JPS6046003A - Method of producing varistor - Google Patents

Method of producing varistor

Info

Publication number
JPS6046003A
JPS6046003A JP58154492A JP15449283A JPS6046003A JP S6046003 A JPS6046003 A JP S6046003A JP 58154492 A JP58154492 A JP 58154492A JP 15449283 A JP15449283 A JP 15449283A JP S6046003 A JPS6046003 A JP S6046003A
Authority
JP
Japan
Prior art keywords
particles
zinc oxide
oxide
titanium oxide
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58154492A
Other languages
Japanese (ja)
Other versions
JPH0142609B2 (en
Inventor
桃木 孝道
清 松田
渡部 武栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP58154492A priority Critical patent/JPS6046003A/en
Publication of JPS6046003A publication Critical patent/JPS6046003A/en
Publication of JPH0142609B2 publication Critical patent/JPH0142609B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は酸化亜鉛を主成分とした低電圧用のバリスタ詠
半学イの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a low voltage varistor containing zinc oxide as a main component.

従来酸化亜鉛を主成分としこれにBias3゜MgO,
Cr2O3,Fe2e3,5b20s、Coo、MnO
Conventionally, zinc oxide was used as the main component, and Bias3゜MgO,
Cr2O3, Fe2e3, 5b20s, Coo, MnO
.

NiOなどの電圧敏感性酸化物および電導性酸化(以下
余白) 物を加えた組成を成形焼結してなる酸化亜鉛系バリスタ
はそのすぐれた非直線性のために広く用いられている。
Zinc oxide-based varistors, which are formed by molding and sintering a composition containing voltage-sensitive oxides such as NiO and conductive oxides (hereinafter referred to as blanks), are widely used because of their excellent nonlinearity.

これらの酸化亜鉛系バリスタでは焼結体厚さ1mにおけ
る立上り電圧をV l mA /wxとし種々の立上り
電圧のものが製造されているが、この立上り電圧は焼結
体中の酸化亜鉛を主成分とする結晶粒の大きさによって
決まる。すなわち低い立上り電圧を得るためには結晶粒
を大きく成長させることが必要であり、逆に普い立上り
電圧を得るためには結晶粒の成長を抑え、小さな結晶粒
から構成することが必要である。前記+NW化亜鉛亜鉛
成分としBigOs、MgO,0r2(Js、Fe2(
Js。
These zinc oxide-based varistors have a rise voltage of V l mA /wx when the thickness of the sintered body is 1 m, and various types of rise voltage are manufactured. It is determined by the size of the crystal grains. In other words, in order to obtain a low rise voltage, it is necessary to grow large crystal grains, and conversely, in order to obtain a normal rise voltage, it is necessary to suppress the growth of crystal grains and to configure them from small crystal grains. . The above +NW zinc chloride zinc component is BigOs, MgO, 0r2(Js, Fe2(
Js.

5bx05.OoO,MnO,N1(Jfxどを加えて
なる酸化亜鉛系バリスタでは結晶粒の大きさが15μm
糧度でるり、立上り電圧は組成にエリ約80〜り電圧は
20〜40V程度となること本知られている。近年とく
に酸化唾姶系バリスタの低電圧化の要求が強まりntl
記結晶粒の大きなものを含む酸化亜鉛系バリスタを得る
ことが重要な課題となってきた。この大きな結晶粒をイ
むる手段としてたとえば特公昭56−11203号公報
に提案された技術がある。これ#i酸酸化亜鉛99.9
−99.七たのち仮焼し加水熱分解を行って70μm程
度の結晶粒を得、該結晶粒を酸化亜鉛を主成分とする粉
末に0.1〜60重量係添加混合したのち焼結してなる
ものである。しかしながらこのように加水熱分解によっ
て結晶粒を得るには前記酸化亜鉛にBaOまたはS.r
Oを調合しバインダを加えて成形し、1300°C程度
の高温で仮焼し粉砕したのち加水熱分解しなければなら
ず、工程数が非常に多くなる欠点がめる。ま′n:.成
形後の仮焼温度を高くしないと大きな結晶粒が得られず
、たとえば結晶粒の大きさ70μmのものを得るには1
3 0 0 ’(!程度の高い仮焼温度を要し、温度管
理ならびにこれにともなう焼結炉の材料の選択などの技
術的9価格的問題点もあつt。また特性的にもこの結晶
粒を得るための仮焼温度が高いと結晶粒自体の成長が進
んでしまうため活性変が小さくなり、かっこの結晶粒を
酸化亜鉛を主成分とするものに加え混合焼結して焼結体
を得るときの焼結温度と前記仮焼温度とが近くなるので
結晶粒の成長は限界近くなり、したがって焼結体を得る
ときの焼結過程において結晶粒か#よとんど成長せず焼
結後も前記加水熱分解により得た結晶粒とあまり変わら
ない大きさのイ・のしか得られないという欠点を有して
いた。
5bx05. In the zinc oxide varistor made by adding OoO, MnO, N1 (Jfx, etc.), the crystal grain size is 15 μm.
It is well known that the rising voltage is about 80V and the voltage is about 20 to 40V depending on the composition. In recent years, there has been a growing demand for lower voltages for oxide varistors.
It has become an important issue to obtain a zinc oxide-based varistor containing large crystal grains. As a means of absorbing these large crystal grains, there is a technique proposed in Japanese Patent Publication No. 11203/1983, for example. This #i acid zinc oxide 99.9
-99. After seven months, it is calcined and hydrothermally decomposed to obtain crystal grains of about 70 μm, and the crystal grains are mixed with a powder whose main component is zinc oxide in an amount of 0.1 to 60% by weight, and then sintered. It is. However, in order to obtain crystal grains by hydrothermal decomposition, the zinc oxide is mixed with BaO or S. r
It is necessary to prepare O, add a binder, mold it, calcinate it at a high temperature of about 1300°C, crush it, and then hydrothermolyze it, which has the drawback of requiring a very large number of steps. Ma'n:. Large crystal grains cannot be obtained unless the calcination temperature after molding is high; for example, to obtain crystal grains with a size of 70 μm,
It requires a high calcination temperature of 300' (!), and there are technical and cost problems such as temperature control and the selection of materials for the sintering furnace. If the calcination temperature is high to obtain the crystal grains, the growth of the crystal grains themselves will progress and the activity change will be small. Since the sintering temperature at which the sintered body is obtained and the calcination temperature are close to each other, the growth of crystal grains approaches its limit, and therefore, during the sintering process at which the sintered body is obtained, the crystal grains do not grow much and are sintered. Even after this process, there was a drawback that only crystal grains with a size not much different from those obtained by the hydrothermal decomposition could be obtained.

