JPS6045716A - Internal-combustion engine - Google Patents

Internal-combustion engine

Info

Publication number
JPS6045716A
JPS6045716A JP59154299A JP15429984A JPS6045716A JP S6045716 A JPS6045716 A JP S6045716A JP 59154299 A JP59154299 A JP 59154299A JP 15429984 A JP15429984 A JP 15429984A JP S6045716 A JPS6045716 A JP S6045716A
Authority
JP
Japan
Prior art keywords
fuel
combustion chamber
mixture
supply means
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59154299A
Other languages
Japanese (ja)
Inventor
Yasuhiko Nakagawa
泰彦 中川
Hisamoto Aihara
相原 久元
Suzuo Suzuki
鈴木 鈴雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59154299A priority Critical patent/JPS6045716A/en
Publication of JPS6045716A publication Critical patent/JPS6045716A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/12Engines characterised by precombustion chambers with positive ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To improve firing performance and reduce compression ratio by firing and burning a portion of fuel mixture previously filled in an auxiliary combustion chamber in the suction and combustion strokes or previous exhaust one and injecting the remaining fuel into the mixture during combustion or immediately after the combustion. CONSTITUTION:When a portion of required fuel for 1 cycle in the later period of compression or suction is injected into an auxiliary combustion chamber 13 from a fuel injection valve 14 and combustible mixture is filled in said chamber, fuel does not leak into a main chamber 11, but forms the combustible mixture near theoretical mixture in the auxiliary chamber 13. Also, when fuel is injected in the later period of exaust in the previous cycle, time from the injection to ignition is long and fuel is injectd in high temperature gas, so that evaporation of fuel is promoted and radical generation and resolution of fuel are produced. Next, when the compression stroke proceeds and mixture in the auxiliary chamber 13 is fired by an ignition plug 15 prior to the upper dead point, the firing is delayed, but by a short time and does not provide any noise source like Diesel knock. And when during the combustion of mixture or immediately after the combustion, the remaining fuel is injected in the combustible gas, it is immediately fired to begin the combustion without ignition lag.

Description

【発明の詳細な説明】 この発明は主燃焼室と副燃焼室を備えた内燃機関に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an internal combustion engine having a main combustion chamber and a sub-combustion chamber.

従来、予燃焼室や渦流室などの副燃焼室を備えたディー
ゼルエンジンなどの内燃機関としては、第1図に示すも
のがある。これを説明すると、主燃焼室〈主室)1と連
絡孔(噴口)2を介して通じる副燃焼室(副室)3を有
し、この副燃焼室3には燃料噴射弁4と、冷間始動時で
圧縮による温度上昇が充分でないときに噴霧燃料および
空気を加熱するためのグロープラグく予熱栓)5とが配
設されている。燃料噴射弁4からは、圧縮行程終了直前
の圧縮比略20前後になる圧縮加熱された筒内高温空気
の中に、燃料供給ポンプ16より供給される軽油のよう
なセタン価の高い燃料が噴射され、自己着火により着火
せしめられる。副燃焼室3に噴射された燃料の一部が燃
焼してその中の圧力が急上昇し、未燃または不完全燃焼
成分を含む高温ガスを主燃焼室1へ高速で押し出し、主
燃焼室1で新気と流動、混合を促進しつつ燃焼を継続す
る。
2. Description of the Related Art Conventionally, there is an internal combustion engine such as a diesel engine equipped with a sub-combustion chamber such as a pre-combustion chamber or a swirl chamber, as shown in FIG. To explain this, it has a sub-combustion chamber (sub-chamber) 3 that communicates with a main combustion chamber (main chamber) 1 via a communication hole (nozzle port) 2, and this sub-combustion chamber 3 has a fuel injection valve 4 and a cooling chamber. A glow plug (preheating plug) 5 is provided to heat the atomized fuel and air when the temperature rise due to compression is insufficient during startup. From the fuel injection valve 4, fuel with a high cetane number such as light oil supplied from the fuel supply pump 16 is injected into the compressed and heated in-cylinder high-temperature air whose compression ratio is approximately 20 just before the end of the compression stroke. The fuel is then ignited by self-ignition. Part of the fuel injected into the auxiliary combustion chamber 3 burns, and the pressure therein rises rapidly, pushing high-temperature gas containing unburned or incompletely combusted components into the main combustion chamber 1 at high speed. Continues combustion while promoting flow and mixing with fresh air.

