JPS6045999B2 - Automatic control device for scrap pressure forming machine - Google Patents

Automatic control device for scrap pressure forming machine

Info

Publication number
JPS6045999B2
JPS6045999B2 JP781682A JP781682A JPS6045999B2 JP S6045999 B2 JPS6045999 B2 JP S6045999B2 JP 781682 A JP781682 A JP 781682A JP 781682 A JP781682 A JP 781682A JP S6045999 B2 JPS6045999 B2 JP S6045999B2
Authority
JP
Japan
Prior art keywords
pressure
hydraulic
cylinders
state
scrap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP781682A
Other languages
Japanese (ja)
Other versions
JPS58125400A (en
Inventor
順一 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAMACHO SEIKO KK
Original Assignee
KAMACHO SEIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAMACHO SEIKO KK filed Critical KAMACHO SEIKO KK
Priority to JP781682A priority Critical patent/JPS6045999B2/en
Publication of JPS58125400A publication Critical patent/JPS58125400A/en
Publication of JPS6045999B2 publication Critical patent/JPS6045999B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/30Presses specially adapted for particular purposes for baling; Compression boxes therefor
    • B30B9/3057Fluid-driven presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/32Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by plungers under fluid pressure
    • B30B1/34Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by plungers under fluid pressure involving a plurality of plungers acting on the platen

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Presses (AREA)

Description

【発明の詳細な説明】 本発明は、一つの油圧ポンプによつて駆動される油圧シ
リンダを用いて加圧板を作動させ、スクラップを加圧成
形するためのスクラップ加圧成形機用の自動ホ1輝装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an automatic hoist for a scrap pressure forming machine for pressure forming scrap by operating a pressure plate using a hydraulic cylinder driven by a single hydraulic pump. Regarding the brightness device.

この種のスクラップ加圧成形機用の自動制御装置におけ
る従来例のモデル図を、第1図、第2図および第3図に
示す。
Model diagrams of conventional examples of automatic control devices for this type of scrap pressure molding machine are shown in FIGS. 1, 2, and 3.

1が加圧板、2が油圧シリンダ、3がピストンロッド、
4が側型枠、5がゲート型枠、6が加圧空間部である。
1 is a pressure plate, 2 is a hydraulic cylinder, 3 is a piston rod,
4 is a side formwork, 5 is a gate formwork, and 6 is a pressurized space.

油圧シリンダ2の数が第1図、第2図および第3図にお
いて夫々1本、2本および3本である。2本式、3本式
の場合は全シリンダを同時作動させるのが従来手段であ
る。
The number of hydraulic cylinders 2 is one, two, and three in FIGS. 1, 2, and 3, respectively. In the case of a two-cylinder or three-cylinder type, the conventional means is to operate all cylinders simultaneously.

何れにしろ能力を出すために高低圧ポンプ又は可変容量
ポンプを用いる。
In any case, a high/low pressure pump or a variable displacement pump is used to provide the capacity.

スクラップの密度が低い段階では低圧大容量の油圧をシ
リンダに供給し高速にて加圧板を移動させる。
When the scrap density is low, low-pressure, large-capacity hydraulic pressure is supplied to the cylinder to move the pressure plate at high speed.

スクラップの密度が大となつた時、高圧小容量の油圧シ
リンダに供給し低速高圧にて加圧板を移動させる。
When the density of scrap becomes high, it is supplied to a high-pressure, small-capacity hydraulic cylinder and the pressure plate is moved at low speed and high pressure.

各シリンダのピストン受圧面積を第1図のものでS)第
2図のもので512、第3図のものて513とする。
The piston pressure receiving area of each cylinder is S in FIG. 1, 512 in FIG. 2, and 513 in FIG. 3.

加圧板を単位長さ移動させるのに必要な吐出油量は3例
ともSで同じである。これら3例には次のような問題点
がある。
The amount of discharged oil required to move the pressure plate by a unit length is the same in all three cases. These three examples have the following problems.

高低圧ポンプ又は可変容量ポンプの使用に限つて考えれ
ば電動機の有効利用がなされているが、油圧ポンプの有
効利用という点では考慮されていない。
Although electric motors have been effectively used when considering the use of high-low pressure pumps or variable displacement pumps, effective use of hydraulic pumps has not been considered.

