JPS6045129B2 - Production method of divalent silver oxide - Google Patents

Production method of divalent silver oxide

Info

Publication number
JPS6045129B2
JPS6045129B2 JP53021394A JP2139478A JPS6045129B2 JP S6045129 B2 JPS6045129 B2 JP S6045129B2 JP 53021394 A JP53021394 A JP 53021394A JP 2139478 A JP2139478 A JP 2139478A JP S6045129 B2 JPS6045129 B2 JP S6045129B2
Authority
JP
Japan
Prior art keywords
ago
cadmium
silver oxide
solution
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53021394A
Other languages
Japanese (ja)
Other versions
JPS54114498A (en
Inventor
薫 村上
友彦 有田
貢 岡久
泰之 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP53021394A priority Critical patent/JPS6045129B2/en
Priority to GB7833214A priority patent/GB2003455B/en
Priority to DE2835755A priority patent/DE2835755C2/en
Priority to FR7824209A priority patent/FR2400487A1/en
Priority to CH883378A priority patent/CH627716A5/en
Publication of JPS54114498A publication Critical patent/JPS54114498A/en
Priority to US06/083,937 priority patent/US4231889A/en
Priority to US06/152,429 priority patent/US4286029A/en
Publication of JPS6045129B2 publication Critical patent/JPS6045129B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明は、安定な2価酸化銀を得る製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing stable divalent silver oxide.

小型電子機器、例えば電子腕時計や電子卓上計算器の電
源として、現在1価酸化銀A&0−亜鉛Zn系の電池が
商品化され、実用に供されている。
Currently, monovalent silver oxide A&0-zinc Zn-based batteries have been commercialized and put into practical use as power sources for small electronic devices, such as electronic wristwatches and electronic desktop calculators.

しカル電子機器の小型化が進むにつれて、より小型の電
源電池の開発、実用化が要望されている。これに伴つて
1価酸化銀(A&O)よりも、単位重量、容積当たりの
エネルギー密度が高い2価酸化銀(AgO)を正極活物
質とした電池が注目を集めている。このAg0は、〜0
0に比較して単位重量当たりのエネルギー密度は1.8
7倍、単位容積当たりのエネルギー密度は1.94倍で
ある。
As electronic devices become smaller, there is a demand for the development and practical use of smaller power batteries. Along with this, batteries using divalent silver oxide (AgO) as a positive electrode active material, which has a higher energy density per unit weight and volume than monovalent silver oxide (A&O), are attracting attention. This Ag0 is ~0
The energy density per unit weight is 1.8 compared to 0.
7 times, and the energy density per unit volume is 1.94 times.

従つて、このAgOをAg2Oに置き替えて、Ag0−
Zn系のアルカリ電池を形成した場合、同一寸法形状の
電池で約40%の容量増加が可能となる。しカル現在入
手できるAgOは、アルカリ電解液と接した際に、酸素
ガスを放出して安定なAg、Oに変化する。
Therefore, by replacing this AgO with Ag2O, Ag0-
When a Zn-based alkaline battery is formed, it is possible to increase the capacity by about 40% with the same size and shape. Currently available AgO releases oxygen gas and changes into stable Ag and O when it comes into contact with an alkaline electrolyte.

又、電池を形成した場合には、放電電圧がAg0とA臣
oの電位の2段曲線を生じる。発生酸素ガスを電池内部
で吸収する機能がない限り、内圧増加に起因した漏液や
爆発を伴い、極めて危険である。仮にガス除去対策とし
て酸素ガス吸収機能を電池内部に施した場合には、”電
池内の溶積効率が低下し、AgOの高エネルギーを充分
に活用することができなく、従つて、電池の高容量化を
図るという所期の目的を達成することができなかつた。
本発明者らは、前記の要望、目的を達成するた・めに、
アルカリ溶液中で安定なAg0に関する検討を行つたと
ころ、従来報告されているAg0と、X線回折パターン
が異なる〜ρ、及びその製造法を見い出し、これを特許
出願した。
Further, when a battery is formed, the discharge voltage produces a two-stage curve of potentials Ag0 and Aomio. Unless the battery has a function to absorb the generated oxygen gas inside the battery, it is extremely dangerous due to leakage and explosion due to increased internal pressure. If an oxygen gas absorption function were applied inside the battery as a gas removal measure, the efficiency of the molten liquid inside the battery would decrease, making it impossible to fully utilize the high energy of AgO. The intended purpose of increasing capacity could not be achieved.
In order to achieve the above-mentioned desires and objectives, the present inventors
After conducting a study on Ag0 that is stable in an alkaline solution, we discovered ~ρ, which has an X-ray diffraction pattern different from that of previously reported Ag0, and a method for producing the same, and filed a patent application for this.

