタッド7と、内部に液体冷媒13が流れる流路を有し
、スタッド7が流路内に突出したコールドプレートと、
冷媒13の漏れを防止するタメノハソキン9と、液体冷
媒13の流出入口11および12と、コールドプレート
8の流路内にあシダスタッド7の片端を押しスタ・ラド
7とキャップ6とを圧接さぜるバネ1oとがら構成され
る。
Referring to FIG. 1 and FIG. 2, which is a partial sectional view taken along line A-A in FIG.
A high-density LSI board 2 on which a heating element such as I' or an LSI chip carrier 1' is mounted on a contacting means such as soldering is electrically connected to the high-density LSI board 2 via a high-density connector 3. a high-density printed board 4, a hemispherical cap 6 fixed to a heat conductor 5 such as solder to a heating element l, and a surface facing the spherical part of the cap 6 as the spherical part a rod-shaped stud 7 formed into a spherical surface of the same degree of curvature; a cold plate having a flow path through which liquid refrigerant 13 flows, and the stud 7 protruding into the flow path;
Press one end of the stud 7 into the flow path of the cold plate 8, the inlet/outlet ports 11 and 12 of the liquid refrigerant 13, and press the star rad 7 and the cap 6 into contact with each other. It is composed of a spring 1o and a shell.

第2図において、発熱体1で発生した熱は生にキャップ
6、スタッド7、液体冷媒13という経路で放熱され、
この経路の全熱抵抗Rは次のように表わせる。
In FIG. 2, the heat generated by the heating element 1 is radiated directly through the cap 6, the stud 7, and the liquid refrigerant 13.
The total thermal resistance R of this path can be expressed as follows.

R=R,。+R8十R,−8+ R8+R,−c 曲・
−(1)ここで、Rc−0:発熱体Jがらキャップ6ま
での熱抵抗 Ro:キャップ6内の伝導熱抵抗 Rc−s ” キャップ6とスタッド7との接触熱抵抗 R8:スタッド7円の伝導熱哲抗 Ra−c : 、l y F” 7 il、ヨ。ヤ、3
へ。ア、゛熱抵抗 発熱体1とキャップ6とは、ハンダ等の良熱伝導体5で
固着されているので、Ro−8は小さい。
R=R,. +R80R, -8+ R8+R, -c Song・
-(1) Here, Rc-0: Thermal resistance from the heating element J to the cap 6 Ro: Conductive thermal resistance inside the cap 6 Rc-s ” Contact thermal resistance between the cap 6 and the stud 7 R8: The thermal resistance of the stud 7 Conduction heat resistance Ra-c: , ly F” 7 il, yo. Ya, 3
fart. A. Since the thermal resistance heating element 1 and the cap 6 are fixed with a good heat conductor 5 such as solder, Ro-8 is small.

RoおよびR8はキャップ6およびスタッド7が熱伝導
率の大きい金属、例えば、銅、アルミニウムまたはモリ
ブデン等で形成されるので非常に小さく、無視できる程
度である@さらに、Rもス−C タッド7が液体冷媒13に直接、接しているので小さい
・したがって、全熱抵抗Rはキャップ6とスタッド7と
の接触熱抵抗Rc−sの大きさによって左右される。実
施例では、キャップ6とスタッド7との接触面を球面に
してバネ1oで押すことによシ、接触面積および接触圧
力を大きくとっているので、Rc−sを小さくすること
ができる◎また、キャップ6とスタッド7との接触面に
良熱伝導性のグリース等を充填することによフさらにR
o−8を小さくすることができる。以上説明したように
本実施例では、全熱抵抗Rは非常に小さく、液体冷媒1
3から発熱体lまでの温度差を小さくでき、LSI’の
温度を制限温度以下に押えることができる。また、キャ
ップ6とスタッド7との接触面を球面にしたことにょシ
、第3図に示すように、発熱体1が傾いて高密度LSI
基板2に実装されたとしても、キャップ6とスタッド7
との間の接触熱抵抗R0−8は小さく保たれ、全体の放
熱系は全く影響を受けない。
Since the cap 6 and the stud 7 are made of a metal with high thermal conductivity, such as copper, aluminum, or molybdenum, Ro and R8 are very small and can be ignored. Since it is in direct contact with the liquid refrigerant 13, it is small. Therefore, the total thermal resistance R depends on the magnitude of the contact thermal resistance Rc-s between the cap 6 and the stud 7. In the embodiment, the contact surface between the cap 6 and the stud 7 is made spherical and pressed by the spring 1o, thereby increasing the contact area and contact pressure, so that Rc-s can be reduced. By filling the contact surface between the cap 6 and the stud 7 with grease, etc., which has good thermal conductivity, it is possible to further improve the radius.
o-8 can be made smaller. As explained above, in this example, the total thermal resistance R is very small, and the liquid refrigerant 1
The temperature difference between the heating element 3 and the heating element 1 can be reduced, and the temperature of the LSI' can be kept below the limit temperature. Furthermore, by making the contact surface between the cap 6 and the stud 7 spherical, the heating element 1 is tilted, as shown in FIG.
Even if mounted on the board 2, the cap 6 and stud 7
The contact thermal resistance R0-8 is kept small and the overall heat dissipation system is not affected at all.