つまりスクラップの密度が低に段階、所定の成形完了後
ゲート型枠を開放し成形物を払出す・工程および、加圧
板引戻し工程では、油圧シリンダの必要推力は最高推力
の何割かにすぎない。そのため1回の処理に要する時間
が多くかかり時間当たりの処理能力が小さい。本発明の
目的は、スクラップ密度の低い段階での油圧シリンダの
作動時間のロスを省いて、単位時間当たりの処理能力を
高めること、および、そのように作動時間のロスを省く
にあたつて、加圧前の密度が区々であるスクラップ材の
性質によく対応して、スクラップ密度が所定値に達した
時点で自動的に加圧力を増大できるようにして、前記単
位時間当たりの処理能力をよソー層高めることにある。
In other words, when the density of scrap is low, the required thrust of the hydraulic cylinder is only a fraction of the maximum thrust in the process of opening the gate formwork and discharging the molded product after completion of a predetermined forming process, and in the process of pulling back the pressure plate. Therefore, a large amount of time is required for one processing, and the processing capacity per unit of time is small. An object of the present invention is to eliminate the loss of operating time of a hydraulic cylinder at a stage when the scrap density is low, thereby increasing throughput per unit time, and in eliminating such loss of operating time, In response to the nature of scrap materials, which have varying densities before pressurization, it is possible to automatically increase the pressurizing force when the scrap density reaches a predetermined value, thereby increasing the processing capacity per unit time. The purpose is to increase the number of people in the society.

上記目的を達成するための本発明の特徴とする構成は、
一つの加圧板を押圧作動させるための複数の油圧シリン
ダを、一つの油圧ポンプの吐出側流路に接続するととも
に、前記吐出側流路には、前記油圧シリンダのうちの一
部の油圧シリンダを、前記加圧板を押圧する作用方向と
、加圧板を引き戻す反作用方向とに択一的に切換えて駆
動するための切換弁を設けるとともに、前記切換弁が作
用方向および反作用方向の何れに切換えられている状態
でも、他の油圧シリンダを非入力状態で,前記一部の油
圧シリンダに追随させる第一状態と、前記切換弁が作用
方向に切換えられている状態で、かつ、前記吐出側流路
での内圧が設定値に達したときに前記他の油圧シリンダ
を作用方向に駆動作動させる第二状態とに、前記他の油
圧シリ,ンタの作動状態を切換え制御する制御機構を設
けた点にある。
The characteristic structure of the present invention for achieving the above object is as follows:
A plurality of hydraulic cylinders for pressing one pressure plate are connected to a discharge side flow path of one hydraulic pump, and some of the hydraulic cylinders are connected to the discharge side flow path. , a switching valve is provided for driving the pressure plate by selectively switching between an action direction that presses the pressure plate and a reaction direction that pulls back the pressure plate, and the switching valve is switched between the action direction and the reaction direction. Even in a state where the other hydraulic cylinders are in a non-input state and follow the above-mentioned part of the hydraulic cylinders, and a state where the switching valve is switched to the operating direction and the discharge side flow path is A control mechanism is provided for switching and controlling the operating state of the other hydraulic cylinder to a second state in which the other hydraulic cylinder is actuated in the operating direction when the internal pressure of the cylinder reaches a set value. .

上記構成についての理解を容易にするために、第4図の
イ,口,ハおよびホ(注:ニは一応考慮せず)に基づい
てその構成原理(概念)を説明すjる。
In order to facilitate understanding of the above configuration, the configuration principle (concept) will be explained based on A, C, C, and H in FIG. 4 (note: D is not taken into consideration).

この図では油圧シリンダが3本あるがこれは要旨構成に
いう1複数ョの好ましい一例であり、、R3本ョという
ことに拘束されない。10が主シリンダ、11が副シリ
ンダである。
Although there are three hydraulic cylinders in this figure, this is a preferable example of the one or more cylinders mentioned in the summary, and is not limited to R3 cylinders. 10 is a main cylinder, and 11 is a sub cylinder.

12が加圧板、13がピストンロッド、14が側型枠、
1:.5がゲート型枠、16がスクラップである。
12 is a pressure plate, 13 is a piston rod, 14 is a side formwork,
1:. 5 is gate formwork, 16 is scrap.

矢印黒は圧油供給を、矢印白は圧油非供給(自然流入は
あり得る)を表す。そしてその作動は下記(4)〜(C
)に列記した如く行われる。
A black arrow indicates pressure oil supply, and a white arrow indicates no pressure oil supply (natural flow is possible). The operation is as follows (4) to (C
).

