JPS6044564B2 - gas water heater - Google Patents

gas water heater

Info

Publication number
JPS6044564B2
JPS6044564B2 JP15112076A JP15112076A JPS6044564B2 JP S6044564 B2 JPS6044564 B2 JP S6044564B2 JP 15112076 A JP15112076 A JP 15112076A JP 15112076 A JP15112076 A JP 15112076A JP S6044564 B2 JPS6044564 B2 JP S6044564B2
Authority
JP
Japan
Prior art keywords
temperature
gas
solenoid valve
air
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15112076A
Other languages
Japanese (ja)
Other versions
JPS5375550A (en
Inventor
博 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15112076A priority Critical patent/JPS6044564B2/en
Publication of JPS5375550A publication Critical patent/JPS5375550A/en
Publication of JPS6044564B2 publication Critical patent/JPS6044564B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強制給排気用ファンモータの回転数に応じてガ
ス流量を制御し、出湯温度を制御するガス湯沸器に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gas water heater that controls the flow rate of gas in accordance with the rotational speed of a forced air supply/exhaust fan motor to control the temperature of hot water.

従来の技術 従来、この種ガス湯沸器では、混合管内のノズルに発生
する給気量に応じた圧力差をとりだしてゼロガバナを動
作し、ガス流量を制御するようにしていた。
BACKGROUND ART Conventionally, in this type of gas water heater, a zero governor is operated by extracting a pressure difference generated in a nozzle in a mixing pipe according to the amount of air supplied to control the gas flow rate.

上記手段によれば給気量とガス流量、いわゆる空気過剰
率が適正な値に保たれるもので強制給排気式でかつ全一
次空気式ガスバーナを用いた湯沸器の燃焼量制御及び空
気過剰率制御用として非常に有用であつた。このような
湯沸器で、広い負荷範囲にわたつて出湯温度制御をする
ためには、広い範囲の燃焼量制御が不可欠となり、その
ためには比較的大きな圧力差を混合管内に発生する必要
がある。このことはファンモータの大型化とか重量化を
まねき、さらにはファン騒音の上昇を意味し、これらに
より非現実的な湯沸器になつてしまう。発明が解決しよ
うとする問題点 本発明は、上述したように従来技術では不可能であつた
点すなわちファンモータの大型化重量化を招くことなく
、広範囲の燃焼量制御を実現するものである。
According to the above means, the air supply amount and gas flow rate, so-called excess air ratio, are maintained at appropriate values, and the combustion amount of the water heater is controlled using a forced air supply and exhaust type and all primary air type gas burner. It was very useful for rate control. In order to control the outlet hot water temperature over a wide load range in such water heaters, it is essential to control the combustion amount over a wide range, and to do so, it is necessary to generate a relatively large pressure difference in the mixing pipe. . This leads to an increase in the size and weight of the fan motor, and also means an increase in fan noise, resulting in an unrealistic water heater. Problems to be Solved by the Invention The present invention achieves a wide range of combustion amount control, which has not been possible with the prior art, as described above, without increasing the size and weight of the fan motor.

問題点を解決するための手段 本発明はこの問題点を解決するために、ガスバーナを2
つに分け、各々のバーナに混合管を設け、片側への混合
管へのガスの流入をオンオフする電磁弁を設け、負荷が
大なるときは、この電磁弁をオンし、両方の混合管・バ
ーナを使用し、負・荷の大小に応じてこの電磁弁をオン
オフする構成である。
Means for Solving the Problem In order to solve this problem, the present invention provides two gas burners.
A mixing pipe is installed in each burner, and a solenoid valve is installed to turn on and off the gas flowing into the mixing pipe on one side.When the load is large, this solenoid valve is turned on and both mixing pipes and It uses a burner and turns this solenoid valve on and off depending on the load.

なお負荷の大小は、出湯温度検出器の出力の大小で検出
する。作用 負荷の大なる時は、出湯温度検出器て検出する・温度は
設定温度よりも低くなるので、出湯温度が設定温度より
低い所定温度以下のときには電磁弁をオンして両バーナ
を燃焼させる。
The magnitude of the load is detected by the magnitude of the output of the hot water temperature detector. When the working load is large, the hot water temperature detector detects the temperature.The temperature will be lower than the set temperature, so when the hot water temperature is below the predetermined temperature, which is lower than the set temperature, the solenoid valve is turned on and both burners are burned.

