JPS6045207A - Method for connecting optical fiber - Google Patents

Method for connecting optical fiber

Info

Publication number
JPS6045207A
JPS6045207A JP15282783A JP15282783A JPS6045207A JP S6045207 A JPS6045207 A JP S6045207A JP 15282783 A JP15282783 A JP 15282783A JP 15282783 A JP15282783 A JP 15282783A JP S6045207 A JPS6045207 A JP S6045207A
Authority
JP
Japan
Prior art keywords
gaseous
oxyhydrogen flame
gas
optical fibers
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15282783A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Ko Watanabe
渡辺 興
Yoshiaki Miyajima
宮島 義昭
Giyu Kashima
加島 宜雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Nippon Telegraph and Telephone Corp filed Critical Fujikura Ltd
Priority to JP15282783A priority Critical patent/JPS6045207A/en
Publication of JPS6045207A publication Critical patent/JPS6045207A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

PURPOSE:To connect easily optical fibers without requiring the selection of the working site by using an oxyhydrogen flame contg. a halogen compound. CONSTITUTION:Gaseous O2 and gaseous SF6 are fed to an oxyhydrogen burner having a double-tubed structure. Gaseous H2 is fed to the outer tube, the tip of the burner and optical fibers are set at 2mm. interval to preheat the fibers, and the fibers are melted and connected with the gaseous O2 and gaseous SF2. After the connection, surface hydroxyl groups are removed from the connected part and its vicinities by surface treatment. This surface treatment is carried out at a low temp. so as to prevent the corrosion of the surface of the connected fiber with HF produced in the oxyhydrogen flame. The exposed part of the resulting optical fiber including the connected part is coated with epoxy resin which is the coating material of the original optical fibers, and the resin is crosslinked with ultraviolet rays to reinforce the optical fiber. In this method, a gaseous or liq. halogen compound having a hydroxyl group removing effect and high stability at ordinary temp. is added to an oxyhydrogen flame in place of conventional gaseous chlorine having the same effect.

Description

【発明の詳細な説明】 この発明は、作業場所を限定されることなく光ファイバ
を酸水素炎により良好な状態で溶融接続することのでき
る光ファイバの接続方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical fiber splicing method that allows optical fibers to be fused and spliced in good condition using an oxyhydrogen flame without being limited to a work area.

一般に光ファイバの永久的な接続方法としては、アーク
放電による方法、酸水素炎による方法が知られているが
、高強度の接続を得たい場合は、酸水素炎に塩素ガスを
添加して、これによって溶融接続する方法が良いとされ
ている。
In general, methods using arc discharge and oxyhydrogen flame are known as methods for permanently connecting optical fibers, but if you want to obtain a high-strength connection, add chlorine gas to the oxyhydrogen flame. This method of fusion bonding is considered to be better.

ところが、光ファイバの接続作業は、洸:テす光ファイ
バの布設場所が様々な 場所にある以上、その作業場所を限定することなく行な
わ聡ければならない。そのためには塩素ガスボンベを準
備し、これを持ち運ばなければならない。しかし、この
塩素ガスは有毒ガスなので、そのボンベの取扱いには様
々な制約、危険が伴ない、そのため、酸水素炎中に塩素
ガスを添加し、光ファイバの高強度な接続を行なう方法
の実施を困難なものにしている。
However, since optical fibers can be installed in a variety of locations, the work of connecting optical fibers must be carried out without limiting the work location. To do this, you will need to prepare a chlorine gas cylinder and carry it with you. However, since this chlorine gas is a toxic gas, there are various restrictions and dangers involved in handling the cylinder.Therefore, a method of adding chlorine gas to an oxyhydrogen flame to create a high-strength connection of optical fibers has been implemented. making it difficult.