しかしながら、このような従来の内燃機関にあっては、
燃料噴射弁4より噴射された燃料が高温空気にふれて所
定温度に上昇し、かつ空気と充分混合して着火を開始す
るまでには相当の時間(@火遅れ期間、一般に10°ク
ランク角のオーダ)を要するため、第2図の特性図で示
すように、着火遅れ期間(図のE)中に噴射され続けた
燃料がその後−気に着火すると筒内の圧力上昇が急激〈
図のB−1C)になり、いわゆるディーゼルノックと称
する騒音を発生する。なお、第2図のFは噴射期間を示
し、Gは燃焼期間を示す。また、この着火は圧縮熱にた
よるため圧縮比が非常に高い(略20位)ことを必要と
し、シリンダブロックの骨組などをがっちり作るため構
造上重いエンジンになった。更に圧縮着火性の良いセタ
ン価の高い軽油などの燃料しか用いることができないと
いう問題点があった。
However, in such conventional internal combustion engines,
It takes a considerable amount of time for the fuel injected from the fuel injection valve 4 to come into contact with high-temperature air and rise to a predetermined temperature, mix sufficiently with the air, and start igniting (@fire delay period, generally at a crank angle of 10°). As shown in the characteristic diagram of Figure 2, when the fuel that was continuously injected during the ignition delay period (E in the figure) is then ignited, the pressure in the cylinder increases rapidly.
(B-1C) in the figure, and a noise called so-called diesel knock is generated. Note that F in FIG. 2 indicates the injection period, and G indicates the combustion period. In addition, since this ignition relies on the heat of compression, it requires a very high compression ratio (approximately 20 degrees), and the cylinder block framework is made to be solid, resulting in a heavy engine. Another problem is that only fuels such as light oil with good compression ignitability and a high cetane number can be used.

この発明は、このような従来の問題点に着目してなされ
たもので、機関の吸入行程、圧縮行程あるいは前サイク
ルの排気行程において副燃焼室内にあらかじめ機関1サ
イクルの所要燃料の一部を充填して可燃混合気を形成し
、点火手段によりこれを燃焼せしめ、この燃焼期間中あ
るいは燃焼終了直後に残部の燃料をその燃焼ガス中に噴
射するように構成することにより、着火性能を向上し上
記問題点を解決することを目的としている。
This invention was made by focusing on such conventional problems, and it is possible to fill a part of the fuel required for one engine cycle into the auxiliary combustion chamber in advance during the engine's intake stroke, compression stroke, or exhaust stroke of the previous cycle. The ignition performance is improved by forming a combustible mixture, combusting it by the ignition means, and injecting the remaining fuel into the combustion gas during this combustion period or immediately after the completion of combustion. The purpose is to solve problems.

以下、この発明を図面に基づいて説明する。The present invention will be explained below based on the drawings.

第3図は、この発明の第1実施例を示す図である。FIG. 3 is a diagram showing a first embodiment of the present invention.

まず構成を説明すると、主燃焼室11と連絡孔12を介
して通じる副燃焼室13を有し、この副燃焼室13に燃
料噴射弁14と点火栓(点火手段)15が配設されてい
る。
First, to explain the configuration, it has an auxiliary combustion chamber 13 that communicates with the main combustion chamber 11 via a communication hole 12, and a fuel injection valve 14 and an ignition plug (ignition means) 15 are disposed in this auxiliary combustion chamber 13. .

圧縮行程もしくは吸入行程後期において、第4図の特性
図で示ずように機関の1ザイクルの所要燃料の一部(通
常半分以下)を燃料噴射弁14より副燃焼室13内に噴
射して11燃焼室13内に可燃混合気を形成充満する(
第4図のl”aは可燃混合気形成用燃料噴射期間を示す
)。その際、燃料は連絡孔12から副燃焼室(a1室)
13内に流入してくる空気に逆って噴射されるため、は
とんど主燃焼室(主空)11に漏れずに副室13内に溜
まり、副室13内に理論混合比に近い可燃混合気を形成
することができる。
In the latter half of the compression stroke or suction stroke, as shown in the characteristic diagram of FIG. A combustible mixture is formed and filled in the combustion chamber 13 (
l”a in Fig. 4 indicates the fuel injection period for forming a combustible mixture). At that time, fuel is transferred from the communication hole 12 to the sub-combustion chamber (chamber a1).
Since it is injected against the air flowing into the main combustion chamber (main air) 11, most of the air does not leak into the main combustion chamber (main air) 11, but accumulates in the subchamber 13, and the mixture ratio in the subchamber 13 is close to the stoichiometric mixture. A flammable mixture can be formed.