また負荷の小なるときは、出湯温度が設定温度よりも高
くなるので、出湯温度が設定温度よりも高い第2の所定
温度よりも高いときは電磁弁をオフし、片側のバーナの
みを動作させる。ここで、電磁弁のオンオフにより燃焼
量は以下の如くに変えられる。ファンモータの回転数が
或る回転数Nrpmになつているとする。この回転数に
応じた圧力PaNが混合管に発生する。この混合管での
空気側の圧PaNに相応したガス圧PgNが混合管のガ
スに発生するようにゼロガバナが作用する。電磁弁が接
続されない方の混合管の圧力差によりゼロガバナを制御
すれば、この混合管の空気圧すなわちファンモータの回
転数に応じて混合管のガス圧が定まる。ファンモータの
回転数が一定であれば電磁弁が接続されない側のガス圧
は回転数に見合つた圧力となり、ガス流量は一定である
。他方電磁弁が接続された側のガス流量は、電磁弁がオ
ン状態では、回転数に見合つたガス流量となるが、電磁
弁オフ時には当然ゼロとなる。すなわち、電磁弁を接続
されない方の混合管を流れるガス流量は、電磁弁のオン
オフに関係なく一定である。従つて電磁弁のオンオフに
よりトータルのガス流量は変化することとなる。実施例 以下その実施例を添付図面とともに説明する。
Also, when the load is small, the hot water outlet temperature will be higher than the set temperature, so when the hot water outlet temperature is higher than the second predetermined temperature, which is higher than the set temperature, the solenoid valve is turned off and only one burner is operated. . Here, the combustion amount can be changed as follows by turning on and off the solenoid valve. Assume that the rotation speed of the fan motor is a certain rotation speed Nrpm. A pressure PaN corresponding to this rotational speed is generated in the mixing tube. The zero governor acts so that a gas pressure PgN corresponding to the pressure PaN on the air side in the mixing tube is generated in the gas in the mixing tube. If the zero governor is controlled by the pressure difference in the mixing pipe to which the solenoid valve is not connected, the gas pressure in the mixing pipe is determined according to the air pressure in the mixing pipe, that is, the rotation speed of the fan motor. If the rotation speed of the fan motor is constant, the gas pressure on the side to which the solenoid valve is not connected will be a pressure commensurate with the rotation speed, and the gas flow rate will be constant. On the other hand, the gas flow rate on the side to which the solenoid valve is connected is a gas flow rate commensurate with the rotational speed when the solenoid valve is on, but naturally becomes zero when the solenoid valve is off. That is, the gas flow rate flowing through the mixing pipe to which the solenoid valve is not connected is constant regardless of whether the solenoid valve is on or off. Therefore, the total gas flow rate changes depending on whether the solenoid valve is turned on or off. EXAMPLES Below, examples will be described with reference to the accompanying drawings.

第1図において、本体1内にゼロガバナ2、電磁弁3、
二つの混合管4,6、二つの全一次空気式バーナ5,7
、熱交換器11が含まれている。ガスGはゼロガバナ2
を経た後二つに分離され、一方は電磁弁3を経て第1の
混合管4に至り、この後第1の、給気路8を通して供給
される空気A1と混合して第1のガスバーナ5に達する
。また−分離後の他方のガスは第2の混合管6に至り、
第2の給気路9を通して供給される空気A2と混合し、
第2のバーナ7に達する。水Wは給水路10を通して熱
交換器11に導入され、熱交換後出湯路12を介してH
として出湯される。排気は本体.1から排気路14及び
強制給排気用ファンモータ13を介して排出される。出
湯温度は出湯路に設けた温度検出器15により検出し、
その信号を制御器16に入力する。制御器16は温度検
出器15の出力に応じてファンモータ13の速度を制御
・する速度制御回路と、電磁弁3をオンオフ制御する制
御回路とから成つている。第2図は制御器16の一実施
例である。
In FIG. 1, a zero governor 2, a solenoid valve 3,
Two mixing tubes 4, 6, two all-primary air burners 5, 7
, a heat exchanger 11 are included. Gas G is zero governor 2
One of them passes through the solenoid valve 3 and reaches the first mixing pipe 4, where it is mixed with the air A1 supplied through the first air supply path 8 and sent to the first gas burner 5. reach. and - the other gas after separation reaches the second mixing tube 6;
mixed with air A2 supplied through the second air supply path 9;
The second burner 7 is reached. Water W is introduced into the heat exchanger 11 through the water supply channel 10, and after heat exchange, the water
It is served as a bath. The exhaust is the main body. 1 through an exhaust path 14 and a forced air supply/exhaust fan motor 13. The hot water temperature is detected by a temperature detector 15 installed in the hot water path,
The signal is input to the controller 16. The controller 16 includes a speed control circuit that controls the speed of the fan motor 13 according to the output of the temperature detector 15, and a control circuit that controls the solenoid valve 3 to turn on and off. FIG. 2 shows one embodiment of the controller 16.