この発明は上記事情に鑑みてなされたもので、その目的
は作業場所を限定することなく、酸水素炎による光ファ
イバの高強度な接続を容易に行なうことのできる光ファ
イバの接続方法を提供することにあり、常温では安定で
、酸水素炎中で分解して塩素、フッ素などのハロゲンガ
スを発生するガス状または液体状のハ覧ゲン化合物を塩
素ガスの替りに使うことによって、様々な使用上の制約
と危険を伴なう塩素ボンベを使用しないで済むようにし
たものである。
This invention was made in view of the above circumstances, and its purpose is to provide an optical fiber splicing method that can easily connect optical fibers with high strength using an oxyhydrogen flame without limiting the work area. In particular, gaseous or liquid halogen compounds, which are stable at room temperature and generate halogen gases such as chlorine and fluorine when decomposed in an oxyhydrogen flame, can be used in various ways in place of chlorine gas. This eliminates the need to use chlorine cylinders, which have the above limitations and risks.

この発明の根拠となるものは、第1にガラスファイバの
表面に付着して表面傷をつくる水酸基を脱水除去する作
用を有する塩素ガスは、酸水素炎中で塩素ガスになれば
よいのであって、始めから単体の塩素ガスである必要は
ないことにあり、第2にガラス表面の水酸基を脱水除去
する物質として塩素のかわりにフッ素など他のハロゲン
を用いることができることにある。
The basis of this invention is that, first, chlorine gas, which has the effect of dehydrating and removing hydroxyl groups that adhere to the surface of glass fibers and cause surface scratches, can be converted into chlorine gas in an oxyhydrogen flame. The second reason is that it is not necessary to use a single chlorine gas from the beginning, and the second reason is that other halogens such as fluorine can be used instead of chlorine as a substance that dehydrates and removes hydroxyl groups on the glass surface.

従って、この発明では常温では安定で、酸水素炎中で分
解してハロゲンガスを発生するガス状または液体状のハ
ロゲン化合物を酸水素炎中に添加してガラスファイバを
溶融接続するものである0上記ハロゲン化合物として、
常温でガス状であり、非常に安定なCF4、SF4、N
Fsなどのフッ素化合物があり、また常温で液体で、か
つ安定なCCe4 、CHzCetなどの塩素化合物が
ある。なお、ハロゲン化合物が液体の時は、水素ガス、
あるいは酸素ガスをキャリアガスとして、その中に含ま
せるようにする。
Therefore, in this invention, a gaseous or liquid halogen compound that is stable at room temperature and decomposes in an oxyhydrogen flame to generate halogen gas is added to an oxyhydrogen flame to melt and connect glass fibers. As the above halogen compound,
CF4, SF4, and N are gaseous at room temperature and extremely stable.
There are fluorine compounds such as Fs, and chlorine compounds such as CCe4 and CHzCet, which are liquid at room temperature and stable. In addition, when the halogen compound is liquid, hydrogen gas,
Alternatively, oxygen gas may be used as a carrier gas and contained therein.

上記フッ素化合物は、酸水素炎中で分解してフッ素[F
]ガスまたはHFガスとなり、ガラスファイバ表面に付
着している水酸基を脱水除去する。このフッ素イオンに
よる水酸基除去反応は、800°C程度で完全に行なわ
れる。また、塩素ガスによる水酸基除去反応は、700
°C〜950°Cで完全に行なわれ、CCl4単体での
除去反応は550°C〜6 Q O’Cで行なわれる。
The above fluorine compound is decomposed in an oxyhydrogen flame to produce fluorine [F].
] gas or HF gas, and dehydrates and removes the hydroxyl groups attached to the surface of the glass fiber. This hydroxyl group removal reaction using fluorine ions is completely carried out at about 800°C. In addition, the hydroxyl group removal reaction with chlorine gas is 700
The reaction is completely carried out at 950°C to 550°C, and the removal reaction of CCl4 alone is carried out at 550°C to 6 Q O'C.

この発明方法による光ファイバの溶融接続は、次の工程
に従って行なえば高強度な接続を容易に行なうことがで
きる。
The fusion splicing of optical fibers according to the method of this invention can easily provide high-strength splicing by following the following steps.

(i) 接続前の各光ファイバの接読部およびその近傍
の表面にハロゲンガスを含む酸水素炎を噴き当てて、水
酸基除去の前処理を行なう。
(i) A pretreatment for removing hydroxyl groups is performed by spraying an oxyhydrogen flame containing halogen gas onto the read-out portion of each optical fiber and its nearby surface before connection.

