JPS6154155B2 - - Google Patents

Info

Publication number
JPS6154155B2
JPS6154155B2 JP15565278A JP15565278A JPS6154155B2 JP S6154155 B2 JPS6154155 B2 JP S6154155B2 JP 15565278 A JP15565278 A JP 15565278A JP 15565278 A JP15565278 A JP 15565278A JP S6154155 B2 JPS6154155 B2 JP S6154155B2
Authority
JP
Japan
Prior art keywords
temperature
amount
water
potential
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15565278A
Other languages
Japanese (ja)
Other versions
JPS5582253A (en
Inventor
Keiichi Mori
Yasukyo Ueda
Keijiro Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15565278A priority Critical patent/JPS5582253A/en
Publication of JPS5582253A publication Critical patent/JPS5582253A/en
Publication of JPS6154155B2 publication Critical patent/JPS6154155B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Combustion (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【発明の詳細な説明】 本発明は熱交換器からの出湯温度を検出して出
湯温度が任意に設定した設定温度に制御されるよ
うにする制御装置を有する湯沸器に関し、特に瞬
間ガス湯沸器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water heater having a control device that detects the temperature of hot water discharged from a heat exchanger and controls the temperature of hot water to an arbitrarily set temperature, and particularly relates to a water heater for instantaneous gas hot water. It concerns boilers.

従来、瞬間ガス湯沸器で給湯してシヤワー等を
使用する場合、適温を得るための給湯流量は一定
であり、水量を変化させると出湯温度が第1図の
Aに示す湯沸器の能力カーブ上を移動するため、
湯温が大きく変化して使いにくかつた。
Conventionally, when using an instantaneous gas water heater to supply hot water and use a shower, etc., the flow rate of hot water supply to obtain the appropriate temperature is constant, and when the water volume is changed, the hot water temperature changes as shown in A in Figure 1. To move on the curve,
The temperature of the water varied greatly, making it difficult to use.

また、ガス比例制御弁が開発されるに至り、湯
沸器の出口の温度を検知して、これが一定になる
ようにガス燃焼量を制御する比例制御方式の湯沸
器が市場に出ている。これにより湯沸器の最大能
力以下で使用する場合には流量変化してもほぼ一
定の湯温が得られるようになつた。しかし、これ
でも偏差により垂下特性として温度が変化する。
この様子を第1図のB,B′,B″に示す。特にシ
ヤワーを使用する場合には1℃の温度上昇でも人
体は熱く感じるため、性能としては充分とは言え
なかつた。
Additionally, a gas proportional control valve has been developed, and proportional control water heaters are now on the market that detect the temperature at the outlet of the water heater and control the amount of gas burned to maintain a constant temperature. . As a result, when the water heater is used at less than its maximum capacity, a nearly constant water temperature can be obtained even if the flow rate changes. However, even with this, the temperature changes as a drooping characteristic due to deviation.
This situation is shown in B, B', and B'' in Figure 1.Especially when using a shower, even a 1°C temperature increase makes the human body feel hot, so the performance could not be said to be sufficient.