本発明は上記の点に鑑みてなされたもので、酸化亜鉛と
 酸化チタ, と全造粒して得た粒子を、酸化亜鉛を主
成分としこれに小なくとも酸化ビスマスを加えた粉粒中
に添加混合して焼結すツクことにより前記粒子を焼結体
内部に分散して位置させ、これを核として結晶粒の成長
を図るもので、こt′LKよって焼結体内部に大きな結
晶粒を配しバリスタの低電圧化を図ることを目的とした
ものである。以下本発明の詳細を実施例によって説明す
る。
The present invention was made in view of the above points, and consists of particles obtained by granulating zinc oxide and titanium oxide into powder particles containing zinc oxide as the main component and at least bismuth oxide added thereto. By adding and mixing the particles and sintering, the particles are dispersed and located inside the sintered body, and crystal grains are grown using these as nuclei. The purpose is to reduce the voltage of the varistor by arranging the grains. The details of the present invention will be explained below with reference to Examples.

実施例1 酸化亜鉛粉末に酸化f,y 粉末をそれぞれ0003モ
ルチ, 0.01モル%, O’.03モルチ。
Example 1 Zinc oxide powder was mixed with 0003 mol%, 0.01 mol%, and O'. 03 morchi.

0、1モル係.0.3モルチ.1.0モルチ.3.0モ
ル係添加混合して7種の酸化亜鉛+酸化チタ。
0, 1 mole. 0.3 molti. 1.0 molti. 7 types of zinc oxide + titanium oxide mixed with 3.0 molar addition.

の混合粉末を得、これにバインダと水を加えて混合する
。これをスプレードライヤに入rtて造粒すると前記混
合粉末に加えた水が蒸発した球状粒子を得ることができ
る。この球状粒子はその粒径が約3〜200μmの大き
さを有するが、60〜120μmの粒子がもつとも多く
20μm程度の粒子は非常に少ない。前記酸化亜鉛+酸
化f17による7種の粒子をTh’f,で選別して平均
粒径10 0 lt mの酸化亜鉛粉末化チタン の粒
子?得、これを酸化亜鉛94.5モル%+Mg03モル
係+Hi*Os 0.5モル係+Oo0 1.0モルチ
+MnO o.5モルg+NiO o.5モルqbがら
ナル主組成に対しそれぞt′L0.1重量%,0.3重
電チ。
A mixed powder is obtained, and a binder and water are added and mixed. When this is put into a spray dryer and granulated, spherical particles in which the water added to the mixed powder has evaporated can be obtained. These spherical particles have a particle size of about 3 to 200 μm, but there are many particles of 60 to 120 μm, and very few particles of about 20 μm. The seven types of particles of zinc oxide + f17 oxide were sorted by Th'f, and the particles of zinc oxide powdered titanium with an average particle size of 100 lt m were selected. 94.5 mol% of zinc oxide + 3 mol% of Mg0 + 0.5 mol% of Hi*Os + 1.0 mol% of Oo0 + MnO o. 5 mol g + NiO o. 5 mol qb, t'L 0.1% by weight and 0.3 mol qb, respectively, based on the main composition.