本発明は先に出願したAgOの製造法を基本とし、より
安定なAgOの製造法に関して検討を行つた結果、先の
製造法で合成したAgOの溶液中にカドミウム塩あるい
は酸化カドミウムを添加して合成することにより、ガス
発生のより少ないAgO、及び新たな効果として,Ag
O−Zn系電池構成時の開路電圧維持性の高いAgOが
得られた。
The present invention is based on the previously applied AgO production method, and as a result of research into a more stable AgO production method, the present invention was developed by adding cadmium salt or cadmium oxide to the AgO solution synthesized by the previous production method. By synthesizing AgO, which generates less gas, and as a new effect, Ag
AgO with high open-circuit voltage maintenance property when configured as an O-Zn battery was obtained.

以下、その具体例を示す。硝酸銀(AgNO3)をアル
カリ溶液中で、過硫酸カリウム(K2S2O$)を酸化
剤として酸化させて.AgOを得る方法は従来から報告
されている。
A specific example will be shown below. Oxidize silver nitrate (AgNO3) in an alkaline solution using potassium persulfate (K2S2O$) as an oxidizing agent. Methods for obtaining AgO have been reported in the past.

この方法は単にAgOを作製する方法としてはよいが、
アルカリ電池の正極活物質として用いる八ρとしては、
前述したAgOからAg2Oへの反応、すなわち次式の
反応が極めて進み易く、不適当なものである。そこで、
このAgOの合成条件を種々検討したところ、従来報告
されているX線回折パターン強度が大幅に異つたAgO
が得られ、これはアルカリ溶液中で安定なものであるこ
とが確認できた。
Although this method is good for simply producing AgO,
As the 8ρ used as the positive electrode active material of alkaline batteries,
The reaction from AgO to Ag2O described above, ie, the reaction of the following formula, proceeds extremely easily and is unsuitable. Therefore,
After examining various synthesis conditions for AgO, we found that the intensity of the X-ray diffraction pattern reported previously was significantly different from that of AgO.
was obtained, and it was confirmed that this was stable in an alkaline solution.

従来報告されている〜ρの合成法は、水酸化ナトリウム
(NaOH)72yを、温度約85゜Cに保つた温水1
1中に攪拌しながら溶解し、次にこの溶液に酸化剤であ
る過硫酸カリウム(K2S2O8)75yを水を分散媒
として懸濁液状態で加え、ついで硝酸銀(AgNO3)
51yをできるだけ少量の水に溶解したものを加える。
この溶液全体を温度90℃.に保つて1紛間攪拌する。
この攪拌処理の後、静置した溶液より黒色のAgOの沈
殿物を取り出し、これを水洗、乾燥して〜ρとする方法
である。この場合の反応式は次のとおりである。この際
、AgNO35lgをAgOに合成するために用いたK
2S2O875yは、(1)式における反応理論量・の
1.85倍、NaOH72yは反応理論量の3.0倍で
ある。そこでこの条件をもとに、Nρの安定化要因を検
討した結果、合成温度に関しては、90℃以下でもAg
Oは生成し、むしろ90℃よりも低い温度で合成した方
が安定なAgOが得られることが明らかとなつた。
The conventionally reported method for synthesizing ρ is to add 72y of sodium hydroxide (NaOH) to 11g of hot water kept at a temperature of about 85°C.
1 with stirring, then to this solution was added 75y of potassium persulfate (K2S2O8), an oxidizing agent, in a suspension state using water as a dispersion medium, and then silver nitrate (AgNO3)
Add 51y dissolved in as little water as possible.
This entire solution was heated to a temperature of 90°C. Stir at a constant temperature.
After this stirring process, a black AgO precipitate is taken out from the solution left still, washed with water, and dried to obtain ~ρ. The reaction formula in this case is as follows. At this time, K used to synthesize 35lg of AgNO into AgO
2S2O875y is 1.85 times the theoretical reaction amount in formula (1), and NaOH72y is 3.0 times the reaction theoretical amount. Based on this condition, we investigated the stabilizing factors of Nρ and found that even at a synthesis temperature of 90°C or lower, Ag
It has become clear that O is produced and that more stable AgO can be obtained if synthesized at a temperature lower than 90°C.