4(4)第一状
態(a)(第4図イ)において前記他のシリンダ10の
みへの圧油は低圧力、大量流であり、加圧板は高速移動
する。従来に比べてシリンダ本数倍、高速である。(B
)第二状態(b)(第4図口,ハ)において全シリンダ
10,11に圧油が供給される。
4(4) In the first state (a) (FIG. 4A), pressure oil is supplied only to the other cylinder 10 at a low pressure and in a large flow, and the pressure plate moves at high speed. Compared to conventional models, the number of cylinders is twice as fast. (B
) In the second state (b) (Fig. 4, opening and c), pressure oil is supplied to all cylinders 10 and 11.

圧油は低圧力から高圧カへ、大流量から小流量へ移行す
る。特に成形最終段階で圧油は最高使用圧力となり流量
は最小になる。(C)第三状態(c)(第4図ホ)にお
いて前記他のシリンダ10のみへの圧油は低圧力、大流
量であり、加圧板は高速移動する。
Pressure oil moves from low pressure to high pressure, and from large flow to small flow. Particularly in the final stage of molding, the pressure oil reaches its maximum working pressure and the flow rate becomes its minimum. (C) In the third state (c) (FIG. 4(e)), the pressure oil supplied only to the other cylinder 10 is at a low pressure and a large flow rate, and the pressure plate moves at high speed.

従来に比べてシリンダ本数倍、高速である。このように
加圧成形工程のうちの多くの部分が前記他のシリンダ(
すなわち複数あるシリンダのうちの一部のシリンダ)の
みにて行われる。
Compared to conventional models, the number of cylinders is twice as fast. In this way, many parts of the pressure molding process are performed using the other cylinder (
In other words, it is performed only in some cylinders among a plurality of cylinders.

従つて、次の効果が得られる。1加圧成形工程のうちで
、その大半を占めるスクラップ密度の低い作動工程では
、一部の油圧シリンダのみが駆動され、他の油圧シリン
ダは非入力状態で追随移動するだけであるから、ポンプ
動力をその一部の油圧シリンダのみに集中させて、高速
での駆動を可能にし、他の油圧シリンダをも同時駆動す
る場合に比べて、油圧シリンダの作動時間の無駄を省き
得たものである。
Therefore, the following effects can be obtained. In the operating process where the scrap density is low, which is the majority of the pressure forming process, only some of the hydraulic cylinders are driven, and the other hydraulic cylinders simply follow the movement without any input, so the pump power is By concentrating the pressure on only some of the hydraulic cylinders, it is possible to drive at high speed, and compared to the case where other hydraulic cylinders are driven at the same time, the wasted operating time of the hydraulic cylinders can be saved.

2しかも、前記一部の油圧シリンダによつてスクラップ
が適正密度まで加圧圧縮されると、それに伴つて全油圧
シリンダが自動的に駆動され始めるので、本来的に加圧
前密度が区々なるものであるところのスクラップを圧縮
しなければならないがために、全油圧シリンダを作動さ
せ始めるタイミングを、油圧シリンダのストローク等で
は予測し難いにも拘らず、適正タイミングで全油圧シリ
ンダを作動させることができ、従つて、この全油圧シリ
ンダが作動される低速での加圧行程を適正な最小限の範
囲に止め、よソー層の油圧シリンダ作動時間の無駄を省
いて高能率での加圧成形作業を行なえる利点を得たもの
である。
2 Moreover, when the scrap is pressurized and compressed to the appropriate density by some of the hydraulic cylinders, all the hydraulic cylinders automatically start to be driven accordingly, so the densities before pressurization are inherently different. To operate all hydraulic cylinders at the appropriate timing even though it is difficult to predict the timing to start operating all hydraulic cylinders based on the stroke of the hydraulic cylinder etc. in order to compress scrap that is a material. Therefore, the pressure stroke at low speed in which this full hydraulic cylinder is operated is kept within the appropriate minimum range, and the wastage of the hydraulic cylinder operating time of the horizontal layer is eliminated, allowing high-efficiency pressure forming. This gave me the advantage of being able to do the work.

以下に、本発明の実施例を第4図二を含む第4図全図を
参照しつつ第5図に基いて説明しよう。
Hereinafter, an embodiment of the present invention will be explained based on FIG. 5 while referring to all of FIG. 4 including FIG. 4-2.