また、前ザイクルの排気行程少期において機関の1サイ
クルの所要燃料の一部を燃料噴射弁14より副室13内
に噴射した場合は、燃料噴射時から点火時点までの時間
が長く、かつ高温の既燃ガス中に噴射するため、燃料の
蒸発が促進されると同時にラジカルの発生や分解(メタ
ノール等はCOとH,)が起こる。圧縮行程を更に進め
、上死点前に点火栓15で火花放電を行ない、副室13
内の混合気に点火する(第4図のSは点火を示す)。こ
の点火から着火するまでやはり多少の着火遅れ時間が存
在するが、第4図の特性図で示すように、その着火遅れ
(第4図のE)はガソリンエンジンの着火遅れと略同程
度の短時間のもので、ディーゼルノックのような騒音源
とはならない。そして、上記混合気の燃焼期間(第4図
のGa )中あるいは燃焼終了直後に、残部の燃料を燃
料噴射弁14よりその燃焼ガス中に噴射づ−ると(残り
燃料噴射機関を第4図の[bで示す)、ガスは十分な高
温となっているので、着火遅れはほとんどなくただちに
着火して燃焼を開始することができる(第4図のGは燃
焼期間を示ず)。そのため、筒内の圧力上昇が第4図に
示すように滑かになり着火遅れによる騒音が防止され、
かつ自己着火によらないのでセタン価の低い種々の燃料
、例えばガソリンなども用いることができる。また、圧
縮着火にたよらないため圧縮比を減少(例えば15以下
〉でき運動部分に作用する力が減少するため、IM造上
軽いエンジンを供給することができる効果が得られる。
In addition, if part of the fuel required for one cycle of the engine is injected from the fuel injection valve 14 into the auxiliary chamber 13 during the short period of the exhaust stroke of the previous cycle, the time from the time of fuel injection to the time of ignition is long and the temperature is high. Because it is injected into the burnt gas of the fuel, evaporation of the fuel is promoted, and at the same time, radicals are generated and decomposed (CO and H in methanol, etc.). The compression stroke is further advanced, and a spark discharge is performed with the ignition plug 15 before the top dead center, and the pre-chamber 13
(S in Figure 4 indicates ignition). There is still some ignition delay time from this ignition to ignition, but as shown in the characteristic diagram in Figure 4, the ignition delay (E in Figure 4) is about as short as the ignition delay of a gasoline engine. It's a time thing, and it's not a source of noise like diesel knock. Then, during the combustion period (Ga in Fig. 4) of the above-mentioned air-fuel mixture or immediately after the end of combustion, the remaining fuel is injected into the combustion gas from the fuel injection valve 14 (the remaining fuel is injected into the engine as shown in Fig. 4). [denoted by b), the gas is at a sufficiently high temperature, so there is almost no ignition delay and combustion can be started immediately by ignition (G in Figure 4 does not indicate the combustion period). Therefore, the pressure rise inside the cylinder becomes smooth as shown in Figure 4, and noise caused by ignition delay is prevented.
Moreover, since it does not rely on self-ignition, various fuels with a low cetane number, such as gasoline, can also be used. Furthermore, since it does not rely on compression ignition, the compression ratio can be reduced (for example, to 15 or less) and the force acting on the moving parts is reduced, making it possible to provide an engine that is lightweight due to its IM construction.

従来のように燃料噴射を連続的に行なう場合は副室13
内に可燃混合気を安定的に形成することは困難であるの
で、その途中に点火しても良く着火することはできない
が、この発明では一度燃料噴射を止めて(第4図のFa
i副室13内に可燃混合気を充分充満してから点火(第
4図のS)するようにしているため、スムーズに着火す
ることができ、その結果所期の目的を達成づることがで
きる(第4図参照)。
When performing continuous fuel injection as in the past, the subchamber 13
Since it is difficult to stably form a combustible mixture within the combustion chamber, ignition may not occur even if ignition occurs during the ignition.However, in this invention, once the fuel injection is stopped (Fa
i Since the auxiliary chamber 13 is sufficiently filled with flammable air-fuel mixture before ignition (S in Figure 4), ignition can occur smoothly, and as a result, the intended purpose can be achieved. (See Figure 4).

なお、最初の一部燃料の噴射と残部の燃料の噴射の噴射
量制御は燃料供給ポンプ16のカム(図示せず)により
行なうことができ、また点火栓15の点火電源は通常の
ガソリンエンジンのものと同様のものを用いることがで
きる。また、点火栓15を用いているためグロープラグ
は不要となる。
Note that injection amount control for the initial part of the fuel injection and the remaining fuel injection can be performed by a cam (not shown) of the fuel supply pump 16, and the ignition power source for the ignition plug 15 is the same as that of a normal gasoline engine. A similar product can be used. Further, since the spark plug 15 is used, a glow plug is not necessary.

第5図には、この発明の第2実施例を示す。FIG. 5 shows a second embodiment of the invention.

この実施例は、通常の火花点火栓の代りにプラズマ点火
栓17を用いて点火能力を向上させたものである。この
点火栓17にはカム18とカムポイント19の作動によ
り点火電圧を断続的に供給する通常の点火回路20と、
低圧電源回路21とが並列的に接続されており、1〜2
ジユール(j。
In this embodiment, a plasma ignition plug 17 is used in place of a normal spark ignition plug to improve ignition performance. The ignition plug 17 includes a normal ignition circuit 20 that intermittently supplies ignition voltage through the operation of a cam 18 and a cam point 19;
A low voltage power supply circuit 21 is connected in parallel, and 1 to 2
Jyur (j.

ule)/1回程度の電気エネルギが点火栓17に与え
られてプラズマ状の炎22がキャビティ23から副室1
3内に噴射され、着火遅れが短縮される。なお、24は
中心電極、25はアース電極、26はセラミックである
Electric energy is applied to the ignition plug 17 once) and a plasma-like flame 22 is emitted from the cavity 23 to the subchamber 1.
3, the ignition delay is shortened. Note that 24 is a center electrode, 25 is a ground electrode, and 26 is a ceramic.

第6図には、この発明の第3実施例を示づ。FIG. 6 shows a third embodiment of the invention.

この実施例は、混合気形成用の燃料を噴射する第1燃料
噴射弁(第1噴射弁)27と出力発生源となる燃料を噴
射する第2燃料噴射弁(第2噴射弁)28とを独立的に
設け、これら第1.第2噴射弁27.[8を副室13に
配設したものである。
This embodiment includes a first fuel injection valve (first injection valve) 27 that injects fuel for forming an air-fuel mixture and a second fuel injection valve (second injection valve) 28 that injects fuel that serves as an output generation source. These 1st. Second injection valve 27. [8 is arranged in the sub-chamber 13.]