又、アルカリであるNaOHの必要量は、基本的には反
応系のPHを9以下に下げない量だけ存在すればよく、
酸化剤であるK2S2O8の量は、AgNO3をAgO
に変化させるに足る必要最少限でよいことが明らかとな
つた。この結果をもとに新たなAgOの合成法を検討し
たところ、アルカリ溶液中て安定なAgOを合成するこ
とがノできた。本発明では、この合成条件で合成末期に
、硝酸カドミウムを添加合成した場合のガス発生に対す
る効果及び正極活物質に用いた電池の電圧安定性に関し
て比較例とともに実施例で説明する。(比較例) 水1eにNaOH48yを溶解し、次にK2S2O84
8.8yを溶解して、温度60℃に保ち、AgNO35
lyを水0.1′に溶かした溶液を2〜5分間かけて徐
々に滴下させる。
In addition, the necessary amount of NaOH, which is an alkali, basically only needs to be present in an amount that does not lower the pH of the reaction system to 9 or less,
The amount of K2S2O8, which is an oxidizing agent, is
It has become clear that the minimum amount necessary is enough to make the change. Based on this result, we investigated a new method for synthesizing AgO, and were able to synthesize AgO that is stable in an alkaline solution. In the present invention, the effect on gas generation when cadmium nitrate is added at the final stage of synthesis under these synthesis conditions and the voltage stability of a battery used as a positive electrode active material will be explained in Examples together with Comparative Examples. (Comparative example) Dissolve NaOH48y in water 1e, then K2S2O84
8.8y was dissolved and maintained at a temperature of 60°C, AgNO35
A solution of ly dissolved in 0.1' of water is gradually added dropwise over 2 to 5 minutes.

この際、反応溶液は一定速度で攪”拌しておき、10吟
で合成を終了する。合成終了後、上澄液をすてて蒸留水
で水洗し、アルカリ分を十分に取り除いた後、60℃以
下の乾燥温度で乾燥しAgOを得た。(実施例1)比較
例で示した条件、合成手順で〜9を生成し、次にこの溶
液中に、(1)Cd(NO3)2・4H200.044
y/50m1溶液、(2)Cd(NO3)2・4H20
0.089y/50m1溶液、(3)Cd(NO3)2
・4H204.45y/50m1溶液、(4)Cd(N
O3)2・4H2017.78y/50m1溶液を用意
し、この(1)〜(4)の各硝酸カドミウム溶液を、攪
拌下の上記溶液中に約1分間かけて滴下し、滴下完了後
1紛間反応させる。
At this time, the reaction solution is stirred at a constant speed, and the synthesis is completed after 10 minutes.After the synthesis is completed, the supernatant liquid is discarded and washed with distilled water to sufficiently remove the alkaline content. AgO was obtained by drying at a drying temperature of 60°C or lower. (Example 1) ~9 was produced under the conditions and synthesis procedure shown in the comparative example, and then (1) Cd(NO3)2 was added to this solution.・4H200.044
y/50ml solution, (2) Cd(NO3)2・4H20
0.089y/50ml solution, (3) Cd(NO3)2
・4H204.45y/50ml solution, (4) Cd(N
Prepare O3)2.4H2017.78y/50ml solution, drop each of the cadmium nitrate solutions (1) to (4) into the above stirring solution over a period of about 1 minute, and after the dropwise addition is complete, add 1 ml of cadmium nitrate solution. Make it react.

合成終了後、上澄液をすてて蒸留水で水洗し、アルカリ
分を十分にり除いた後、60℃以下の乾燥温度で乾燥し
、各カドミウム添加量の異なるAgOを得た。比較例で
得たAgO(ブランク)と実施例1で得た4種類のカド
ミウム添加のAgOのガス発生性能を、70゜Cで1″
0M濃度のKOH水溶液中で16時間試験した時のガス
発生量で比較すると図のとおりである。
After completion of the synthesis, the supernatant was discarded and washed with distilled water to sufficiently remove the alkaline content, followed by drying at a drying temperature of 60° C. or lower to obtain AgO with different amounts of cadmium added. The gas generation performance of the AgO obtained in the comparative example (blank) and the four types of AgO added with cadmium obtained in Example 1 was measured at 1'' at 70°C.
The figure shows a comparison of the amount of gas generated when tested in a 0M KOH aqueous solution for 16 hours.