10重緻%l 3 0i1−ii% 、 6 0W騎%
添加混合し、これを成形したのちl 10 0〜l 4
 0 0 ’(!の温度で1〜8時間焼結した焼結体の
立上り電圧を酸化亜鉛へO酸化チタン の添加片との関
連にについて表わしたのが第1図であり同じく非1Il
f線保数αを表わしたのがw、2図である。いずれも曲
attvd主組成に対する酸化拒鉛+酸化チly粒子の
添加量がO01重量係の場合、同じく曲線+B+B0.
31i量チ、曲線+0+1dlOfit%、曲線(Di
は30重t%、白帯1柚は60重量係の場合である。
10 heavy %l 3 0i1-ii%, 6 0W weight%
After addition and mixing and molding, l 100 to l 4
Figure 1 shows the rise voltage of a sintered body sintered for 1 to 8 hours at a temperature of 0 0' (!) in relation to the addition of titanium oxide to zinc oxide.
Figure 2 shows the f-line constant α. In both cases, when the amount of lead oxide + titanium oxide ly particles added to the main composition of the curve attvd is in relation to the weight of O01, the curve +B + B0.
31i quantity Q, curve +0+1dlOfit%, curve (Di
is 30 weight t%, white belt 1 yuzu is 60 weight %.

また第3図には平均粒径1100ttの酸化亜鉛士酸化
チタン 粒子を用い、前記主組e、に対するこの粒子の
添加量と立上り電圧との関係を示す曲線図、第4図はこ
の粒子の添加量と非直線係数との関係を示す曲線図であ
るが、いずれ4曲線+hは醗化亜鉛+酸化チタン 粒子
の酸化亜鉛[対fる酸化チタン の添加酸が0.003
モルモルφ合、曲線j(Utd O,01モル%、曲@
 [1dO,lモ/l/%、曲線I11は1.0モル%
、曲Wd+J+け3.0モルφの場合を示し友ものであ
る。さらに第5図Icは酸化亜鉛に対し酸化チタン ’
ko、1モルチ添モルた酸化能鉛+酸化チタ7粒子を前
記主組Fli、に対し10重−二%添加したときの酸化
亜鉛+酸化チタン 粒子の大きさと立上り電圧との関係
を示す白組11):であり、2π6図は粒子の大きさと
非直線係数との門1糸を示す曲線図である。この結果か
ら明らかなように第1図の立上り電圧でFi酸化亜鉛に
添加する酸化f3”yの量は曲線図を除き0,01モル
係以」二が良好であるが、第2図の非16線係vkでは
曲報(1りを除き酸化チタン添加量1.0モルφまては
良好でありこれを越えると急激に低下するという結果を
示している。この第1図お、!:び第2図の結果から酸
化岨鉛に添加する酸化チタン の敞は0・01〜1.0
モルφが良好であり、かつこの酸化IE鉛十酸化チタン
粒子を主組成に添加する量は0.3〜30重敗係が良好
である。そして第3図および第4図でも酸化111已鉛
−ト酸化チタン 粒子中の酸化チタン 添加btHによ
る特性への影響上白@(Flが第3図の立−1ニリ市1
1.’l二竹性が劣っており、また第4図の曲I?3a
+・■1が非直IJ係舷が劣っていることを示している
。そして第3図では主組成に対する醒化亜鉛士酸化チタ
ン 粒子の添加量では0.3重Il:チから+r、n 
*’tな効里分示し、第4図でF130i1を優までは
良好だがこれを越えると急激罠劣化することを示してい
る。しfcがって主組成に対する酸化亜鉛+ 酸化チタ
ン 粒子良好な結果を示していることから酸化亜鉛に対
する酸化チタン の添加量fl 0.01〜1.0モル
φである。したがってこの範囲は第1図および第2図と
全く同一な結果を示している。
Figure 3 is a curve diagram showing the relationship between the amount of these particles added to the main group e and the rise voltage using zinc oxide titanium oxide particles with an average particle size of 1100 tt, and Figure 4 is a curve diagram showing the relationship between the amount of these particles added to the main group e and the rise voltage. It is a curve diagram showing the relationship between the amount and the non-linear coefficient.
Mol mol φ combination, curve j (Utd O, 01 mol %, curve @
[1 dO, lmol/l/%, curve I11 is 1.0 mol%
, shows the case where Wd+J+ke is 3.0 mole φ. Furthermore, Fig. 5 Ic shows that titanium oxide is compared to zinc oxide.
ko, white group showing the relationship between the size of zinc oxide + titanium oxide particles and the rise voltage when 7 particles of lead oxide + titanium oxide added by 1 mol were added at 10% by weight to the main group Fli. 11): and the 2π6 diagram is a curve diagram showing the relationship between particle size and nonlinear coefficient. As is clear from this result, the amount of f3''y added to Fi zinc oxide at the rising voltage in Figure 1 is good if it is less than 0.01 mol, except for the curve diagram, but at the rising voltage in Figure 2, it is better to In the 16th line VK, the curved report (except for one) shows that the addition amount of titanium oxide is good at 1.0 mol φ, and that it decreases rapidly when it exceeds this. From the results in Figure 2 and Figure 2, the value of titanium oxide added to lead oxide is 0.01 to 1.0.
The molar φ is good, and the amount of the IE lead oxide titanium decaoxide particles added to the main composition is preferably 0.3 to 30 folds. Also, in Figures 3 and 4, 111 lead oxide-titanium oxide.
1. 'l Nitake quality is inferior, and the song I in Figure 4? 3a
+・■1 indicates that the non-straight IJ mooring is inferior. In Fig. 3, the amount of added zinc oxide and titanium oxide particles relative to the main composition is 0.3 times Il: +r, n.
Figure 4 shows that the F130i1 is good up to an excellent level, but beyond this point it rapidly deteriorates. Therefore, the amount of titanium oxide to be added to zinc oxide is 0.01 to 1.0 mole φ, since the zinc oxide + titanium oxide particles relative to the main composition have shown good results. Therefore, this range shows exactly the same results as in FIGS. 1 and 2.