第1ポンプ29から供給される燃料で第1噴射弁27が
副室13内に可燃渡合気を作り、点火栓15により点火
後、第2ポンプ30から供給される燃料で第2噴射弁2
8が残りの燃料噴射を行なう。
The first injection valve 27 uses the fuel supplied from the first pump 29 to create combustible gas in the subchamber 13, and after igniting it with the ignition plug 15, the second injection valve 27 uses the fuel supplied from the second pump 30.
8 performs the remaining fuel injection.

このような構成によれば、第1噴剣弁27と第2噴射弁
28とから別々に異なった燃料を噴射することが可能と
なる。すなわち、第1噴射弁27からは混合気形成用燃
料として適した気化性が良くかつ自己着火しにくいガソ
リンやプロパン(ブタン)等を噴罰し、第2噴躬弁28
からは出力発生用燃料として適した着火性が良く、また
安価である軽油等を噴射することが考えられる。その結
果、良好な着火性能を得ることができる。なお、第1噴
射弁27を下死点刊近で噴射するようにすれば、第1ポ
ンプ29に低圧ポンプを使用することが可能となる。
According to such a configuration, it becomes possible to inject different fuels from the first injection valve 27 and the second injection valve 28 separately. That is, the first injection valve 27 injects gasoline, propane (butane), etc., which has good vaporization properties and is difficult to self-ignite, and is suitable as a fuel for forming an air-fuel mixture, and the second injection valve 28 injects gasoline, propane (butane), etc.
Therefore, it is conceivable to inject light oil, etc., which is suitable as a fuel for generating power, has good ignitability, and is inexpensive. As a result, good ignition performance can be obtained. Note that if the first injection valve 27 is configured to inject near the bottom dead center, it is possible to use a low-pressure pump as the first pump 29.

第7図には、この発明の第4実施例を示す。FIG. 7 shows a fourth embodiment of the invention.

この実施例は上記第1噴射弁27の代りに燃料供給装置
31と連通ずる副吸気弁32を副室13に設けたもので
、吸入行程中に副吸気弁32を開弁じて副室13内に混
合気を吸入するようにしている。そのため、副室13内
に理想的な可燃混合気を容易にかつ迅速に形成すること
ができ、点火栓15による着火がスムーズに行なえる。
In this embodiment, a sub-intake valve 32 communicating with a fuel supply device 31 is provided in the sub-chamber 13 in place of the first injection valve 27, and the sub-intake valve 32 is opened during the intake stroke to enter the sub-chamber 13. The air-fuel mixture is inhaled. Therefore, an ideal combustible air-fuel mixture can be easily and quickly formed in the auxiliary chamber 13, and ignition by the ignition plug 15 can be performed smoothly.

その他の構成、効果は前記第3実施例と略同様である。Other configurations and effects are substantially the same as those of the third embodiment.

第8図には、この発明の第5実施例を示す。FIG. 8 shows a fifth embodiment of the invention.

この実施例は副室13内の混合気がやや主室11へ漏れ
てその着火性が悪化するおそれがあるが、連通孔12を
大きく拡大して連絡孔12の絞り損失による燃費の悪化
を改善したものであり、主として渦流室型の副室13に
適用することができる。
In this embodiment, there is a risk that the air-fuel mixture in the auxiliary chamber 13 leaks to the main chamber 11 to a certain extent, deteriorating its ignitability, but the communication hole 12 is greatly enlarged to improve fuel efficiency due to throttling loss of the communication hole 12. Therefore, it can be mainly applied to the subchamber 13 of the swirl chamber type.

なお、燃料に自己着火性の高い軽油等を用いるときは通
常のディーゼルエンジンでも高速高負荷時には着火遅れ
期間が短が(、特に本発明の点火手段15を用いなくて
も騒音は極めて小さい。従って、高速高負荷時には前記
各実施例の点火手段15(17)をその作動を停止する
ように遮断し、また第1噴射弁27<32>の作動を停
止するようにしてもよい。
Note that when using light oil or the like with high self-ignition properties as fuel, the ignition delay period is short even in a normal diesel engine at high speed and high load (especially, even if the ignition means 15 of the present invention is not used, the noise is extremely small. At the time of high speed and high load, the ignition means 15 (17) of each of the above embodiments may be shut off to stop its operation, and the operation of the first injection valve 27<32> may also be stopped.

第9図には、本発明の第6実施例を示す。FIG. 9 shows a sixth embodiment of the present invention.