Ll,しには商用電源が接続され、D1は商用電源から
直流電源を得るための回路で、トランスで降圧し、ダイ
オードブリッジD2で全波整流して得られる電圧■。1
、ダイオードD5及びコンデンサD6のフィルタを通し
て得られる電圧VD2、上記■D1を抵抗D3、ゼナー
ダイオードD4でクリップした電圧■2の三出力をもつ
A commercial power supply is connected to Ll, and D1 is a circuit for obtaining DC power from the commercial power supply.The voltage is obtained by step-down with a transformer and full-wave rectification with diode bridge D2. 1
, a voltage VD2 obtained through a filter of a diode D5 and a capacitor D6, and a voltage (2) obtained by clipping the above D1 with a resistor D3 and a zener diode D4.

16Aはブリッジ回路で、抵抗Al,A2,A4及び温
度検出器15としてのサーミスタ15″、それに並列接
続した抵抗A3で各々一辺を形成している。
16A is a bridge circuit, each side of which is formed by resistors Al, A2, A4, a thermistor 15'' as a temperature detector 15, and a resistor A3 connected in parallel thereto.

並列抵抗JA3はサーミスタ15″の非直線性をを補正
する目的のものである。ブリッジ出力はトランジスタB
l,B2抵抗B3,B4で構成される差動増巾器16B
で反転増巾され、その出力は位相制御回路16C及び比
較回路16Eに入力される。位相・制御回路16Cは抵
抗Cl,C4、トランジスタC2、ダイオードC3のエ
ミッタフォロワと、抵抗C6,C8,C9、コンデンサ
C5、PUTC7、パルストランスClO、トライアツ
クCll及びリレーE6の第2のA接点E6Bと抵抗E
8゛とからなる空気量増減手段とで構成する。もし入力
が大きければ、エミッタフォロワの出力電圧は高く、C
5の初期充電値Vc,は高く、しかる後抵抗C6〜E8
でVDlにより充電され、抵抗C8とC9のVzの分割
電圧Vcに速く達し、速い位相でPUTC7はオンし、
これがパルストランスClOを介してトライアツクCl
lをオンさせ、その導通角を大とし、ファンモータ13
の回転速度を速くする。入力電圧が小とすれば、この逆
でファンモータ13の回転速度は遅くなる。出湯温度が
設定温度より高くなれば、サーミスタ15の抵抗値が小
となり、これよりブリッジ16Aの出力が増大して差動
増巾器16Bの出力は小となり、位相制御回路16との
入力電圧が低下する。したがつて、ファンモータ15の
回転速度が下がつてモータ回転速度小となり、給気量が
絞られ、またガス流量も絞られて燃焼量が小となり、よ
つて出湯温度は低下し、設定温度になる。差動増巾器1
6Bの出力■BOは抵抗E1を介して電圧比較器E4の
負入力端に入力され、正入力端に入力されている抵抗E
3を介しての基準電圧E2と電圧VE2と比較される。
■BOが■E2より小の間、電圧比較器E4の出力はハ
イとなり、トランジスタE7、リレーE6をオンし、そ
の接点E6Aにより電磁弁3はオフしている。すなわち
、負荷が大なる場合は、出湯温度が設定温度よりも低く
なつおり、ブリッジ16Aの出力は小となつていて、■
BOは大となつているので、電圧比較器E4の出力はロ
ーとなりトランジスタE7、リレーE6はオフし電磁弁
3はオンし、二つのバーナ5,7が燃焼している。同時
にE6Bはオフしているので、位相制御回路のゲインは
低い。もしも負荷が小さくなると出湯温度は設定温度よ
りも高くなり、燃焼量は小となり、ゼロガバナ2に必要
な最低圧力差給気量以下となると、そのゼロガバナ2の
空気過剰率制御がきかなくなつて、燃焼特性の悪化をま
ねく、このような場合、片側のガス回路を遮断してやれ
ば、同一給気量に対し燃焼量は約1/2にできるはずで
ある。
The parallel resistor JA3 is for the purpose of correcting the non-linearity of the thermistor 15''.The bridge output is connected to the transistor B.
Differential amplifier 16B composed of resistors B3 and B4
The output signal is inverted and amplified by the phase control circuit 16C and the comparison circuit 16E. The phase control circuit 16C includes resistors Cl, C4, transistor C2, emitter follower of diode C3, resistors C6, C8, C9, capacitor C5, PUTC7, pulse transformer ClO, triax Cll, and second A contact E6B of relay E6. Resistance E
It consists of an air amount increasing/decreasing means consisting of 8゛. If the input is large, the output voltage of the emitter follower is high and C
5, the initial charge value Vc, is high, and then the resistances C6 to E8
is charged by VDl, quickly reaches the divided voltage Vc of Vz of resistors C8 and C9, and PUTC7 is turned on with a fast phase.
This is a triax Cl through a pulse transformer ClO.
l is turned on, its conduction angle is increased, and the fan motor 13
Increase the rotation speed. Conversely, if the input voltage is small, the rotational speed of the fan motor 13 will be slow. When the tapped water temperature becomes higher than the set temperature, the resistance value of the thermistor 15 decreases, and the output of the bridge 16A increases, the output of the differential amplifier 16B decreases, and the input voltage to the phase control circuit 16 decreases. descend. Therefore, the rotational speed of the fan motor 15 decreases and the motor rotational speed becomes small, the amount of air supply is throttled, the gas flow rate is also throttled, and the amount of combustion is decreased, and the hot water outlet temperature is lowered and the set temperature is reduced. become. Differential amplifier 1
The output of 6B BO is input to the negative input terminal of the voltage comparator E4 via the resistor E1, and the resistor E input to the positive input terminal
The voltage VE2 is compared with a reference voltage E2 via the voltage VE2.
While ■BO is smaller than ■E2, the output of voltage comparator E4 becomes high, turning on transistor E7 and relay E6, and turning off electromagnetic valve 3 through contact E6A. In other words, when the load is large, the output temperature of the hot water becomes lower than the set temperature, and the output of the bridge 16A becomes small.
Since BO is large, the output of voltage comparator E4 becomes low, transistor E7 and relay E6 are turned off, solenoid valve 3 is turned on, and two burners 5 and 7 are burning. At the same time, E6B is off, so the gain of the phase control circuit is low. If the load decreases, the hot water temperature will become higher than the set temperature, and the combustion amount will become smaller. If the amount of air supply becomes less than the minimum pressure difference required by the zero governor 2, the excess air ratio control of the zero governor 2 will no longer work. In such a case, if the gas circuit on one side is shut off, the amount of combustion can be reduced to about 1/2 for the same amount of air supply.