そこで前記垂下特性をなくするために比例積分
制御方式を用いたものが考えられる。この場合、
第2図に示すように湯沸器の能力A以下では設定
温度C,C′,C″で給湯流量Qに無関係に一定と
なる。しかし積分方式を使用した場合には新たに
過渡応答特性に問題を生じる。例えば第2図にお
いて今、設定温度をC′として能力A′の点で使用
している場合、湯沸器の能力により出湯温度は
C′にならない。ここで給湯量Qを絞り制御域D
で使用する場合に、すぐにC′の温度にならずに
一度カーブA上をD′まで温度上昇し、一定時間
経過後にC′になる現象がある。この場合、人間
がシヤワー等を使用していると、非常に危険とな
る。これの原因を第3図で説明する。第3図にお
いて、Tは出湯温度特性、Iは比例制御弁の駆動
電流特性を示す。今、A′で使用中においては湯
沸器の能力であるため、電流Iは積分動作により
電流が増加し続け、電源電圧により決定される最
大電流値まで増加してしまう(図のX域)。次に
給湯量Dに変更した場合には電流Iは積分時間に
より少しづつ絞り始められるが、制御域にはいる
までは燃焼量は最大であるため温度はD′にな
り、電流が制御域まで低下した時にやつと温度
C′に戻るわけである。以上のように積分時間の
遅れ分だけ能力カーブ上を移動してしまい、無制
御の状態となることがある。以上が積分回路を使
用した場合の欠点となる。
Therefore, in order to eliminate the drooping characteristic, it is possible to use a proportional-integral control method. in this case,
As shown in Figure 2, when the water heater capacity is below A, the set temperatures C, C', and C'' remain constant regardless of the hot water supply flow rate Q. However, when the integral method is used, a new transient response characteristic For example, in Figure 2, if the set temperature is set to C' and the capacity is A', the outlet temperature will change depending on the capacity of the water heater.
It does not become C′. Here, the hot water supply amount Q is reduced to the control range D.
When used at , there is a phenomenon in which the temperature does not reach C' immediately, but once rises to D' on curve A, and then reaches C' after a certain period of time. In this case, if a person uses a shower or the like, it will be extremely dangerous. The cause of this will be explained with reference to FIG. In FIG. 3, T indicates the outlet temperature characteristic, and I indicates the driving current characteristic of the proportional control valve. Currently, when A' is in use, it is the capacity of the water heater, so the current I continues to increase due to integral action, and increases to the maximum current value determined by the power supply voltage (X area in the diagram). . Next, when the hot water supply amount is changed to D, the current I starts to be reduced little by little depending on the integral time, but until it enters the control region, the combustion amount is at its maximum, so the temperature becomes D', and the current reaches the control region. When the temperature drops
This returns us to C'. As described above, the vehicle may move on the performance curve by the delay of the integration time, resulting in an uncontrolled state. The above are disadvantages when using an integrating circuit.

また湯温が上昇した時にタイマを駆動して積分
量を放電させ、設定値より低い方からスタートす
る方式が考えられるが、これではかえつて温度低
下時間が長くなり、特にシヤワー使用時に不快と
なる。この様子を第7図で説明する。第7図は過
渡応答特性を示し、Tは給湯温度、Iは比例制御
弁の制御電流を示し、上記の例ではVで示す時間
が長くなるわけである。このため積分放電量を一
部制限すれば温度低下はいくぶん改善される。理
想的には積分放電量を第7図の′と一致させる
と最もよいが、′は給水温度より大きく変化す
るため、上記方法では一年中いつも最良の条件を
得られなかつた。
Another idea is to drive a timer to discharge the integral amount when the water temperature rises, and then start from a lower value than the set value, but this would actually lengthen the time it takes for the temperature to drop, which would be uncomfortable, especially when using a shower. . This situation will be explained with reference to FIG. FIG. 7 shows the transient response characteristics, where T indicates the hot water supply temperature, I indicates the control current of the proportional control valve, and in the above example, the time indicated by V becomes longer. Therefore, if the integrated discharge amount is partially limited, the temperature drop can be improved to some extent. Ideally, it would be best to match the integrated discharge amount with '' in FIG. 7, but since ' varies more than the supply water temperature, the above method could not always provide the best conditions all year round.

本発明はこれ等欠点を改善し、一年を通じてい
つも快適な給湯を得られるものである。
The present invention improves these drawbacks and provides comfortable hot water supply throughout the year.