前記実施例において、例えば第1実施例にあっては、噴
射された燃料が常に主室1に到達しゃ1い構成にすると
、可燃混合気形成のために噴射した燃料も主室11に漏
れ出るため具合が悪いということを考慮して、燃料噴射
弁14を副室13内に配設し、かつ出力発生源となる残
部燃料をf’J空13内の既燃ガス中に噴射するような
構成をしている。しかしながら、その既燃ガス中には酸
素はほとんど存在しないため、後から噴射された残部燃
料は完全に燃焼することができず、煤が発生しやすいと
いう問題がある。
In the embodiments described above, for example, in the first embodiment, if the injected fuel is configured to always reach the main chamber 1, the fuel injected to form a combustible mixture also leaks into the main chamber 11. In consideration of this, the fuel injection valve 14 is arranged in the auxiliary chamber 13, and the remaining fuel, which becomes the output source, is injected into the burnt gas in the f'J air 13. Configuring. However, since there is almost no oxygen in the burnt gas, the remaining fuel injected later cannot be completely combusted, resulting in the problem of easy generation of soot.

この第6実施例は、噴射方向の異なる2つのノズル33
.34有するビントークス(P 1ntaux)型の燃
料噴射弁35を、主室11と副室13との連通孔12近
傍に配設することにより前記実施例の上記問題点の解決
を図ったものである。
In this sixth embodiment, two nozzles 33 with different injection directions are used.
.. The above-mentioned problems of the above-mentioned embodiment are solved by disposing a P1ntaux type fuel injection valve 35 having 34 holes near the communication hole 12 between the main chamber 11 and the sub-chamber 13. .

第10図に示すように、その燃料噴射弁35の先端部に
設けた第1と第2ノズル33.’34は制御弁体36を
介して燃料供給通路37に連通している。可燃混合気形
成用燃料を噴射する第1ノズル33は、連通孔(噴口)
12に対して副室13に向けて配設され、また出゛力発
生源となる残りの燃料を噴射する第2ノズル34は、噴
射した燃料が副室13から噴出した既燃ガスを通り主室
11に到達するように、連通孔12の主室11側近傍か
ら主室11に向けて配設されている。ただし、第2ノズ
ル34が開弁するときは第1ノズル33も同時に開弁す
るが、その噴射特性は第11図に示すように、少量の燃
料噴射aの後に、大量の残り燃料の噴射すが行なわれる
As shown in FIG. 10, first and second nozzles 33 are provided at the tip of the fuel injection valve 35. '34 communicates with a fuel supply passage 37 via a control valve body 36. The first nozzle 33 that injects the fuel for forming a combustible mixture is a communication hole (spout).
A second nozzle 34 is disposed facing the auxiliary chamber 13 in contrast to the auxiliary chamber 12 and injects the remaining fuel, which also serves as a source of power generation. It is arranged toward the main chamber 11 from the vicinity of the main chamber 11 side of the communication hole 12 so as to reach the chamber 11 . However, when the second nozzle 34 opens, the first nozzle 33 also opens at the same time, but its injection characteristics are as shown in FIG. will be carried out.

圧縮行程、吸入行程後期あるいは前サイクルの排気行程
後期において点火用混合気形成用燃料が第1ノズル33
から連通孔12を介して副室13内に向Gノで噴射され
、その燃料は圧縮行程時の副室13内に流入づ−る空気
と混合し、副室13内に可燃混合気を形成する。その混
合気を点火栓15等の点火手段により点火すると、副室
13内の可燃混合気は燃焼、膨張し、高温の既燃ガスが
連通孔12から噴出する。既燃ガスが噴出するとほぼ同
時か、その直後に残りの燃料を第2ノズル34から噴射
する。この様にすると、出力発生源となる残りの燃料は
高温ガス中に噴射されることになり、燃料の気化、及び
熱的な燃料のクラッキング等、燃料の初期の過程が速や
かに進行し、特に燃料が十分な酸素が存在している主室
11内に到達するため着火遅れが短くなり、かつその後
の燃焼も完全に行なわれ煤等の発生も抑制される。
During the compression stroke, the latter half of the intake stroke, or the latter half of the exhaust stroke of the previous cycle, the fuel for forming the ignition mixture is supplied to the first nozzle 33.
The fuel is injected into the auxiliary chamber 13 through the communication hole 12 in the direction of G, and the fuel mixes with the air flowing into the auxiliary chamber 13 during the compression stroke, forming a flammable air-fuel mixture in the auxiliary chamber 13. do. When the air-fuel mixture is ignited by an ignition means such as the spark plug 15, the combustible air-fuel mixture in the auxiliary chamber 13 burns and expands, and high-temperature burnt gas is ejected from the communication hole 12. The remaining fuel is injected from the second nozzle 34 almost simultaneously or immediately after the burnt gas is ejected. In this way, the remaining fuel, which is the source of power generation, is injected into the hot gas, and the initial processes of the fuel, such as fuel vaporization and thermal fuel cracking, proceed quickly, and especially Since the fuel reaches the main chamber 11 where sufficient oxygen is present, the ignition delay is shortened, and the subsequent combustion is completed, suppressing the generation of soot and the like.

第12図には、この発明の第7実施例を示ず。FIG. 12 does not show the seventh embodiment of the invention.

この実施例は、前記第6実施例と略同様な目的を有する
ものであるが、第1と第2の燃料噴射弁38.39を設
け、可燃混合気形成用燃料を噴射する第1噴射弁38を
副室13内に配設し、出力発生源となる残りの燃料を噴
射Jる第21fR射弁39を主室1側の連通孔12の近
傍に配設している。
This embodiment has substantially the same purpose as the sixth embodiment, but includes first and second fuel injection valves 38 and 39, and the first injection valve injects fuel for forming a combustible mixture. 38 is disposed in the auxiliary chamber 13, and a 21fR injection valve 39 for injecting the remaining fuel, which serves as an output source, is disposed near the communication hole 12 on the main chamber 1 side.