そそこでブリッジ16Aの出力大となつて、小さな燃焼
量が必要になると、ブリッジ16Aの出力大で差動増巾
器16Bの出力■BOが小となると、■8。は■E2よ
り小となり、電圧比較器E4の出力はハイとなり、トラ
ンジスタE7がオンし、リレーE6がオンしその第1B
接点E6Aがオフし、電磁弁3がオフする。同時に、第
1A接点E6Bがオンし、位相制御回路16Cのゲイン
は高くなり、給気量は増す。ここで、給気量を増す必要
は、以下の通りである。給気量をそのままにして電磁弁
3をオフしてしまうと、ガス流量は飛躍的に小となつて
しまう。つまり同一燃焼量のバーナで各バーナの最低燃
焼量をQB。l、とすると、電磁弁3をオフする前には
2QBn.inとなつていたものが、QBminと半減
してしまうこととなる。ここでの切換えは、電磁弁3の
オフが燃焼量にさほど影響を及ぼさないようにしてスム
ーズな燃焼量の変化をさせるには、バーナ2本での2Q
Bminから電磁弁3のオフによつてバーナ1本での2
QB..in移行させることであるため、バーナ1本で
2QB..inとするためには、回転数を増し、混合管
6ての空気圧を増すことが必要である。そこで切換え時
点で、ゲインを上げ、同一人力電圧でも電磁弁3のオフ
時には、オン時に比し高い回転数が得られるようにしな
ければならない。しかるに、電磁弁3がオフしているた
め、燃焼量は最大の1/2となる。よつて、例えば電磁
弁3のオンオフの切換を2個のバーナの最大燃焼量の1
/2に選べば、スムーズに切換えが行われる。電圧比較
器E4の出力がローとなると、抵抗E5が入りはじめて
、その正入力端電圧は抵抗E3,E5の抵抗値をR3,
R5とすると、1・■E2と低下する。すなわ
R3+R5ち、電磁弁3がオンする電圧とオフする電圧
が異なるというヒステリシスを抵抗E3とE5によつて
つくつている。
Then, when the output of the bridge 16A becomes large and a small combustion amount is required, when the output of the bridge 16A becomes large and the output of the differential amplifier 16B becomes small, ■8. becomes smaller than E2, the output of voltage comparator E4 becomes high, transistor E7 turns on, relay E6 turns on, and the first B
Contact E6A is turned off, and solenoid valve 3 is turned off. At the same time, the first A contact E6B turns on, the gain of the phase control circuit 16C increases, and the amount of air supply increases. Here, the need to increase the amount of air supply is as follows. If the solenoid valve 3 is turned off while the air supply amount remains unchanged, the gas flow rate will decrease dramatically. In other words, QB is the minimum combustion amount of each burner for burners with the same combustion amount. l, then 2QBn. before turning off the solenoid valve 3. What used to be "in" will be halved to "QBmin". In order to change the combustion amount smoothly so that turning off the solenoid valve 3 does not have much effect on the combustion amount, it is necessary to switch the 2Q switch with two burners.
2 with one burner by turning off solenoid valve 3 from Bmin.
Q.B. .. Since it is to move in, one burner can generate 2 QB. .. In order to achieve this, it is necessary to increase the number of rotations and increase the air pressure in the mixing tube 6. Therefore, at the time of switching, it is necessary to increase the gain so that even with the same human voltage, a higher rotational speed can be obtained when the solenoid valve 3 is off than when it is on. However, since the solenoid valve 3 is off, the amount of combustion becomes 1/2 of the maximum. Therefore, for example, the on/off switching of the solenoid valve 3 can be controlled at 1 of the maximum combustion amount of the two burners.
/2 allows smooth switching. When the output of voltage comparator E4 becomes low, resistor E5 starts to enter, and its positive input terminal voltage increases the resistance values of resistors E3 and E5 by R3,
When R5 is set, it decreases to 1·■E2. Sunawa
R3+R5, hysteresis is created by resistors E3 and E5, in which the voltage at which the solenoid valve 3 turns on is different from the voltage at which it turns off.