この場合、Cd(NO3)2・4H20の添加量(1)
〜(4)は、AgNO3のAg重量100に対し、(1
)は0.05重量部、(2)は1重量部、(3)は5重
量部、(4)は2呼量部、のCd添加量になり、AgO
中に存在するCdはCdOの状態になつているものと考
えられる。従つて酸化カドミウムを、AgO合成後加え
てもその効果は認められたが、図の結果より悪い効果で
あつた。
In this case, the amount of Cd(NO3)2・4H20 added (1)
- (4) is (1
) is 0.05 parts by weight, (2) is 1 part by weight, (3) is 5 parts by weight, and (4) is 2 parts by weight.
It is thought that the Cd present therein is in the state of CdO. Therefore, even if cadmium oxide was added after AgO synthesis, the effect was observed, but the effect was worse than the results shown in the figure.

図の結果では、先に特許出願した.AgO合成方法の1
部を用いてAgOを作り、その後Cd(NO3)2を添
加合成することにより、よりガス発生の少ない安定な〜
ρが得られることが、明らかとなつた。又、添加量はA
gの重量1(4)部に対し0.5部以上であればよく、
AgOのエネルギ−ー密度等を考えると、加部以上添加
しても意味のないものである。次に、本発明者等が、C
d(NO3)2添加時期について検討した結果を示す。
In the results shown in the figure, the patent application was filed first. AgO synthesis method 1
By making AgO using Cd(NO3)2 and then adding and synthesizing Cd(NO3)2, stable ~
It became clear that ρ could be obtained. Also, the amount added is A
It is sufficient if the amount is 0.5 parts or more per 1 (4) parts by weight of g.
Considering the energy density of AgO, it is meaningless to add more than 1 part. Next, the inventors et al.
The results of a study regarding the timing of addition of d(NO3)2 are shown.

AgO合成方法としては、AgNO3溶液にCd(NO
3)を添加した混合溶液を用いて合成する方法が最も簡
単であるが、この場合は、カドミウム添加効果がなく、
逆に悪影響を示し、ガス発生を加速する。このことは、
カドミウムを添加すればよいと云うことではなく、Ag
O結晶成長段階のどの段階で添加するのかが−重要であ
るかを示している。(実施例2) 水1eにNaOH48gを溶解し、次にK2S2O84
8.8yを溶解して、温度60℃に保、AgNO35l
yI:.Cd(NO3)・4H201.79yと水0.
1eに溶かした溶液を2分間かけて滴下する。
As for the AgO synthesis method, Cd(NO
The simplest method is to synthesize using a mixed solution with 3) added, but in this case, there is no effect of adding cadmium,
On the contrary, it has a negative effect and accelerates gas generation. This means that
This does not mean that cadmium should be added, but that Ag
This shows that it is important at what stage in the O crystal growth stage it is added. (Example 2) Dissolve 48g of NaOH in water 1e, then K2S2O84
8.8y was dissolved and kept at a temperature of 60℃, AgNO35l
yI:. Cd(NO3)・4H201.79y and water 0.
1e is added dropwise over 2 minutes.