従って、第2噴射弁39から噴射される残りの燃料は温
度が高く、かつ′@素が充分にある雰囲気中に噴射され
ることになり、所期の目的が達成される。更に、前記第
3実施例の場合と同様に、第1噴射弁38からは気体ま
たは気化性が良くかつ自己着火しにくいガソリンを噴射
し、第2噴射弁39からは着火性が良く、また安価であ
る軽油やその他用質の燃料を噴射することができる。
Therefore, the remaining fuel injected from the second injection valve 39 is injected into an atmosphere that is high in temperature and has a sufficient amount of '@ elements, and the desired purpose is achieved. Further, as in the case of the third embodiment, the first injection valve 38 injects gas or gasoline that has good vaporization and is difficult to self-ignite, and the second injection valve 39 injects gasoline that has good ignitability and is inexpensive. It is possible to inject light oil and other quality fuels.

以上説明してきたように、この発明によればその構成を
機関の吸入行程、圧縮行程あるいは前サイクルの排気行
程において副燃焼室内に機関の1サイクルの所要燃料の
一部を供給して可燃混合気を形成する第1燃料供給手段
と、その可燃混合気を点火燃焼するための点火手段と、
その燃焼期間中あるいは燃焼終了直後に残りの燃料をそ
の燃焼ガス中に、またはその燃焼ガスを通して主燃焼室
に噴射する第2燃料供給手段とを設(プたため、着火遅
れによる騒音が解消され、セタン価の低い燃料も用いる
ことができ、圧縮比を減少することができるなどの効果
を得ることができる。更に、上記第1燃料供給手段と第
2燃料供給手段を別々の燃料タンクに連通ずることによ
り、第1.第2燃料供給手段から別々に異なった燃料を
噴出することが可能となり、より適切な着火性能を得る
ことができる。
As explained above, according to the present invention, a part of the fuel required for one cycle of the engine is supplied into the auxiliary combustion chamber during the intake stroke, compression stroke, or exhaust stroke of the previous cycle to create a combustible mixture. a first fuel supply means for forming a fuel mixture; an ignition means for igniting and burning the combustible mixture;
A second fuel supply means is provided for injecting the remaining fuel into the combustion gas or through the combustion gas into the main combustion chamber during the combustion period or immediately after the combustion ends, thereby eliminating noise caused by ignition delay. Fuel with a low cetane number can also be used, and effects such as being able to reduce the compression ratio can be obtained.Furthermore, the first fuel supply means and the second fuel supply means can be connected to separate fuel tanks. This makes it possible to separately inject different fuels from the first and second fuel supply means, thereby achieving more appropriate ignition performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の縦断面図、第2図は第1図の装置の
クランク角に対する筒内圧力に関する特性図、第3図は
本発明の第1実施例の縦断面図、第4図は第3図の装置
のクランク角に対する筒内圧力に関1−る特性図、第5
図は本発明の第2実施例の縦断面図および回路図、第6
図は本発明の第3実施例の縦断面図、第7図は本発明の
第4実施例の縦断面図、第8図は本発明の第5実施例の
縦断面図、第9図は本発明の第6実施例の縦断面図、第
10図は第9図の燃料噴射弁の要部拡大縦断面図、第1
1図は第9図の燃料噴射弁のクランク角に対づ”る燃料
噴!8量に関する特性図、第12図は本発明の第7実施
例の縦断面図である。 11・・・主燃焼室、12・・・連絡孔、13・・・副
燃焼室、14・・・燃料噴射弁、15・・・点火栓(点
火手段)、16・・・燃料供給ポンプ、17・・・プラ
ズマ点火栓、21・・・低圧電源回路、23・・・キャ
ビティ、27・・・第1燃料噴射弁、28・・・第2燃
料l111躬弁、29・・・第1ポンプ、30・・・第
2ポンプ、31・・・燃料供給装置、32・・・副吸気
弁、33・・・第1ノズル、34・・・第2ノズル、3
5・・・燃料噴射弁、38・・・第1燃籾噴剣弁、39
・・・第2燃料11jl劃弁。 特許出願人 日産自動車株式会社 −′1 第2図 第4図 DC 第5図 4 −7: 第6図 第7図
FIG. 1 is a longitudinal sectional view of a conventional device, FIG. 2 is a characteristic diagram of the cylinder pressure versus crank angle of the device shown in FIG. 1, FIG. 3 is a longitudinal sectional view of the first embodiment of the present invention, and FIG. 4 is a characteristic diagram related to the cylinder pressure with respect to the crank angle of the device shown in Fig. 3, and Fig.
The figures are a longitudinal sectional view and a circuit diagram of the second embodiment of the present invention, and the sixth embodiment
The figure is a longitudinal sectional view of the third embodiment of the present invention, FIG. 7 is a longitudinal sectional view of the fourth embodiment of the invention, FIG. 8 is a longitudinal sectional view of the fifth embodiment of the invention, and FIG. 9 is a longitudinal sectional view of the fifth embodiment of the invention. A vertical sectional view of a sixth embodiment of the present invention, FIG. 10 is an enlarged longitudinal sectional view of main parts of the fuel injection valve of FIG.
Fig. 1 is a characteristic diagram regarding the amount of fuel injected with respect to the crank angle of the fuel injection valve shown in Fig. 9, and Fig. 12 is a longitudinal sectional view of the seventh embodiment of the present invention. 11... Main Combustion chamber, 12... Communication hole, 13... Sub-combustion chamber, 14... Fuel injection valve, 15... Ignition plug (ignition means), 16... Fuel supply pump, 17... Plasma Spark plug, 21...Low voltage power supply circuit, 23...Cavity, 27...First fuel injection valve, 28...Second fuel l111 valve, 29...First pump, 30... Second pump, 31...Fuel supply device, 32...Sub-intake valve, 33...First nozzle, 34...Second nozzle, 3
5...Fuel injection valve, 38...First fuel injection valve, 39
...Second fuel 11jl valve. Patent applicant Nissan Motor Co., Ltd.-'1 Figure 2 Figure 4 DC Figure 5 4-7: Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1、 主燃焼室に連通孔を介して連通する副燃焼室を有