(11)次に、各光ファイバの溶融接続を酸水素炎ある
いは少量のハロゲンガスを含む酸水素炎にて行なう。
(11) Next, each optical fiber is fused and spliced using an oxyhydrogen flame or an oxyhydrogen flame containing a small amount of halogen gas.

(iii) 接続完了後の光ファイバの融着接続部にハ
ロゲンガスを含む酸水素炎を噴きつけてファイバ表面か
ら表面傷の原因となる水酸基を除去する。
(iii) After the connection is completed, oxyhydrogen flame containing halogen gas is sprayed onto the fusion spliced portion of the optical fiber to remove hydroxyl groups that cause surface scratches from the fiber surface.

このように、この発明方法は、光ファイバの高強度な接
続を行なうために酸水素炎中に添加する水酸基除去作用
を有する塩素ガスの替わりに、同様の作用効果を発揮す
ることができ、しかも常温安定性の高いガス状または液
体状のハロゲン化合物を酸水素炎中に添加し、これによ
って得られる炎によって光ファイバの溶改接読を行なう
ものなので、光ファイバの接続作業において、使用上様
々な制約、危険を伴なう塩素ガスボンベを使わなくて済
み、上記接続作業をその作業場所の限定を受けることな
く、容易に実施することが可能となる。
As described above, the method of the present invention can exhibit similar effects in place of chlorine gas, which has the effect of removing hydroxyl groups, and is added to an oxyhydrogen flame to make high-strength connections of optical fibers. A gaseous or liquid halogen compound that is highly stable at room temperature is added to an oxyhydrogen flame, and the resulting flame is used to weld and re-read optical fibers, so it can be used in various ways in optical fiber splicing work. This eliminates the need to use a chlorine gas cylinder, which has many restrictions and dangers, and allows the above-mentioned connection work to be easily carried out without being limited by the work location.

次に実施例によりこの発明をさらに詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

〔実施例1〕 各々外径125μm1コア径8μmの2本のシングルモ
ードファイバをV溝により固定した。これら光ファイバ
の溶融接続に使われる2重g構造め酸水素バーナは、内
管が内径0.7mm5外径1.5mmであり、外管が内
径2.0 mm s外径3.0朋のものを使った。
[Example 1] Two single mode fibers each having an outer diameter of 125 μm and a core diameter of 8 μm were fixed by a V-groove. The double g-structure hydrogen oxide burner used for fusion splicing these optical fibers has an inner tube with an inner diameter of 0.7 mm and an outer diameter of 1.5 mm, and an outer tube with an inner diameter of 2.0 mm and an outer diameter of 3.0 mm. I used something.

まず、上記内1g ニ02 ガス200CC/9. S
 Fa’iガス10cc/分を流し、上記外管にH2ガ
ス35Q:c/分を流し、このバーナの先端と光ファイ
バとの間隔を2mmに保ち、20秒間予熱した。
First, 1g of the above 202 gas 200CC/9. S
Fa'i gas was flowed at 10 cc/min, H2 gas was flowed at 35 Q:c/min into the outer tube, the distance between the tip of the burner and the optical fiber was maintained at 2 mm, and the tube was preheated for 20 seconds.

次に上記各光ファイバをつき合わせ、上記内管ニOt 
カス25Q:c/分ト5F6−Xガス1c(/分を流し
、上記外管にH2ガス40 oCc/分を流して、上記
光ファイバを溶融接続した。この時の加熱時間は25秒
間であった。
Next, the above optical fibers are butted together, and the inner tube is
Crush 25Q: c/min to 5F6-X gas 1c (/min) was flowed, H2 gas was flowed through the outer tube at 40 oCc/min, and the optical fibers were fused and spliced.Heating time at this time was 25 seconds. Ta.

次に接続後の光ファイバの融着接続部およびその近傍の
表面の水酸基を、上記内管にO,ガス150cc/分、
SF6.;ガスif):c/分を流し、上記外管にH2
ガス300CC/分を流すことによって除去した。
Next, hydroxyl groups on the surface of the fusion spliced part of the optical fiber after splicing and its vicinity were removed from the inner tube using O gas at 150 cc/min.
SF6. ;Gas if): flow c/min, H2 into the above outer tube
It was removed by flowing 300 CC/min of gas.