さらに酸化亜鉛+酸化チタン の粒子径と立上り電圧お
よび非直線係数との関係を第5図および第6図に示す。
Furthermore, the relationship between the particle diameter of zinc oxide + titanium oxide, the rise voltage, and the nonlinear coefficient is shown in FIGS. 5 and 6.

なお試料Vi酸化亜鉛に添加する酸化チタン tを0.
1モル色とし上記実施例と同じ組成からなる主組成に対
し酸化亜鉛十酸化チタンをl Oil[d%添加混合し
た粒子を用いtものでめる。第5図j?工び第6図にお
いて従来とあるのけ主組成に11接実施例と同じ量’)
[ljm、!=酸比f17 粉末を添加し、これらを混
合して1100〜l 400 ’Oの温度で1〜8時間
いっしょIC焼結した場合を示し酸化亜鉛十 酸化チタ
ン の造粒工程を省いたものである。これによればスプ
レードライ−Yで造粒し几酸化亜鉛+酸化チタン 粒子
の平均粒径が10μmでは非直線係数が従来と変化なく
、かつ立上り電圧V l mA /vs が従来の43
Vから33Vに低下し非常に低電圧のバリスタを14F
られることは明白であり、平均粒径が犬となるにしたが
って立上り電圧は急激な低下を示す。しかし非直線係数
は従来28に対し平均粒径100μmを越えると急激に
低下しはじめ、200μmでは22を示しこの値は十分
使用できる値であるが、30011I!1ではさらに低
下して 8となり使用で^ない数値となる。
Note that titanium oxide t added to sample Vi zinc oxide was 0.
A 1 molar color was obtained using particles in which 1 mol [d%] of zinc oxide and titanium decaoxide were added to and mixed with the main composition having the same composition as in the above example. Figure 5j? In Fig. 6, the same amount as in the 11th embodiment is applied to the conventional main composition.
[ljm,! = Acid ratio f17 Powder is added, these are mixed and IC sintered together at a temperature of 1100 to 1400'O for 1 to 8 hours. The granulation process of zinc oxide deca titanium oxide is omitted. . According to this, when the average particle size of the zinc oxide + titanium oxide particles granulated with Spray Dry-Y is 10 μm, the nonlinear coefficient is unchanged from the conventional one, and the rise voltage V l mA /vs is 43 μm compared to the conventional one.
A very low voltage varistor that drops from V to 33V to 14F
It is clear that the rise voltage decreases rapidly as the average particle size increases. However, the nonlinear coefficient starts to decrease rapidly when the average particle size exceeds 100 μm, compared to the conventional 28, and reaches 22 at 200 μm, which is a usable value, but 30011I! At 1, it drops further to 8, a value that is not usable.

以上のことから酸化龍鉛+酸化チタン を造粒したとき
の粒径Filo〜2001tmが適当な範囲と定めるこ
とができる。
From the above, it can be determined that the particle diameter Filo to 2001 tm when granulating lead oxide + titanium oxide is an appropriate range.

この結果から酸化岨鉛粉末に対し0.01〜1.0モル
係の酸化チタン を添加し−C造粒し平均粒径lO〜2
00μmの酸化Ill■鉛+ 酸化チタン粒子を得、こ
れを酸化111j鉛十Mgリモ13i203+Co(J
+MnO+NiU からなる主組成に対し0.3〜30
7f#%添加して混合粒子とし、ともに焼結することに
よって立上り電圧や非直線係数などの特性の優れた低電
圧用バリスタを得ることができるO 実施例2 前記実施例1では主組成として酸化徂鉛十MgO十l3
tlo3 +OoU+MnO+N1(Jからeるものを
使用した場合について述べたが、この実施例2ではこれ
VCS b 20 sおよび(3r 20 !Sを加え
て主組成とした場合について述べる。S b 203や
Cr2O3は酸化亜鉛の結晶粒成長を助長をせるビスマ
スなどの低融点金属やこれらの酸化物の中へ早期に拡散
するので酸化亜鉛の粒成長を阻害する性質を有している
。したがってSb g(J3やCrt(J3i含む酸化
亜鉛を主成分とするバリスタでは酸化亜鉛の結晶粒成長
が望めず結晶が小さくなるので比較的高電圧用に用いら
れ低電圧用には不適とさ九ているものである。まず酸化
亜鉛粉末に酸化チ17粉末をそれぞれ(1,003モル
% 、 0.01モモル。
Based on this result, titanium oxide was added in an amount of 0.01 to 1.0 mol to the lead oxide powder, and -C was granulated with an average particle size of lO~2.
00 μm of Ill lead oxide + titanium oxide particles were obtained, and these were mixed with 111j lead oxide + Mg 13i203 + Co (J
0.3 to 30 for the main composition consisting of +MnO+NiU
By adding 7f#% to form mixed particles and sintering them together, a low voltage varistor with excellent characteristics such as rise voltage and nonlinear coefficient can be obtained.Example 2 In Example 1, oxidation was used as the main composition. Three lead ten MgO ten l3
tlo3 +OoU+MnO+N1(J to e was described above, but in this Example 2, a case will be described in which VCS b 20 s and (3r 20 !S are added to make it the main composition. S b 203 and Cr2O3 are Sb g (J3 and Varistors whose main component is zinc oxide containing Crt(J3i) cannot be expected to grow crystal grains of zinc oxide and the crystals become small, so they are used for relatively high voltage applications and are unsuitable for low voltage applications. First, chili oxide powder was added to zinc oxide powder (1,003 mol%, 0.01 mole).