次に、第4図を参照すると、本発明の第2の実施例は一
キャップ6が発熱体1に固着されていない点を除いて第
1の実施例と同様の構成を持ちます。このような構成で
は、スタッド7が発熱体1に対して位置ズレを生じてい
ても、第4図に示すように、キャップ6が位置ズレ分だ
け移動するので、キャップ6とスタッド7との間の接触
を良好に保つことができる。また、発熱体lとキャップ
6との接触面においても良熱伝導性のグリース等を充填
することによシ、固着した場合と同程度の低熱抵抗化を
達成できる。このような構造を採用すると、部品の製造
精度を緩和できる。
Next, referring to FIG. 4, the second embodiment of the present invention has the same structure as the first embodiment except that the cap 6 is not fixed to the heating element 1. In such a configuration, even if the stud 7 is misaligned with respect to the heating element 1, the cap 6 moves by the amount of misalignment, as shown in FIG. Good contact can be maintained. Furthermore, by filling the contact surface between the heating element 1 and the cap 6 with grease or the like having good thermal conductivity, it is possible to achieve a low thermal resistance comparable to that obtained when the heating element 1 and the cap 6 are fixed together. If such a structure is adopted, manufacturing precision of parts can be relaxed.

以上、本発明には、冷却能力の向上を達成できるという
効果がある。
As described above, the present invention has the effect of improving cooling capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のilの実施例を示す斜視図、第2図お
よび第3図は第1図のA−A線部分断面図ならびに第4
図は本発明の第2の実施例を示す部分断面図である。 図において、1・・・・・・発熱体%1’・・・・・・
LSIまたはLSIチップキャリア、2・・・・・・高
密度LSI基板、3・・・・・・高密度コネクタ、4・
・・・・・高密度プリント板、5・・・・・・ハンダ等
の良熱伝導体、6・・・・・・キャップ、7・・・・・
・スタッド%8・・・・・・コールドプレート% 9・
・・・・・パツキン、10・・・・・・バネ、11・・
・・・・流入口、12・・・・・・流出口、13・・・
・・・液体冷媒。 一 第 1 図 #2 凹 5υ し 「 第3 図 第4図
FIG. 1 is a perspective view showing an embodiment of the IL of the present invention, and FIGS. 2 and 3 are partial sectional views taken along the line A-A in FIG.
The figure is a partial sectional view showing a second embodiment of the invention. In the figure, 1... Heating element% 1'...
LSI or LSI chip carrier, 2... High-density LSI board, 3... High-density connector, 4.
...High density printed board, 5... Good thermal conductor such as solder, 6... Cap, 7...
・Stud%8・・・・・・Cold plate%9・
...Patsukin, 10...Spring, 11...
...Inflow port, 12...Outflow port, 13...
...Liquid refrigerant. 1 Figure 1 #2 Concave 5υ Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 基板に搭載した複数の大規模集積回路等の発熱体を冷却
するための冷却構造において、それぞれ平面部および球
面部を有し該平面部で前記発熱体と直接または介在物を
介して接する少なくとも一つの半球状のキャップと、一
端が該キャップの球面部と直接または介在物を介して面
接触する棒状のスタッドと、内部に液体冷媒が流れる流
路を有し前記スタッドの他端が該流路に突出したコール
ドプレートと、前記キャップの球面部と前記スタッドの
一端とを圧接させるための圧接手段とから構成したこと
を特徴とする冷却構造。
In a cooling structure for cooling heat generating elements such as a plurality of large-scale integrated circuits mounted on a substrate, each has a flat part and a spherical part, and the flat part contacts the heating element directly or through an intervening object. a rod-shaped stud whose one end is in surface contact with the spherical portion of the cap directly or through an intervening object; and a rod-shaped stud having a flow path through which a liquid refrigerant flows inside, and the other end of the stud having a flow path through which a liquid refrigerant flows. 1. A cooling structure comprising: a cold plate protruding from the top; and pressure contact means for bringing the spherical portion of the cap into pressure contact with one end of the stud.
JP15388583A 1983-08-23 1983-08-23 Cooling structure Pending JPS6046056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15388583A JPS6046056A (en) 1983-08-23 1983-08-23 Cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15388583A JPS6046056A (en) 1983-08-23 1983-08-23 Cooling structure