この際、反応溶液は一定速度で攪拌しておき11紛で合
成を終了する。
・・・・・(4)水1eにNaOH48y溶解して、
次にK2S2O848.8yを溶解して、温度60′C
に保ち、AgNO35lyを水0.1fに溶かした溶液
を2分間かけて滴下する。この際、反応溶液は一定速度
で攪拌しておき10吟反応させる。その後、攪拌下の上
記溶液に、Cd(NO3)・4H201.79gを0.
05eの水に溶かした溶液を1分間以内で滴下し、1紛
反応させる。
・・・・・(B)A,Bの反応で合成したAgOの
上澄液をすてて蒸留水て水洗し、アルカリ分を十分に取
り除いた後、60゜C以下の乾燥温度で乾燥し、AgO
を得た。上記A,Bて得たAgOのガス発生試験を、7
0℃て10M濃度のKOH水溶液中で行つた結果は、次
のとおりである。上記、結果で明らかなように、AgO
結晶成長段階でカドミウムが存在すると、AgOの安定
成長が阻害され、添加が悪影響となる。
At this time, the reaction solution was stirred at a constant speed, and the synthesis was completed at 11 particles.
...(4) Dissolve 48y of NaOH in 1e of water,
Next, melt K2S2O848.8y at a temperature of 60'C.
A solution of AgNO35ly dissolved in 0.1f of water was added dropwise over 2 minutes. At this time, the reaction solution was stirred at a constant speed and reacted for 10 minutes. Then, 0.1.79 g of Cd(NO3).4H was added to the above stirring solution.
A solution of 05e dissolved in water is added dropwise within 1 minute to cause a one-powder reaction.
...(B) After discarding the supernatant liquid of AgO synthesized in the reactions of A and B and washing with distilled water to sufficiently remove the alkaline content, dry at a drying temperature of 60°C or less. ,AgO
I got it. The gas generation test of AgO obtained in A and B above was carried out in 7
The results obtained in a 10M KOH aqueous solution at 0°C are as follows. As is clear from the results above, AgO
If cadmium is present during the crystal growth stage, stable growth of AgO will be inhibited, and its addition will have an adverse effect.

SEM写真でみると、AはAgO粒子が非常に微細化し
ていることが確認できた。そこで本発明者は、カドミウ
ム添加に関しては、〜ρ結晶成長後添加する方法が最も
添加効果の大きいことを見いだし、より安定な〜ρを製
造する方法を提供するものである。本発明者が先に特許
出願した方法により作つたAgOに0.05〜20重量
部のCdO粉末を混入しても、その効果は認められたが
、本発明の方法よりもその効果は少なく、本発明が最も
よい方法であることが確認された。
Looking at the SEM photograph, it was confirmed that the AgO particles in A were extremely fine. Therefore, the present inventors have found that the method of adding cadmium after ~ρ crystal growth has the greatest addition effect, and provides a method for producing more stable ~ρ. Even when 0.05 to 20 parts by weight of CdO powder was mixed into AgO prepared by the method for which the present inventor previously applied for a patent, the effect was observed, but the effect was less than that of the method of the present invention. It was confirmed that the present invention is the best method.

カドミウム添加の他の効果は、AgO−Zn系電池の電
圧安定性にある。AgO−Zn電池は開路電圧が1.8
5Vと高く、放電電圧が2段階の曲線をとることはよく
知られている。このことが電子機器電源としては好まし
くなく、1段階の電圧で放電する方法が多く提案されて
いる。基本的にはAgOと接する集電体の全ての部分で
、Agの多孔層又は層がAg2Oの多孔層又は層を介在
して電気的に導通していなければ1段階放電はできない
。試験では、IEC規格の直径11.9藺、高さ4.2
Tm1nのR−44池で行つた。正極は、AgOにポリ
弗化エチレン粉末を2重量%混入し、一定量を加圧成形
してペレット状とし、負極対向面以外は全て絶縁する。
AgOペレットよりの集電は正極ケースと電気的に導通
状態にある内径87r0nの鉄にニッケル・メッキした
リングで行つた。負極、゛セパレータ、電解液等は公知
のものを用いた。上記構成の電池において、実施例1で
得たAgOと、実施例2における(2)のCdを換算0
.05重量部添加したAgOl実施例2の(4)のCd
を換算20)重量部添加したAgOの正極活物質を用い
、5mAHだけ予備放電して、その電池を70℃保存し
た時の電圧安定性を調べた。
Another effect of cadmium addition is on the voltage stability of AgO-Zn based cells. AgO-Zn battery has an open circuit voltage of 1.8
It is well known that the discharge voltage is as high as 5V and takes a two-step curve. This is not preferable as a power source for electronic equipment, and many methods have been proposed in which discharge is performed at one level of voltage. Basically, one-stage discharge cannot occur unless the Ag porous layer or layer is electrically conductive through the Ag2O porous layer or layer in all parts of the current collector that are in contact with AgO. In the test, the IEC standard diameter was 11.9 mm and height was 4.2 mm.
It was held at R-44 pond in Tm1n. The positive electrode is made by mixing 2% by weight of polyfluoroethylene powder into AgO, press-molding a certain amount into a pellet, and insulating everything except the surface facing the negative electrode.
Current collection from the AgO pellets was carried out by a nickel-plated iron ring with an inner diameter of 87rOn, which was in electrical continuity with the positive electrode case. Known negative electrodes, separators, electrolytes, etc. were used. In the battery with the above configuration, AgO obtained in Example 1 and Cd in (2) in Example 2 are calculated as 0
.. Cd in (4) of AgOl Example 2 added with 05 parts by weight
Using a positive electrode active material of AgO containing 20 parts by weight, the battery was pre-discharged to 5 mAH and the voltage stability was examined when the battery was stored at 70°C.