0.03モル係、0.1モルチ、0.3モルチ、3.0
モル係添加混合してスプレードライヤで造粒L7’tf
lの酸化亜鉛+酸化チタン 粒子を得、以下実施例1と
同様にして平均粒径100μmの酸化岨鉛+酸化チタン
 の球状粒子を得た。この粒子を酸化亜鉛94モル% 
+ M g 03モルチ→−Bi2030Iモル%+O
OU 1.0モ#%−1−Mn00.5モル係+Ni0
0.5モル係+5b20a O,3モル係+0120s
 0.2モル係 からなる主組成に対し、0.1重量%
、0.3重喰チ、10重喰チ、30重量係、60重隈チ
をそれぞれ添加混合してこれを成形したのち1100〜
l 400 ’C!の温度で1〜8時間焼結したときの
立上り電圧を酸化111j鉛への酸化チタンの添加なと
の関連において第1図、同じく非1’i線係数II図に
示した。いずれも曲線IKIFi主組成に対する酸化側
鉛十酸化チタン粒子の添加量が0.1重量%の場合、曲
線山は0.3重量%、曲線IMは10屯片[係、曲線(
Nは300重量%曲線(Oけ600重量%場合を示す。
0.03 mole, 0.1 mole, 0.3 mole, 3.0
Add molar ratio and mix and granulate with spray dryer L7'tf
1 of zinc oxide + titanium oxide particles were obtained, and in the same manner as in Example 1, spherical particles of lead oxide + titanium oxide with an average particle size of 100 μm were obtained. These particles are made of zinc oxide 94 mol%
+ M g 03 mol% → -Bi2030I mol% + O
OU 1.0 mo#%-1-Mn00.5 mole ratio+Ni0
0.5 molar ratio +5b20a O,3 molar ratio +0120s
0.1% by weight based on the main composition consisting of 0.2 molar ratio
, 0.3 weight cutter, 10 weight cutter, 30 weight cutter, and 60 weight cutter are respectively added and mixed and molded.
l 400'C! The rise voltage when sintered at a temperature of 1 to 8 hours is shown in FIG. 1 in relation to the addition of titanium oxide to 111j lead oxide, and also in the non-1'i line coefficient II diagram. In both curves, when the amount of lead decathoxide particles added to the main composition of curve IKIFi is 0.1% by weight, the peak of the curve is 0.3% by weight, and the curve IM is 10% by weight.
N shows a 300% by weight curve (O = 600% by weight).

また第9図には平均粒径100μmの酸化亜鉛 1+酸
化チタン粒子を用いAil記主組成に対するこの粒子の
添加量と立上り電圧との関係を示す曲線図を、そして第
10図VCはこの粒子の添加量と非直線係数との関係を
示す曲線図を示した。
Furthermore, Fig. 9 shows a curve diagram showing the relationship between the amount of addition of this particle and the rise voltage for the Ail main composition using zinc oxide 1 + titanium oxide particles with an average particle size of 100 μm, and Fig. 10 VC shows the relationship between the amount of addition of this particle and the rise voltage of this particle. A curve diagram showing the relationship between the amount added and the nonlinear coefficient is shown.

なお曲線IP+は酸化唾鉛+酸化チタン 粒子の酸化亜
鉛に対する酸化チタン の添加量が0.003モルモル
場合、曲線IQIけ0.01モル係、曲線曲は0.1モ
ル係、曲線IS1け10モル係、曲線(1)は3.0モ
ル悌の場合を示したものである。セして@11図[HI
W化亜鉛亜鉛し酸化チタンを0.1モル係添加した酸化
能鉛十酸化チタン粒子を主組成に対しlO重州チ添加し
たときの酸化亜鉛土酸化チタン 粒子の大きさと立上り
電圧との関係を示す曲線図であり、flX1g図は粒子
の大きさと非直線係数との関係を示す曲線図である。な
おそれぞれの焼結は1100〜1400 ’Oの温度で
1〜8時間行った。
Curve IP+ is salivary lead oxide + titanium oxide. If the amount of titanium oxide added to zinc oxide in the particles is 0.003 mol, the curve IQI is 0.01 mol, the curve is 0.1 mol, and the curve IS is 1 mol 10 mol. Curve (1) shows the case of 3.0 mol. Set @Figure 11 [HI
The relationship between the size of zinc oxide and titanium oxide particles and the rise voltage when 10% of titanium oxide is added to the main composition of lead decaoxide titanium particles with 0.1 molar addition of titanium oxide and zinc oxide. The flX1g diagram is a curve diagram showing the relationship between particle size and nonlinear coefficient. Note that each sintering was performed at a temperature of 1100 to 1400'O for 1 to 8 hours.