する内燃機関において、機関の吸入行程、圧縮行程ある
いは前サイクルの排気行程において機関の1サイクルの
所要燃料の一部を副燃焼室内に供給して混合気を形成す
る第1の燃料供給手段と、その混合気を点火燃焼せしめ
る点火手段と、その混合気の燃焼期間中あるいは燃料終
了直後に残りの燃料を主燃焼室または副燃焼室に供給す
る第2の燃料供給手段とを有することを特徴とする内燃
機関。 2、 第1と第2の燃料供給手段が、副燃焼室に設けら
れた1個の燃料噴射装置よりなる特許請求の範囲第1項
記載の内燃機関。 3、 第1と第2の燃料供給手段が、副燃焼室側の連通
孔近傍に配設され、連通孔を通して副燃焼室側に噴射す
る第1のノズルと、連通孔を通して主燃焼室側に噴9A
′!lる第2ノズルとを有する1個の燃料噴射装置より
なる特許請求の範囲第1項記載の内燃機関。 4、 第1の燃料供給手段は吸気弁を介して副燃焼室に
接続された吸気管に設けられている特許請求の範囲第1
項記載の内燃機関。 5、 点火手段がプラズマ点火栓である特許請求の範囲
第1項より第4項のいずれか1つに記載の内燃機関。 6、 点火手段は機関の高速高負荷域にJ5いて点火を
中断されるようにされている特許請求の範囲第1項より
第5項のいずれか1つに記載の内燃機関。 7、 第1および第2の燃料供給手段は、機関のいずれ
か1つに記載の内燃機関。 8、 主燃焼室に連通孔を介して連通ずる副燃焼室を有
する内燃機関において、機関の吸入行程、圧縮行程ある
いは前サイクルの排気行程において機関の1ザイクルの
所要燃料の一部を副燃焼室内に供給して混合気を形成す
る第1の燃料供給手段と、その混合気を点火燃焼せしめ
る点火手段と、その混合気の燃焼期間中あるいは燃焼終
了直後に残りの燃料を燃焼室に供給覆る第2の燃料供給
手段とを設ける一方、第1の燃料供給手段からは気体あ
るいは気化性の良い燃料を、第2の燃料供給手段からは
重質の燃料を供給すべく構成したことを特徴とする内燃
機関。 9、 第1の燃料供給手段は副燃焼室に配設された燃料
噴射装置であり、第2の燃料供給手段は主燃焼室側の連
通孔近傍に配設され連通孔より噴出する燃焼ガスを通し
て主燃焼室に達する燃料を噴射する燃料噴射装置である
特許請求の範囲第8項記載の内燃機関。 10、第1の燃料供給手段は、高速高負荷時には作動し
ないようにされている特許請求の範囲第8項または第9
項記載の内燃機関。
[Claims] 1. In an internal combustion engine having an auxiliary combustion chamber communicating with the main combustion chamber through a communication hole, the amount of fuel required for one cycle of the engine is determined during the intake stroke, compression stroke, or exhaust stroke of the previous cycle. a first fuel supply means for supplying a portion of the fuel into the auxiliary combustion chamber to form a mixture; an ignition means for igniting and combusting the mixture; and a first fuel supply means for supplying a portion of the fuel into the sub-combustion chamber; An internal combustion engine comprising: a second fuel supply means for supplying fuel to a main combustion chamber or a sub-combustion chamber. 2. The internal combustion engine according to claim 1, wherein the first and second fuel supply means are one fuel injection device provided in the auxiliary combustion chamber. 3. The first and second fuel supply means are arranged near the communication hole on the auxiliary combustion chamber side, and include a first nozzle that injects fuel into the auxiliary combustion chamber side through the communication hole, and a first nozzle that injects fuel into the auxiliary combustion chamber side through the communication hole. Fountain 9A
′! The internal combustion engine according to claim 1, comprising one fuel injection device having a second nozzle. 4. The first fuel supply means is provided in the intake pipe connected to the auxiliary combustion chamber via the intake valve.
Internal combustion engine as described in section. 5. The internal combustion engine according to any one of claims 1 to 4, wherein the ignition means is a plasma ignition plug. 6. The internal combustion engine according to any one of claims 1 to 5, wherein the ignition means is configured to interrupt ignition in a high speed and high load range of the engine. 7. The internal combustion engine according to any one of the engines, wherein the first and second fuel supply means are any one of the engines. 8. In an internal combustion engine having an auxiliary combustion chamber that communicates with the main combustion chamber through a communication hole, a part of the fuel required for one cycle of the engine is pumped into the auxiliary combustion chamber during the intake stroke, compression stroke, or exhaust stroke of the previous cycle. a first fuel supply means for supplying fuel to the fuel mixture to form an air-fuel mixture; an ignition means for igniting and combusting the air-fuel mixture; 2 fuel supply means are provided, and the first fuel supply means is configured to supply gaseous or highly vaporizable fuel, and the second fuel supply means is configured to supply heavy fuel. Internal combustion engine. 9. The first fuel supply means is a fuel injection device disposed in the auxiliary combustion chamber, and the second fuel supply means is disposed near the communication hole on the main combustion chamber side and injects combustion gas ejected from the communication hole. The internal combustion engine according to claim 8, which is a fuel injection device that injects fuel that reaches the main combustion chamber. 10. Claim 8 or 9, wherein the first fuel supply means is not operated at high speed and high load.
Internal combustion engine as described in section.
JP59154299A 1984-07-25 1984-07-25 Internal-combustion engine Pending JPS6045716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59154299A JPS6045716A (en) 1984-07-25 1984-07-25 Internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59154299A JPS6045716A (en) 1984-07-25 1984-07-25 Internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS6045716A true JPS6045716A (en) 1985-03-12