Publications (1)

Publication Number Publication Date
JPS6046056A true JPS6046056A (en) 1985-03-12

Family

ID=15572237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15388583A Pending JPS6046056A (en) 1983-08-23 1983-08-23 Cooling structure

Country Status (1)

Country Link
JP (1) JPS6046056A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109347A (en) * 1985-11-07 1987-05-20 Nec Corp Lsi package mounting structure
EP0288183A2 (en) * 1987-04-08 1988-10-26 Hitachi, Ltd. Cooling apparatus and semiconductor device employing the same
JPH0262730U (en) * 1988-10-31 1990-05-10
WO2000039852A1 (en) * 1998-12-23 2000-07-06 Hamilton Sundstrand Corporation Modular power electronics device having integrated cooling apparatus
US6985359B2 (en) * 2003-04-21 2006-01-10 Hewlett-Packard Development Company, L.P. Variable-wedge thermal-interface device
US7480143B2 (en) * 2003-04-21 2009-01-20 Hewlett-Packard Development Company, L.P. Variable-gap thermal-interface device
EP2016813A2 (en) * 2006-05-04 2009-01-21 Cooligy, Inc. Gimballed attachment for multiple heat exchangers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109347A (en) * 1985-11-07 1987-05-20 Nec Corp Lsi package mounting structure
EP0288183A2 (en) * 1987-04-08 1988-10-26 Hitachi, Ltd. Cooling apparatus and semiconductor device employing the same
JPH0262730U (en) * 1988-10-31 1990-05-10
WO2000039852A1 (en) * 1998-12-23 2000-07-06 Hamilton Sundstrand Corporation Modular power electronics device having integrated cooling apparatus
US6985359B2 (en) * 2003-04-21 2006-01-10 Hewlett-Packard Development Company, L.P. Variable-wedge thermal-interface device
US7480143B2 (en) * 2003-04-21 2009-01-20 Hewlett-Packard Development Company, L.P. Variable-gap thermal-interface device
EP2016813A2 (en) * 2006-05-04 2009-01-21 Cooligy, Inc. Gimballed attachment for multiple heat exchangers
EP2016813A4 (en) * 2006-05-04 2010-11-03 Cooligy Inc Gimballed attachment for multiple heat exchangers

Similar Documents

Publication Publication Date Title
US6691768B2 (en) Heatsink design for uniform heat dissipation
US7289326B2 (en) Direct contact cooling liquid embedded package for a central processor unit
US7515415B2 (en) Embedded microchannel cooling package for a central processor unit
US4246597A (en) Air cooled multi-chip module having a heat conductive piston spring loaded against the chips
US6535386B2 (en) Electronic assembly having a heat pipe that conducts heat from a semiconductor die
US7209354B2 (en) Ball grid array package with heat sink device
JPS6094749A (en) Ic-chip cooling device
JPS60160149A (en) Cooling system for integrated circuit device
US4450505A (en) Apparatus for cooling integrated circuit chips
KR20010024613A (en) Cooling system for semiconductor die carrier
JPS6238861B2 (en)
KR20010070141A (en) Electronic module
JPS6046056A (en) Cooling structure
JPH09213851A (en) Heat radiation method and heat radiation means for ic device
JPS57103337A (en) Heat transfer connecting device and manufacture thereof
JP2845833B2 (en) heatsink
US7610950B2 (en) Heat dissipation device with heat pipes
US6108204A (en) CPU heat sink
US6452799B1 (en) Integrated circuit cooling system
JPH0422022B2 (en)
JPS6271299A (en) Cooling structure for electronic device
JPH0617313Y2 (en) Liquid cooled semiconductor package
JPH03208398A (en) Semiconductor device
JPS6032345A (en) Cooling structure of lsi package
JPH04259246A (en) Cooling mechanism for integrated circuit