これらの結果から明らかなように第7図および第8図に
示した立上り電圧と非直線係数に実施例1の第1図・第
2図エリ!II著でにないが、曲#■お工び10を除き
酸化亜鉛に添加する酸化チタンの混合量が0.01〜1
.0モル係の範囲で良好である。
As is clear from these results, the rise voltages and nonlinear coefficients shown in FIGS. 7 and 8 are similar to those in FIGS. 1 and 2 of Example 1. Although it is not written by II, the amount of titanium oxide added to zinc oxide is 0.01 to 1, except for song #■ Okobi 10.
.. A range of 0 molar coefficient is good.

したがって第7図および第8図の結果から「1y化亜鉛
に添加する酸化チタ、 の量は0.01〜1.0モル係
で、かつこの酸化亜” 土酸化チタン粒子を主組成に添
加する量は0.3〜30重量%の範囲が良好でおる。こ
の範囲が特性上良好な結果を示すことVi第9図および
第10図からも確認できる。そして実施例1と同様、酸
化曲、鉛十酸化チタン粒子の大きはと立上り電圧および
非直線係数との関係を第11図およびiにI、 12図
に示す。試料は酸化亜鉛に添加する酸化チタン量を0.
1モル係とし主組成に対しt責化亜鉛+酸化チタン 粒
子を10屯#%添加し念ものを用いた。図において従来
とあるのは主組成に直接該実施例と同じ1代の酸化亜鉛
と酸化チタン粉末を添加混合して焼結したJJL合をi
Iモし几ものである。この結果立上り電圧および非直線
係数とも絶対値は大きいものの実施例1と同様の特性傾
向を示しておす、酸化4Iすti + 酸化チタン粒子
の平均粒径が10〜200μnが]14当な範囲とする
ことができる。
Therefore, from the results in Figures 7 and 8, it is clear that the amount of titanium oxide added to zinc oxide is between 0.01 and 1.0 mol, and that the titanium oxide particles are added to the main composition. A good range of the amount is 0.3 to 30% by weight. It can also be confirmed from FIGS. 9 and 10 that this range shows good results in terms of characteristics. As in Example 1, the relationship between the oxide curve, the size of the titanium lead decathoxide particles, the rise voltage, and the nonlinear coefficient is shown in FIGS. 11 and 1 and 12. For the sample, the amount of titanium oxide added to zinc oxide was 0.
A sample was used in which 10 tons of zinc chloride and titanium oxide particles were added to the main composition at a ratio of 1 mole. In the figure, "conventional" refers to JJL composite which is made by directly adding and mixing the same first generation zinc oxide and titanium oxide powder as in the example to the main composition and sintering it.
I am very careful. As a result, although the absolute values of both the rise voltage and the nonlinear coefficient are large, they show the same tendency of characteristics as in Example 1. The average particle size of the 4I oxide + titanium oxide particles is in the range of 10 to 200 μn. can do.

この実施例2では酸化亜鉛粉末に対し0.01〜1.0
モルチの酸化チ、7 を添加して造粒し平均粒径lO〜
200μmの酸化唾鉛十酸化チタ7粒子を得、これを酸
化亜鉛+MgO+ Bi*Os +OoO+MnO+NiU+5b20!I
+Or sO+からなる主組成に対し0.3〜30重量
%添加混合し、これをいっしょに焼結することによって
立上り電圧や非直線係数特性の優れたバリスタを得るこ
とができる。したがって酸化亜鉛の結晶粒成長を阻害す
る5bsO:+や0rpOsを含む主組成に酸化岨鉛+
酸化チタン 粒子を添加し九場合でも結晶粒#″ii成
長ので低電圧化できる効果を有する。
In this Example 2, 0.01 to 1.0 to zinc oxide powder
Adding 7% of malti oxide and granulating it to an average particle size of lO~
Seven particles of titanium decaoxide with a diameter of 200 μm were obtained, and these were combined into zinc oxide + MgO + Bi*Os + OoO + MnO + NiU + 5b20! I
By adding and mixing 0.3 to 30% by weight to the main composition consisting of +Or sO+ and sintering them together, a varistor with excellent rise voltage and nonlinear coefficient characteristics can be obtained. Therefore, the main composition containing 5bsO:+ and 0rpOs, which inhibit the grain growth of zinc oxide, contains lead oxide+.
Even when titanium oxide particles are added, the crystal grain #''ii grows, which has the effect of lowering the voltage.

以上述べたように本発明vc工ればろらがじめ酸・ 化
亜鉛+酸化チタン 粉末を造粒したのちとれを酸化亜鉛
を主とする主組成に添加混合−成形し焼結してバリスタ
を得るもので、このバリスタは結晶粒径が大きいので非
直線係数を低下させずに立上り電圧を低下させる特性を
有し低電圧用船、酸化ビスマスにほかMgO,OoO,
MnO,NiU。
As described above, in the VC process of the present invention, after granulating the powder of zinc oxide and titanium oxide, the resulting powder is added to the main composition mainly consisting of zinc oxide, mixed, molded, and sintered to form a varistor. This varistor has a large crystal grain size, so it has the characteristic of reducing the rise voltage without reducing the nonlinear coefficient.
MnO, NiU.