21は電動機、22は可変容量ポンプ、23は圧力スイ
ッチ、24はマイクロスイッチ式接点付圧力計、25は
リリーフバルブ、26,27,28はソレノイドバルブ
、29はプレフイルバルブ、30はパイロット回路、3
1はゲート型枠15の油圧シリンダである。
21 is an electric motor, 22 is a variable displacement pump, 23 is a pressure switch, 24 is a pressure gauge with a microswitch type contact, 25 is a relief valve, 26, 27, 28 are solenoid valves, 29 is a prefill valve, 30 is a pilot circuit, 3
1 is a hydraulic cylinder of the gate formwork 15.

そして、前記ソレノイドパルプ26が、前記主油圧シリ
ンダ10を、前記加圧板12を押圧する作用方向と、加
圧板12を引き戻す反作用方向との何れかに択一的に切
換えて作動させるための切換弁を構成するものであり、
また、前記圧力スイッチ23、ソレノイドバルブ27、
プレフイルバルブ29、および、パイロット回路30が
、前記副油圧シリンダ11,11を、前記ソレノイドバ
ルブ26が作用方向および反作用方向の何れに切換えら
れていても、副油圧シリンダ11,11を主油圧シリン
ダ10に非入,力状態で追随移動させる第一状態と、前
記ソレノイドバルブ26が作用方向に切換えられている
状態で、かつ、前記圧力スイッチ23がポンプ吐出側流
路での設定以上の内圧を検出したときに、副油圧シリン
ダ11,11を駆動作動する第二状態に切換えるように
制御する制御機構を構成している。この例の装置の動作
は次のとおり。(1)スクラップ投入後、自動的に又は
人為指令でソレノイドバルブ26を切換えて中央の主シ
リンダ10を伸長させる。
The solenoid pulp 26 is a switching valve for operating the main hydraulic cylinder 10 by selectively switching the action direction to press the pressure plate 12 or the reaction direction to pull back the pressure plate 12. It consists of
Further, the pressure switch 23, the solenoid valve 27,
The pre-fill valve 29 and the pilot circuit 30 cause the auxiliary hydraulic cylinders 11, 11 to be connected to the main hydraulic cylinder regardless of whether the solenoid valve 26 is switched to the acting direction or the reaction direction. 10 is not applied, and the first state is the following state where the solenoid valve 26 is switched to the operating direction, and the pressure switch 23 is in the state where the internal pressure is higher than the setting in the pump discharge side flow path. A control mechanism is configured to control the secondary hydraulic cylinders 11, 11 to be switched to a second state in which they are driven when detected. The operation of the device in this example is as follows. (1) After inputting scrap, the solenoid valve 26 is switched automatically or by manual command to extend the central main cylinder 10.

バルブ27は閉である=から左右の副シリンダ11,1
1には圧油は送入されない。ただし副シリンダ11,1
1のピストンロッドは加圧板12に連結されているので
加圧板12が主シリンダ10によつて移動されるに伴い
副シリンダ11,11も伸長され,る。このとき副シリ
ンダ11,11の一端からは油が自然流入し他端からは
自然流出する。加圧板12は徐々にスクラップ16を圧
潰する。第4図イ参照。(2)スクラップ16の圧潰が
進行すると反力が増大し、油圧系内の圧力が上昇する。
The valve 27 is closed = so that the left and right sub-cylinders 11,1
No pressure oil is sent to 1. However, the sub cylinder 11,1
Since the piston rod 1 is connected to the pressure plate 12, as the pressure plate 12 is moved by the main cylinder 10, the sub cylinders 11, 11 are also extended. At this time, oil naturally flows in from one end of the sub-cylinders 11, 11 and naturally flows out from the other end. The pressure plate 12 gradually crushes the scrap 16. See Figure 4a. (2) As the crushing of the scrap 16 progresses, the reaction force increases and the pressure within the hydraulic system increases.

これによつて圧力スイッチ23が切換えられるとソレノ
イドバルブ27が切換わり、副シリンダ11,11がポ
ンプ22に連通する。すなわち圧油は3本のシリンダ1
0,11,11に供給される。このため加圧板12の移
動速度が低下する反面押圧作用力は上昇する。これによ
つてスクラップ16に対する強力な圧潰作用が行われる
。第4図口およびハ参照。()油圧系内の圧力がますま
す上昇し、これによつて圧力計24の接点が0Nになる
As a result, when the pressure switch 23 is switched, the solenoid valve 27 is switched, and the sub cylinders 11, 11 communicate with the pump 22. In other words, the pressure oil is in three cylinders 1
0, 11, 11. Therefore, while the moving speed of the pressure plate 12 decreases, the pressing force increases. This results in a strong crushing action on the scrap 16. See Figure 4, mouth and c. () The pressure in the hydraulic system increases more and more, and as a result, the contact point of the pressure gauge 24 becomes 0N.