その結果は次のとおりである。予備放電5mAHにより
正極活物質表面部及びリング周辺部にAg層を形成する
。その結果、電池電圧はAルO−Zn電位にすることが
できるが、その後の70OC保存により、カドミウム添
加の有無による電圧安定性に差が生じることが明らかと
なつた。以上説明したように、本発明者が先に提案した
合成方法において、その合成末期にカドミウム塩、又は
酸化カドミウムを添加合成することにより、従来に例を
見ない安定でガス発生の少ないAgOを製造することが
可能となり、又Cdを添加合成することで電池の電圧安
定面での新たな効果も付与することが可能となつた。
The results are as follows. An Ag layer is formed on the surface of the positive electrode active material and around the ring by preliminary discharge of 5 mAH. As a result, although the battery voltage could be set to AlO-Zn potential, it became clear that after storage at 70OC, there was a difference in voltage stability depending on whether cadmium was added or not. As explained above, in the synthesis method previously proposed by the present inventor, by adding cadmium salt or cadmium oxide at the final stage of synthesis, AgO can be produced with unprecedented stability and less gas generation. It has become possible to add and synthesize Cd, and it has also become possible to provide a new effect in terms of voltage stability of the battery.

【図面の簡単な説明】[Brief explanation of the drawing]

図はAgO合成末期にカドミウムを添加したAgOのガ
ス発生量を示す。
The figure shows the amount of gas generated from AgO with cadmium added at the final stage of AgO synthesis.

Claims (1)

【特許請求の範囲】 1 銀塩又は酸化銀と、過硫酸塩と、アルカリ金属水酸
化物とを反応させて銀塩又は酸化銀から2価酸化銀を合
成する方法において、前記過硫酸塩の使用量はその反応
理論量の1.0〜1.85倍でかつその水溶液濃度を0
.04〜0.72モル/lとし、アルカリ金属水酸化物
の使用量はその反応理論量の1.05〜6.0倍でかつ
その水溶液濃度を0.3〜4.8モル/lとして0〜8
0℃の温度で合成反応させ、合成反応終了後、その反応
溶液中にカドミウム塩、又は酸化カドミウムを添加する
ことを特徴とした2価酸化銀の製造法。 2 カドミウム塩又は酸化カドミウムが、合成時の銀重
量100倍に対し0.05〜20重量部加えられる特許
請求範囲第1項記載の2価酸化銀の製造法。 3 カドミウム塩が、硝酸カドミウム、硫酸カドミウム
およびハロゲン化カドミウムによりなる群から選択され
いずれか1つである特許請求範囲第1項記載の2価酸化
銀の製造法。
[Scope of Claims] 1. A method for synthesizing divalent silver oxide from silver salt or silver oxide by reacting silver salt or silver oxide, persulfate, and alkali metal hydroxide, wherein the persulfate is The amount used is 1.0 to 1.85 times the theoretical reaction amount and the concentration of the aqueous solution is 0.
.. 04 to 0.72 mol/l, the amount of alkali metal hydroxide used is 1.05 to 6.0 times the theoretical reaction amount, and the aqueous solution concentration is 0.3 to 4.8 mol/l. ~8
A method for producing divalent silver oxide, which comprises carrying out a synthesis reaction at a temperature of 0° C., and adding cadmium salt or cadmium oxide to the reaction solution after the synthesis reaction is completed. 2. The method for producing divalent silver oxide according to claim 1, wherein 0.05 to 20 parts by weight of cadmium salt or cadmium oxide is added to 100 times the weight of silver during synthesis. 3. The method for producing divalent silver oxide according to claim 1, wherein the cadmium salt is any one selected from the group consisting of cadmium nitrate, cadmium sulfate, and cadmium halide.
JP53021394A 1977-08-19 1978-02-24 Production method of divalent silver oxide Expired JPS6045129B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP53021394A JPS6045129B2 (en) 1978-02-24 1978-02-24 Production method of divalent silver oxide
GB7833214A GB2003455B (en) 1977-08-19 1978-08-14 Divalent silver oxide for use in primary cells and manufacturing method thereof
DE2835755A DE2835755C2 (en) 1977-08-19 1978-08-16 Oxide of divalent silver, process for its preparation and its use in a galvanic element
FR7824209A FR2400487A1 (en) 1977-08-19 1978-08-18 PROCESS FOR MANUFACTURING BIVALENT SILVER OXIDE FOR USE IN BATTERIES AND NEW PRODUCTS THUS OBTAINED
CH883378A CH627716A5 (en) 1977-08-19 1978-08-21 TWO-VALUE SILVER OXIDE FOR ELECTRIC PRIMARY BATTERIES AND METHOD FOR PRODUCING THE TWO-VALUE SILVER OXIDE.
US06/083,937 US4231889A (en) 1977-08-19 1979-10-11 Divalent silver oxide for use in primary cell and manufacturing method thereof
US06/152,429 US4286029A (en) 1977-08-19 1980-05-22 Divalent silver oxide for use in primary cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53021394A JPS6045129B2 (en) 1978-02-24 1978-02-24 Production method of divalent silver oxide