3t)2Qs、Orgys を添加した場合について述
べたが、その他の金属酸化物たとえば5iOz、OuO
3t) Although the case where 2Qs and Orgys are added has been described, other metal oxides such as 5iOz and OuO
.

A1z03.HaO,OaO,SrO,PbU、5n0
2゜kgwo、中判井千’1r02.La2O3,Pr
6(Jll。
A1z03. HaO, OaO, SrO, PbU, 5n0
2゜kgwo, medium size Isen'1r02. La2O3,Pr
6 (Jll.

Fears 、BaO3などを添加しても工く、空気中
高温で酸化物になるものならばこtしらに限るものでは
ない。しかし本発明は主組成としての酸化唾鉛と酸化ビ
スマスとvc酸化+1ti鉛+酸化チタン粒子を加えた
焼結体からなるものでバリスタ 1の低電圧化の効果を
得ることができるものであって、前記M g O、Oo
 01にどの金PA酸化物はバリスタとしての特性を向
上させる効果は有するが本発明の要旨する低電圧化とい
う四点からは必須要件ではない。
Fears, BaO3, etc. may be added, but the material is not limited to these as long as it becomes an oxide at high temperatures in air. However, the present invention is made of a sintered body containing lead oxide, bismuth oxide, VC oxide, 1ti lead, and titanium oxide particles as the main components, and can obtain the effect of lowering the voltage of the varistor 1. , the M g O, Oo
Which gold PA oxide has the effect of improving the characteristics as a varistor, but it is not an essential requirement from the four points of the present invention, which is to reduce the voltage.

【図面の簡単な説明】[Brief explanation of drawings]

図面はいずれも本発明および参考例、従来例の特性を示
す曲線図で第1図は酸化亜鉛に対する酸化チタンの添加
量と立上り電圧の関係、第2図は同じく酸化チタン の
添加量と非直線係数との関係、第3図は主組成に対する
酸化亜鉛+酸化チタン 粒子の添加itと立上り電圧と
の関係1.第4図は同じく酸化ITj鉛十酸化チタン粒
子の添加量と非直線係級との関係、第5図は酸化唾鉛十
酸化チタン 粒子の平均粒径と立上り電圧との関係、第
6図は同じく酸化亜鉛+酸化チタン 粒子の平均粒径と
非直線係数との関係、@7図〜第12図は他の実施例に
よる特性を示す曲線図でろ9第7図&、1酸化亜鉛に対
する酸化f夕y の添加量と立上り電圧の関係、第8図
は同じく酸化チタンの添加量と非直線係数との関係、第
9図は主組成に対する酸化亜鉛+酸化チタン 粒子の添
加量と立上り電圧との関係、第10図は同じく酸化亜鉛
土酸化チタン 粒子の添加量と非直線係数との関係、第
11図は酸化亜鉛土酸化チタン粒子の平均粒径と立上9
′rIL圧との関係、第12図に同じく酸化亜鉛+酸化
チタ。 粒子の平均粒径と非直線係数との関係を示す曲6図であ
る。 特許出願−人 マルコン電子株式会社 白シ4ヒf?>閂≦、、、1(もlし7o)第3 図 第4flJ a114ヒ弔し情呵ンーF芭庚4ヒt9!−か冷メを弓
ンCWtμノ■ば昭4仁゛亜41)t■プレに七テンシ
ずグン功q1り崖立9%(、/J層9薇イヒ項H1ン士
預疹タヒケタ)葉を弁平Pす立片(μm)第8図
The drawings are all curve diagrams showing the characteristics of the present invention, reference examples, and conventional examples. Figure 1 shows the relationship between the amount of titanium oxide added to zinc oxide and the rise voltage, and Figure 2 shows the relationship between the amount of titanium oxide added and the non-linear relationship. Figure 3 shows the relationship between the addition of zinc oxide + titanium oxide particles to the main composition and the rise voltage.1. Figure 4 shows the relationship between the added amount of ITj lead titanium decaoxide particles and the non-linear coefficient, Figure 5 shows the relationship between the average particle diameter of titanium decaoxide particles and the rise voltage. Similarly, the relationship between the average particle diameter of zinc oxide + titanium oxide particles and the nonlinear coefficient, @Figure 7 to Figure 12 are curve diagrams showing the characteristics according to other examples. Figure 8 shows the relationship between the amount of titanium oxide added and the nonlinear coefficient, and Figure 9 shows the relationship between the amount of zinc oxide + titanium oxide particles added and the rise voltage for the main composition. Similarly, Figure 10 shows the relationship between the added amount of titanium oxide particles in zinc oxide soil and the nonlinear coefficient, and Figure 11 shows the average particle diameter and rise 9 of titanium oxide particles in zinc oxide soil.
Figure 12 also shows the relationship between zinc oxide and titanium oxide. FIG. 6 is a curve 6 diagram showing the relationship between the average particle diameter of particles and a nonlinear coefficient. Patent application - Marukon Electronics Co., Ltd. White Shi4hif? >Key≦,,,1 (Moshi 7o) Fig. 4 flJ a114 hi condolence story - F Baseng 4 hit 9! - Or bow the cold method CWtμノ ■ If Showa 4 Ni'a 41) t ■ Pre seven tens of Gun gong q1 9% cliff (,/J layer 9 薇Ihi term H1 nshi tahiketa) leaf Vertical piece (μm) Fig. 8