こうすると、負荷が上述の例で約1/2近辺の場合、電
磁弁3が激しくオンオフするという現象が防げる。上述
の例により本発明を要約すれば、混合管4及び6で発生
する圧力差はTDRを1/4までとる場合、1/2のガ
ス流量に相当する圧力差を発生せしめるのみでよいので
ある。何故なら、1/2以下では電磁弁3がオフするか
ら、同一給気量では燃焼量が1/2となるからである。
またゼロガバナ2も1/2のガス流量に相当する圧力差
まで応答すればよいのであつて、1/4まで応答する必
要がないのである。発明の効果 このように、本発明によれば、混合管で発生させる圧力
はTDRllnの場合、21nでよいから、ファン,モ
ータを小さくでき、しかも電磁弁を負荷の大小、すなわ
ち、温度検出器の出力でオンオフするので、非常に正確
にその切換えができるし、そのオンオフにヒステリシス
をつけているため、l余分のオンオフを発生させず、良
好な出湯温度制御性能が得られる。
This prevents the electromagnetic valve 3 from violently turning on and off when the load is approximately 1/2 in the above example. To summarize the present invention using the above example, the pressure difference generated in the mixing tubes 4 and 6 only needs to generate a pressure difference corresponding to 1/2 the gas flow rate when the TDR is taken to 1/4. . This is because the solenoid valve 3 is turned off when the amount is less than 1/2, so the combustion amount becomes 1/2 with the same intake air amount.
Further, the zero governor 2 only needs to respond to a pressure difference corresponding to 1/2 of the gas flow rate, and does not need to respond to a pressure difference of 1/4. Effects of the Invention As described above, according to the present invention, the pressure generated in the mixing pipe can be 21n in the case of TDRlln, so the fan and motor can be made smaller, and the solenoid valve can be used to adjust the load size, that is, the temperature sensor. Since it is turned on and off by the output, it can be switched very accurately, and since hysteresis is added to the on/off, there is no extra on/off, and good hot water temperature control performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す、ガス湯沸器の概略構成
図、第2図はその制御回路図てある。 1・・・・・・本体、2・・・・・・ゼロガバナ、3・
・・・・・電磁弁、4,6・・・・・・混合管、5,7
・・・・・・全一次空気式ガスバーナ、11・・・・・
・熱交換器、13・・・・ファンモータ、15・・・・
・・温度検出器、E6B,E8・・・・空気量増減手段
FIG. 1 is a schematic configuration diagram of a gas water heater showing an embodiment of the present invention, and FIG. 2 is a control circuit diagram thereof. 1...Main body, 2...Zero governor, 3.
...Solenoid valve, 4,6...Mixing pipe, 5,7
・・・・・・All primary air type gas burner, 11・・・・・・
・Heat exchanger, 13...Fan motor, 15...
...Temperature detector, E6B, E8...Air amount increase/decrease means.