以下、本発明の実施例を図面にしたがつて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第4図は瞬間ガス湯沸器のシステム図を示す。
第4図において水は水入口1から入り熱交換器2
を通り出湯蛇口3へ至る。ガスはガス入口4から
入り電磁式比例制御弁5を通りガスバーナ6に至
る。7は出湯温度を検知する温度センサで、負特
性感温抵抗素子(以下サーミスタと呼ぶ)からな
り、制御回路8へ温度信号を送り、制御回路8か
らは比例制御弁5へ駆動信号を送る。
Figure 4 shows a system diagram of an instantaneous gas water heater.
In Figure 4, water enters from water inlet 1 to heat exchanger 2.
It passes through to the hot water faucet 3. Gas enters through a gas inlet 4 and passes through an electromagnetic proportional control valve 5 to reach a gas burner 6. Reference numeral 7 denotes a temperature sensor for detecting the hot water temperature, which is composed of a negative temperature sensitive resistance element (hereinafter referred to as a thermistor), and sends a temperature signal to a control circuit 8, which sends a drive signal to the proportional control valve 5.

第5図は従来の制御回路8の具体例を示す。9
は直流電源で、サーミスタ7と抵抗10で分圧し
た電位Dを抵抗11を介して演算増幅器12の負
入力端子に印加する。一方、基準電位Eを演算増
幅器12の正入力端子に印加する。演算増幅器1
2は前記両電位を比較して、その差を反転増幅
し、これをトランジスタ13のベースへ入力し、
比例制御弁5に通じる電流値を制御する。例えば
給湯温度が上昇した場合はサーミスタ7の抵抗値
が小さくなるため、分圧電位Dは上昇し、増幅器
12の負入力端子12aの電位も上昇する。これ
と基準電位E、つまり正入力端子12bの電位と
の差電位をR14/R11(R14:抵抗14の抵抗値、
R11:抵抗11の抵抗値)倍に増幅して出力端子
12cへ出力するため、出力端子12cの電位は
低下する。出力端子12cの電位は抵抗15,1
6で分圧され、その中点がトランジスタ13のベ
ースに接続されているため、出力端子12cの電
位の低下に伴ないベース電位も低下してトランジ
スタ13のコレクタ電流つまり比例制御弁5に流
れる電流値を減少させ、ガス量を絞るように作用
する。この場合、コンデンサ17によりDEの電
位差は抵抗11とコンデンサ17で決定される積
分時間で出力12cは積分された出力となり、D
=Eとなつた点で停止する。つまりセンサ7が元
の抵抗値(温度)になる点まで変化するため、負
荷に対して給湯温度は第2図に示すようなカーブ
を得ることができる。しかしこの場合には前述の
ように第3図に示す問題点がある。
FIG. 5 shows a specific example of a conventional control circuit 8. As shown in FIG. 9
is a DC power supply, which applies a potential D divided by a thermistor 7 and a resistor 10 to a negative input terminal of an operational amplifier 12 via a resistor 11. On the other hand, a reference potential E is applied to the positive input terminal of the operational amplifier 12. Operational amplifier 1
2 compares the two potentials, inverts and amplifies the difference, and inputs it to the base of the transistor 13;
Controls the current value leading to the proportional control valve 5. For example, when the hot water temperature increases, the resistance value of the thermistor 7 decreases, so the divided potential D increases, and the potential of the negative input terminal 12a of the amplifier 12 also increases. The difference potential between this and the reference potential E, that is, the potential of the positive input terminal 12b, is R 14 /R 11 (R 14 : resistance value of the resistor 14,
R 11 :resistance value of the resistor 11) and output to the output terminal 12c, the potential of the output terminal 12c decreases. The potential of the output terminal 12c is the resistor 15,1
6, and the midpoint is connected to the base of the transistor 13, so as the potential of the output terminal 12c decreases, the base potential also decreases, causing the collector current of the transistor 13, that is, the current flowing to the proportional control valve 5. It acts to reduce the value and throttle the gas amount. In this case, the potential difference of DE due to the capacitor 17 is determined by the resistor 11 and the capacitor 17, and the output 12c becomes an integrated output, and D
Stop at the point where =E. In other words, since the sensor 7 changes to the point where it returns to its original resistance value (temperature), the hot water supply temperature can obtain a curve as shown in FIG. 2 with respect to the load. However, in this case, as mentioned above, there are problems shown in FIG. 3.