Claims (1)

【特許請求の範囲】 tl+酸化亜鉛粉末と酸化チタン粉末とを混合したのち
造粒し酸化亜鉛+酸化チタン粒子を得る工程と、該粒子
を平均粒径により選別する工程と、該工程で選別した粒
子を少なくとも酸化亜鉛と酸化ビスマスを含む主組成に
添加混合して混合粒子欠得る工程と、該工程ののち混合
粒子を成形焼結する工程とを具備したことを特徴とする
バリスタの製造方法。 (2)造粒乞スプレードライヤで行うことを特徴とする
特許請求の範囲第(1)項記載のバリスタの製造方法。 (3)酸化亜鉛に添加する酸化チタンの混合量が0.0
1〜1.0 モル%であることを特徴とする特許請求の
範囲第(1)項または第(2)項記載のバリスタの製造
方法。 (4)酸化亜鉛+酸化チタン粒子の平均粒径が10〜2
00μmであることを特徴とする特許請求の範囲第(1
)項〜第(3)項のいずれかに記載のバリスタの製造方
法。 (5)主組成に添加混合する酸化亜鉛+酸化チタン粒子
の添加量が0.3.〜30重量%であることを特徴とす
る特許請求の範囲第(1)項〜第(4)項のいずhかw
記載のバリスタの製造方法。
[Claims] A step of mixing tl+zinc oxide powder and titanium oxide powder and then granulating them to obtain zinc oxide+titanium oxide particles, a step of sorting the particles by average particle size, and a step of sorting the particles in the step. 1. A method for manufacturing a varistor, comprising a step of adding and mixing particles to a main composition containing at least zinc oxide and bismuth oxide to obtain a mixture of particles, and a step of shaping and sintering the mixed particles after the step. (2) The method for manufacturing a varistor according to claim (1), characterized in that the granulation process is carried out using a spray dryer. (3) The amount of titanium oxide added to zinc oxide is 0.0
The method for manufacturing a varistor according to claim 1 or claim 2, wherein the content is 1 to 1.0 mol%. (4) The average particle size of zinc oxide + titanium oxide particles is 10-2
Claim 1 (1) characterized in that the diameter is 00 μm.
) to (3). (5) The amount of zinc oxide + titanium oxide particles added to the main composition is 0.3. -30% by weight of any one of claims (1) to (4).
A method of manufacturing the described barista.
JP58154492A 1983-08-23 1983-08-23 Method of producing varistor Granted JPS6046003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58154492A JPS6046003A (en) 1983-08-23 1983-08-23 Method of producing varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58154492A JPS6046003A (en) 1983-08-23 1983-08-23 Method of producing varistor

Publications (2)

Publication Number Publication Date
JPS6046003A true JPS6046003A (en) 1985-03-12
JPH0142609B2 JPH0142609B2 (en) 1989-09-13

Family

ID=15585424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154492A Granted JPS6046003A (en) 1983-08-23 1983-08-23 Method of producing varistor

Country Status (1)

Country Link
JP (1) JPS6046003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289210A (en) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd Manufacture of varistor
US5073431A (en) * 1988-04-01 1991-12-17 Flexible S.R.L. Method of embodying multi-ply laminates with an external ply in quality wood or vegetable tissue, for veneering and for use in manufacturing stitched goods, and the product obtained with such a method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073431A (en) * 1988-04-01 1991-12-17 Flexible S.R.L. Method of embodying multi-ply laminates with an external ply in quality wood or vegetable tissue, for veneering and for use in manufacturing stitched goods, and the product obtained with such a method
JPH01289210A (en) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd Manufacture of varistor

Also Published As

Publication number Publication date
JPH0142609B2 (en) 1989-09-13

Similar Documents

Publication Publication Date Title
JPS6046003A (en) Method of producing varistor
US4184984A (en) High breakdown voltage varistor
US5387356A (en) Process of producing calcined materials for ferrite magnet
JPH0142602B2 (en)
JP2708160B2 (en) Ferrite manufacturing method
JPS644645B2 (en)
JPH0521222A (en) Manufacture of nickel-zinc ferrite
JPS59207602A (en) Method of producing varistor
JPH0224362B2 (en)
JPH01112705A (en) Manufacture of oxide permanent magnet
JPH0224361B2 (en)
JPH0142608B2 (en)
JPH0142610B2 (en)
JPH0142603B2 (en)
JPS60227265A (en) Ferrite carrier material for electrostatic copying
JPH0142601B2 (en)
JPH0283218A (en) Oxide magnetic material
JPH0142604B2 (en)
JP2548297B2 (en) Varistor manufacturing method
JPS60167302A (en) Voltage nonlinear resistor
JPH04224116A (en) Ferrite magnetic powder for magnetic-field-oriented bond magnet
JPS60169104A (en) Voltage nonlinear resistor
JPS60169103A (en) Voltage nonlinear resistor
JPS60170205A (en) Voltage nonlinear resistor
JPH05105511A (en) Production of piezoelectric