Publications (2)

Publication Number Publication Date
JPS54114498A JPS54114498A (en) 1979-09-06
JPS6045129B2 true JPS6045129B2 (en) 1985-10-08

Family

ID=12053837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53021394A Expired JPS6045129B2 (en) 1977-08-19 1978-02-24 Production method of divalent silver oxide

Country Status (1)

Country Link
JP (1) JPS6045129B2 (en)

Also Published As

Publication number Publication date
JPS54114498A (en) 1979-09-06

Similar Documents

Publication Publication Date Title
CN106684351A (en) Ni-Co-Mn ternary precursor and preparation method thereof
CN110429255B (en) Preparation method and application of cobalt oxide/phosphorus doped graphene composite material
CN105514421B (en) A kind of modified oxidized nickel negative electrode material and preparation method thereof
JP4454052B2 (en) Method for producing nickel electrode active material for alkaline storage battery, and method for producing nickel positive electrode
CN110867570A (en) Preparation method of iron-doped cobalt diselenide nanosheet/reduced graphene composite electrode material
CN111463420B (en) Composite externally-coated positive electrode material, preparation method thereof, positive electrode and lithium ion battery
JP4405547B2 (en) Method for producing calcium zincate for cathode
JP4412936B2 (en) Cobalt oxyhydroxide, method for producing the same, and alkaline storage battery using the same
Zhang et al. Lead sulfate used as the positive active material of lead acid batteries
CN100488882C (en) Preparation method for secondary crystal lithium cobalt acid of positive electrode material of lithium ion cell
JPS62237667A (en) Nickel positive electrode for alkaline storage battery
WO2023226556A1 (en) Preparation method for and use of lithium iron phosphate
CN106848254B (en) Sodium-ion battery negative electrode material, preparation method thereof and sodium-ion battery
JPS6045129B2 (en) Production method of divalent silver oxide
JP3324781B2 (en) Alkaline secondary battery
CN113072044A (en) Core-shell structure FeP nano-chain, preparation method thereof and application thereof in battery
CN102040251B (en) Method for preparing cobalt clad beta-NiOOH by liquid phase oxidation method
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JPS62234867A (en) Nickel electrode for alkaline cell
CN107732351B (en) The separation of nickel and cobalt and method of resource in a kind of waste and old ni-mh positive electrode
CN110474047A (en) A kind of nickel-cobalt-manganese ternary presoma and the preparation method and application thereof
CN112952093B (en) Electrode material and preparation method thereof
JPH0275156A (en) Cd-containing powder and negative electrode material for alkaline storage battery
CN114220955B (en) Submicron rod-like cobalt carbonate composite graphene high-performance lithium storage material and lithium ion battery
JPS61181074A (en) Manufacture of alkaline battery positive electrode