この溶融接続後の表面処理は、酸水素炎中に発生するH
Fによりファイバ表面が侵食されないように可能な限り
低温で行なうことが肝要である。この作業は20秒間行
なった。
The surface treatment after this fusion splicing is performed using H
It is important to carry out the process at the lowest possible temperature so that the fiber surface is not eroded by F. This operation was performed for 20 seconds.

最後に、得られた光ファイバの融着接続部周辺の露出部
分にこの光ファイバのコート材と同じ工ボキシ樹脂を塗
布し、これを紫外線により架橋してファイバの補強を行
なった。
Finally, the same plastic boxy resin as the coating material for the optical fiber was applied to the exposed area around the fusion spliced portion of the obtained optical fiber, and this was crosslinked with ultraviolet rays to reinforce the fiber.

このようにして得られた光ファイバの融着接続部の強度
は、実施した30本の平均が5.41(rmであり、そ
の内の最低が31ψ/mであった。また、これら光ファ
イバの接続損失も通常のアーク法と大差なかった。
The strength of the fusion spliced parts of the optical fibers obtained in this way was 5.41 (rm) on average for 30 fibers, the lowest of which was 31ψ/m. The connection loss was not much different from that of the normal arc method.

〔実施例2〕 まず、外径125μm1コア径8μm1シリコーンコー
ト径420μmのシングルモードファイバの先端部分(
接続部分)のシリコーン層を除去した。
[Example 2] First, the tip of a single mode fiber with an outer diameter of 125 μm, a core diameter of 8 μm, and a silicone coat diameter of 420 μm (
The silicone layer on the connecting part) was removed.

その後、その露出部分の表面の露出部分に付着している
有機物を、前記実施例1と同じ酸水素炎バーナを用い、
02ガス200CC/分、CF、ガス20cc/分、H
2ガス200CC/’分の流量で、60秒間、できるだ
け低温となるように炎を当てて除去した。
Thereafter, the organic matter adhering to the exposed surface of the exposed portion was removed using the same oxyhydrogen flame burner as in Example 1.
02 gas 200cc/min, CF, gas 20cc/min, H
The gas was removed by applying a flame at a flow rate of 200 cc/min for 60 seconds to keep the temperature as low as possible.

次に、上記バーナに02ガス25 Dcc1分、CF。Next, 02 gas 25 Dcc 1 minute, CF was added to the burner.

ガス1 cc/分、Hlガス400Cc/分を流し、こ
れによって、上記光ファイバを溶融接続した。この時の
加熱時間は15秒であった。
The optical fibers were fused and spliced by flowing gas at 1 cc/min and Hl gas at 400 Cc/min. The heating time at this time was 15 seconds.

次に、上記バーナに0□ガス150cc/分、SFaガ
ス10cc/分、H2ガス300cc/分を流し、上記
光ファイバの融着接続部およびその近傍の表面の水酸基
の除去を20秒間行なった。
Next, 150 cc/min of 0□ gas, 10 cc/min of SFa gas, and 300 cc/min of H2 gas were flowed through the burner to remove hydroxyl groups on the surface of the fusion spliced portion of the optical fiber and its vicinity for 20 seconds.

最後に、上記融着接続部周辺の露出部分に、この光ファ
イバのコート材と同じシリコーン樹脂を塗布焼付しファ
イバの補強を行なった。
Finally, the same silicone resin as the coating material of this optical fiber was applied and baked on the exposed portion around the fusion spliced portion to reinforce the fiber.

このようGこして得られた光ファイバの融着接続部の強
度は、実施した20本の平均が4.8 kg7 mで、
これらの内、最低が3.2 kg/mであった。
The strength of the fusion spliced portion of the optical fiber obtained by such G straining was 4.8 kg7 m on average for 20 fibers.
Among these, the lowest was 3.2 kg/m.