するとソレノイドバルブ28が切換わりシリンダ31,
31が伸長し、ゲート型枠15が開く。これにより所定
寸法、形状に加圧成形されたスクラップ16が加圧板1
2によつて払出される。ゲート型枠15が開いた直後油
圧系内の圧力が下降し、このため圧力スイッチ23が切
換わる。ソレノイドバルブ27が閉に戻り圧油供給は主
シリンダ10のみに対してのものとなる。すなわち払出
しは高速度で行われる。第4図二参照。4) 加圧板1
2がリミットスイッチ32を0Nすることによりソレノ
イドバルブ26が切換わり主シリンダ10への圧油供給
が逆転する。
Then, the solenoid valve 28 switches and the cylinder 31,
31 is extended and the gate formwork 15 is opened. As a result, the scrap 16 pressure-formed into a predetermined size and shape is placed on the pressure plate 1.
It is paid out by 2. Immediately after the gate formwork 15 is opened, the pressure in the hydraulic system drops, which causes the pressure switch 23 to switch. The solenoid valve 27 returns to close and pressure oil is supplied only to the main cylinder 10. That is, payout is performed at high speed. See Figure 4-2. 4) Pressure plate 1
2 turns on the limit switch 32, the solenoid valve 26 is switched and the pressure oil supply to the main cylinder 10 is reversed.

すなわち加圧板12は原位置へ復帰移動する。この移動
は高速である。この引戻しのとき副シリンダ11,11
には圧油は送入されないが、副シリンダ11,11は加
圧板12の移動に追従して収縮される。このとき副シリ
ンダ11,11の一端からは油が自然流出し他端からは
自然流入する。この流れを許すためプレフイルバルブ2
9を開くべくパイロット回路30がある。油圧系内の圧
力降下により圧力計24の接点がもどり、バルブ28を
切換えてゲート型枠15を閉じる。第4図ホ参照。閾面
の簡単な説明 第1図、第2図、第3図は各々従来例を示す平萌図であ
る。
That is, the pressure plate 12 returns to its original position. This movement is fast. During this pullback, the sub cylinders 11, 11
Although no pressure oil is sent to the sub-cylinders 11, 11 are contracted following the movement of the pressure plate 12. At this time, oil naturally flows out from one end of the sub-cylinders 11, 11 and naturally flows in from the other end. To allow this flow, prefill valve 2
There is a pilot circuit 30 for opening 9. The pressure drop in the hydraulic system causes the contact of the pressure gauge 24 to return, switching the valve 28 and closing the gate formwork 15. See Figure 4, E. Brief Explanation of Threshold Surfaces FIGS. 1, 2, and 3 are flat views showing conventional examples.

第4図イないしホは本発明に係るもので順次動作を示す
平面図である。第5図は油圧川路図である。10,11
・・・・・油圧シリンダ、12・・・・・・加圧阪。
FIGS. 4A to 4E are plan views showing sequential operations according to the present invention. Figure 5 is a hydraulic river course map. 10,11
...Hydraulic cylinder, 12... Pressure cylinder.

Claims (1)