Family

ID=15581093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59154299A Pending JPS6045716A (en) 1984-07-25 1984-07-25 Internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6045716A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168320A (en) * 1989-11-09 1991-07-22 Cooper Ind Inc Combustion equipment for dual gas/liquid fuel engine, and method for combustion thereof
JPH06346765A (en) * 1993-06-08 1994-12-20 Minoru Nakagawa Gas hybrid diesel engine
US7216623B2 (en) 2004-12-22 2007-05-15 Nissan Motor Co., Ltd. Internal combustion engine with auxiliary combustion chamber
JP2010196517A (en) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd Control device for internal combustion engine
CN107587930A (en) * 2016-07-06 2018-01-16 马勒动力系统有限责任公司 Method for starting internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168320A (en) * 1989-11-09 1991-07-22 Cooper Ind Inc Combustion equipment for dual gas/liquid fuel engine, and method for combustion thereof
JPH06346765A (en) * 1993-06-08 1994-12-20 Minoru Nakagawa Gas hybrid diesel engine
US7216623B2 (en) 2004-12-22 2007-05-15 Nissan Motor Co., Ltd. Internal combustion engine with auxiliary combustion chamber
JP2010196517A (en) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd Control device for internal combustion engine
CN107587930A (en) * 2016-07-06 2018-01-16 马勒动力系统有限责任公司 Method for starting internal combustion engine
CN107587930B (en) * 2016-07-06 2020-11-24 马勒动力系统有限责任公司 Method for starting an internal combustion engine

Similar Documents

Publication Publication Date Title
JP3558370B2 (en) Compression ignition gasoline engine
US7464688B2 (en) Active radical initiator for internal combustion engines
US7398743B2 (en) Compression ignition initiation device and internal combustion engine using same
US6619254B2 (en) Method for operating an internal combustion engine operated with a self-ignitable fuel
WO2012000307A1 (en) Multi-fuel pre-mixed combustion system of internal combustion engine
CN211666804U (en) Pre-combustion system with air-entraining nozzle and internal combustion engine thereof
JP2003254105A (en) Diesel engine and its operating method
JP2002266645A (en) Engine, its operating method and auxiliary combustion chamber mechanism
JP3379176B2 (en) Subchamber gas engine
JP4073315B2 (en) Sub-chamber engine
JP2972064B2 (en) Internal combustion engine
CN110953059A (en) Pre-combustion system with air entrainment nozzle, internal combustion engine and pre-combustion control method
US5477822A (en) Spark ignition engine with cylinder head combustion chamber
JPS6045716A (en) Internal-combustion engine
JP4086440B2 (en) engine
JP3372352B2 (en) Gas fuel engine
JP3969915B2 (en) Premixed compression self-ignition engine and operation method thereof
JP3379177B2 (en) Subchamber gas engine
JP2002266643A (en) Engine, its operating method and auxiliary combustion chamber mechanism
CN112832904A (en) Small multi-fuel triangle rotor engine and working mode
JP4145177B2 (en) Engine and operation method thereof
JPH07332140A (en) Compressive ignition type internal combustion engine
JPH1054244A (en) Indirect injection type engine
JPH06229318A (en) High-compression ratio sub chamber-type gas engine
JP2005232987A (en) Subsidiary chamber type engine