出願人藤倉電線株式会社Applicant Fujikura Electric Wire Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 酸水素炎により光ファイバを溶融接続する方法において
、酸水素炎中で分解してハロゲンガスを発生する常温安
定性のガス状または液体状ハロゲン化合物を前記酸水素
炎中に添加し、これによって光ファイバの溶融接続を行
なうことを特徴とする光ファイバの接続方法。
In a method of melt splicing optical fibers using an oxyhydrogen flame, a room temperature-stable gaseous or liquid halogen compound that decomposes in the oxyhydrogen flame to generate halogen gas is added to the oxyhydrogen flame, thereby splicing optical fibers. An optical fiber splicing method characterized by performing fiber fusion splicing.
JP15282783A 1983-08-22 1983-08-22 Method for connecting optical fiber Pending JPS6045207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15282783A JPS6045207A (en) 1983-08-22 1983-08-22 Method for connecting optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15282783A JPS6045207A (en) 1983-08-22 1983-08-22 Method for connecting optical fiber

Publications (1)

Publication Number Publication Date
JPS6045207A true JPS6045207A (en) 1985-03-11

Family

ID=15549005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15282783A Pending JPS6045207A (en) 1983-08-22 1983-08-22 Method for connecting optical fiber

Country Status (1)

Country Link
JP (1) JPS6045207A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192706A (en) * 1986-02-14 1987-08-24 アメリカン テレフォン アンド テレグラフ カンパニー Manufacture of light waveguide glass fiber
JPS638708A (en) * 1986-06-30 1988-01-14 Fujikura Ltd Method for connecting single mode optical fiber
US5226940A (en) * 1987-01-23 1993-07-13 Siemens Aktiengesellschaft Process for producing optical fibers of high tensile strength

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120215A (en) * 1982-01-13 1983-07-18 Kokusai Denshin Denwa Co Ltd <Kdd> Method for connecting optical fiber
JPS6019115A (en) * 1983-07-12 1985-01-31 Dainichi Nippon Cables Ltd Surface treatment of connection part of optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120215A (en) * 1982-01-13 1983-07-18 Kokusai Denshin Denwa Co Ltd <Kdd> Method for connecting optical fiber
JPS6019115A (en) * 1983-07-12 1985-01-31 Dainichi Nippon Cables Ltd Surface treatment of connection part of optical fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192706A (en) * 1986-02-14 1987-08-24 アメリカン テレフォン アンド テレグラフ カンパニー Manufacture of light waveguide glass fiber
JPH0524484B2 (en) * 1986-02-14 1993-04-08 Amerikan Terefuon Ando Teregurafu Co
JPS638708A (en) * 1986-06-30 1988-01-14 Fujikura Ltd Method for connecting single mode optical fiber
US5226940A (en) * 1987-01-23 1993-07-13 Siemens Aktiengesellschaft Process for producing optical fibers of high tensile strength

Similar Documents

Publication Publication Date Title
EP0462893B1 (en) Method for splicing and reinforcing carbon coated optical fibers
CA2006345C (en) Method of enlarging end of capillary tube bore
JP2797335B2 (en) Splicing method of hermetic coated optical fiber
JPH0134938B2 (en)
JPH0138064B2 (en)
JPS6045207A (en) Method for connecting optical fiber
CN101125733B (en) Method of manufacturing optical fiber
CN101913761B (en) Method of manufacturing optical fiber
JPH0273312A (en) Manufacture of optical fiber coupler
JPS5879835A (en) Surface-treating method for optical fiber preform
JPH01148722A (en) Production of optical fiber preform
JPS6011244A (en) Manufacture of optical fiber
JPS6259545A (en) Production of optical fiber preform
JP2620223B2 (en) Optical fiber fusion splicing method
JP3132867B2 (en) Recoating method of carbon coated optical fiber
JP2004043198A (en) Method of cleaning optical fiber preform
JPH0656457A (en) Production of fiber for transmitting ultraviolet light
JPH05246740A (en) Method for recoating exposed quartz fiber part of carbon-coated optical fiber with carbon film
JPH04347805A (en) Fusion-splicing connection method for carbon-coated optical fiber
JPS58120215A (en) Method for connecting optical fiber
JPH04301804A (en) Method for fusion splicing carbon-coated optical fibers
JP3132866B2 (en) Recoating method of carbon coated optical fiber
JPH0576003B2 (en)
JPH05270867A (en) Recoating method for optical fiber coated with carbon
JPS5842016A (en) Method for reinforcing treatment of fusion-fixing connection part of optical fiber