【特許請求の範囲】[Claims] 1 一つの加圧板12を押圧作動させるための複数の油
圧シリンダ10,11を、一つの油圧ポンプ22の吐出
側流路に接続するとともに、前記吐出側流路には、前記
油圧シリンダ10,11のうちの一部の油圧シリンダ1
0を、前記加圧板12を押圧する作用方向と、加圧板1
2を引き戻す反作用方向とに択一的に切換えた駆動する
ための切換弁26を設けるとともに、前記切換弁26が
作用方向および反作用方向の何れに切換えられている状
態でも、他の油圧シリンダ11を非入力状態で前記一部
の油圧シリンダ10に追随させる第一状態と、前記切換
弁26が作用方向に切換えられている状態で、かつ、前
記吐出側流路での内圧が設定値に達したときに前記他の
油圧シリンダ11を作用方向に駆動作動させる第二状態
とに、前記他の油圧シリンダ11の作動状態を切換え制
御する制御機構23,27,29,30を設けてあるス
クラップ加圧成形機用の自動制御装置。
1 A plurality of hydraulic cylinders 10 and 11 for pressing one pressure plate 12 are connected to a discharge side flow path of one hydraulic pump 22, and the hydraulic cylinders 10 and 11 are connected to the discharge side flow path. Some of the hydraulic cylinders 1
0, the direction of action of pressing the pressure plate 12, and the pressure plate 1.
A switching valve 26 is provided to selectively switch the drive direction to the reaction direction that pulls back the hydraulic cylinder 2, and even when the switching valve 26 is switched to either the action direction or the reaction direction, the other hydraulic cylinder 11 can be driven. A first state in which some of the hydraulic cylinders 10 follow the state with no input, and a state in which the switching valve 26 is switched to the operating direction, and the internal pressure in the discharge side flow path reaches a set value. Scrap pressurization is provided with a control mechanism 23, 27, 29, 30 that switches and controls the operating state of the other hydraulic cylinder 11 to a second state in which the other hydraulic cylinder 11 is driven and operated in the operating direction when the other hydraulic cylinder 11 is operated. Automatic control device for molding machines.
JP781682A 1982-01-20 1982-01-20 Automatic control device for scrap pressure forming machine Expired JPS6045999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP781682A JPS6045999B2 (en) 1982-01-20 1982-01-20 Automatic control device for scrap pressure forming machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP781682A JPS6045999B2 (en) 1982-01-20 1982-01-20 Automatic control device for scrap pressure forming machine

Publications (2)

Publication Number Publication Date
JPS58125400A JPS58125400A (en) 1983-07-26
JPS6045999B2 true JPS6045999B2 (en) 1985-10-14

Family

ID=11676115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP781682A Expired JPS6045999B2 (en) 1982-01-20 1982-01-20 Automatic control device for scrap pressure forming machine

Country Status (1)

Country Link
JP (1) JPS6045999B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236174A (en) * 1985-08-08 1987-02-17 Shokuhin Sangyo Center Compression forming apparatus of compressed food
JP5048696B2 (en) * 2009-03-02 2012-10-17 Ckd株式会社 Air cylinder
JP5461206B2 (en) * 2010-01-20 2014-04-02 住友重機械工業株式会社 Hydraulic press and control method of hydraulic press
CN104626634A (en) * 2015-02-05 2015-05-20 无为县环江铜业有限公司 Waste extrusion forming device for copper processing
BE1030723B1 (en) * 2022-07-19 2024-02-19 Valvan Baling Systems Nv ONE ROOM BALING EQUIPMENT

Also Published As

Publication number Publication date
JPS58125400A (en) 1983-07-26

Similar Documents

Publication Publication Date Title
US5203261A (en) Can baling machine and method
JP5058426B2 (en) Control device for hydraulic press and operation method of hydraulic press
US3643824A (en) Automatic packer cycle for refuse-carrying apparatus
US2722884A (en) Bale tensioning device for baling machines
US3827328A (en) Control system for hydraulic presses
US3452397A (en) Hydraulic actuator for an injection molding machine
US3891126A (en) Injection cylinders of die cast machines
US2009487A (en) Hydraulic press
US2200998A (en) Hydraulic press
JPS6045999B2 (en) Automatic control device for scrap pressure forming machine
CN112060671B (en) Wet garbage squeezer and compression cycle control method thereof
JPH07144205A (en) Upset press and upset pressing method using said upset press
US2790305A (en) Control valves for hydraulic presses
JP3509918B2 (en) Driving device for hydraulic cylinder in punch press with piston rod for punching punch head
CA2170655C (en) Dual hydraulic cylinder compacting device
RU2307738C1 (en) Hydraulic press
US5423244A (en) Hydraulic circuit for an apparatus for generating pressure and apparatus for generating pressure using said hydraulic circuit
JPH0138651B2 (en)
US2603176A (en) Hydraulic blankholder press and operating circuit therefor
JP6750181B1 (en) Metal cutting waste compression device
US3839896A (en) Hydraulic bending press
JP4402830B2 (en) Ram drive in hydraulic press
JPS5944160B2 (en) hydraulic press
SU837905A1 (en) Hydraulic press control system
JP2561872Y2 (en) Hydraulic pressure booster circuit