Claims (1)

【特許請求の範囲】[Claims] 1 本体内に少くとも二個の全一次空気式ガスバーナと
一個の熱交換器とを有し、前記バーナの各々に空気とガ
スとを混合する二個の混合管と、前記混合管の空気量に
応してガス流量を制御するゼロガバナと、給排気を強制
的に行うファンモータと、出湯温度を検出する温度検出
器と、前記温度検出器の出力に応じてファンモータ速度
を制御する速度制御回路と、前記温度検出器により検出
する出湯温度が設定温度より高い所定温度以上のときに
オフ信号を出力し、出湯温度が設定温度より低い第2の
所定温度以下のときオン信号を出力する制御回路と、前
記制御回路からのオンオオフ信号に応動し前記混合管の
一方へのガスの流入をオンオフする電磁弁と、前記オン
オフ信号に応じて空気量を減増する手段とを備えたガス
湯沸器。
1 having at least two all-primary air type gas burners and one heat exchanger in the main body, two mixing tubes for mixing air and gas in each of the burners, and an amount of air in the mixing tube; a zero governor that controls the gas flow rate according to the temperature, a fan motor that forcibly performs air supply and exhaust, a temperature sensor that detects the hot water temperature, and a speed control that controls the fan motor speed according to the output of the temperature sensor. a circuit, and a control that outputs an off signal when the hot water temperature detected by the temperature detector is equal to or higher than a predetermined temperature higher than a set temperature, and outputs an on signal when the hot water temperature is lower than a second predetermined temperature lower than the set temperature. A gas water boiler comprising: a circuit; a solenoid valve that turns on and off the flow of gas into one of the mixing pipes in response to an on/off signal from the control circuit; and means for decreasing or increasing the amount of air in response to the on/off signal. vessel.
JP15112076A 1976-12-15 1976-12-15 gas water heater Expired JPS6044564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15112076A JPS6044564B2 (en) 1976-12-15 1976-12-15 gas water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15112076A JPS6044564B2 (en) 1976-12-15 1976-12-15 gas water heater

Publications (2)

Publication Number Publication Date
JPS5375550A JPS5375550A (en) 1978-07-05
JPS6044564B2 true JPS6044564B2 (en) 1985-10-04

Family

ID=15511793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15112076A Expired JPS6044564B2 (en) 1976-12-15 1976-12-15 gas water heater

Country Status (1)

Country Link
JP (1) JPS6044564B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11837479B2 (en) 2016-05-05 2023-12-05 Applied Materials, Inc. Advanced temperature control for wafer carrier in plasma processing chamber

Also Published As

Publication number Publication date
JPS5375550A (en) 1978-07-05

Similar Documents

Publication Publication Date Title
JPH0366568B2 (en)
JPS6044564B2 (en) gas water heater
CS207367B2 (en) Heat-conducting system control
JPS6157976B2 (en)
JPH0378529B2 (en)
CN110726258B (en) Control method of gas proportional regulating valve with cold water temperature compensation for gas water heater
JPS6144111Y2 (en)
JPS6034010B2 (en) gas water heater
CN110749110B (en) Circuit for controlling on-off and flow of gas for gas water heater
JPS6056967B2 (en) water heater
JPS6124608B2 (en)
JPH018848Y2 (en)
JPS5926848B2 (en) gas water heater
JPH0449478Y2 (en)
JPS6154155B2 (en)
JPS5943685B2 (en) gas water heater
JPS6238129Y2 (en)
JPH0220607Y2 (en)
JPS6331694B2 (en)
JPS5816103B2 (en) Automatic fan speed control circuit for air conditioners
JP3122525B2 (en) Combustion device and combustion control method thereof
JPS6314193Y2 (en)
JPS62102026A (en) Combustion device
JPS587245Y2 (en) Water temperature control device for water heater
JPH0345008Y2 (en)