第6図は本発明の一実施例を示し、制御回路
は第5図と同じ動作をするため同一番号を印しこ
こでは説明を省く。ここで、コンデンサ18によ
り電位Dの変化分を演算増幅器19の正入力端子
に入力する。この場合、増幅器19は比較器とし
て働き、コンデンサ18から出る電位Dの変化値
が通常電位Dよりも高い値に設定されている電位
F点を越えた場合に増幅器19の出力が反転す
る。図の場合、通常出力は低(ロウ)で電位Dの
変化が正側に発生した時、つまりセンサ7の温度
が上昇した時に、増幅器19の出力は高(ハイ)
になる。この出力はタイマ回路のダイオード2
2を通じ演算増幅器23の正入力端子へ印加され
ている。演算増幅器23は比較器として働き、抵
抗24,27,28、コンデンサ25により単安
定マルチバイブレータを構成している。今、増幅
器19の出力が高となつた時、タイオード26を
介して増幅器23の負入力端子に接続され、電源
電圧9よりも低く予め設定された電位Gを越える
ため増幅器23の出力も高となる。この時、抵抗
27,28で分圧される電位が正入力端子に加わ
るため、増幅器19の出力電位が瞬時で低になつ
ても、増幅器23の出力は保持され続ける。同時
に抵抗24からコンデンサ25に充電が開始さ
れ、増幅器23の負入力端子が上昇を始める。や
がて負入力端子が抵抗27,28で分圧される正
入力電位を越えた時、増幅器23は再度低に戻
る。
FIG. 6 shows an embodiment of the present invention, and since the control circuit operates in the same way as in FIG. 5, the same numbers are marked and the explanation thereof will be omitted here. Here, the capacitor 18 inputs the change in potential D to the positive input terminal of the operational amplifier 19 . In this case, the amplifier 19 functions as a comparator, and when the change value of the potential D output from the capacitor 18 exceeds a potential point F which is set to a value higher than the normal potential D, the output of the amplifier 19 is inverted. In the case of the figure, the output of the amplifier 19 is normally low, and when a change in the potential D occurs on the positive side, that is, when the temperature of the sensor 7 rises, the output of the amplifier 19 becomes high.
become. This output is the diode 2 of the timer circuit.
2 to the positive input terminal of the operational amplifier 23. The operational amplifier 23 functions as a comparator, and resistors 24, 27, 28 and a capacitor 25 constitute a monostable multivibrator. Now, when the output of the amplifier 19 becomes high, the output of the amplifier 23 also becomes high because it is connected to the negative input terminal of the amplifier 23 via the diode 26 and exceeds the preset potential G lower than the power supply voltage 9. Become. At this time, the potential divided by the resistors 27 and 28 is applied to the positive input terminal, so even if the output potential of the amplifier 19 instantaneously becomes low, the output of the amplifier 23 continues to be held. At the same time, the resistor 24 starts charging the capacitor 25, and the negative input terminal of the amplifier 23 starts to rise. Eventually, when the negative input terminal exceeds the positive input potential divided by resistors 27 and 28, amplifier 23 returns to low again.

また演算増幅器23の出力は抵抗35,36で
分圧され、放電制限回路の演算増幅器41の正
入力端子に印加されている。その負入力端子には
電源電圧を第二のサーミスタ37と抵抗38で分
圧した電位が抵抗39を介して印加されていると
同時に、出力が抵抗40でもつてフイードバツク
され、増幅器41は反転増幅回路を構成してい
る。つまり抵抗35,36の中点の電位L、セン
サ37、抵抗38の中点電位Kとの差を増幅度
(抵抗40/抵抗39)倍に増幅する。増幅器4
1の出力は抵抗42,43で分圧され、トランジ
スタ45のベースに印加されるトランジスタ45
のエミツタはエミツタ抵抗44を介して直流電源
9のマイナス端子へ接続され、コレクタはトラン
ジスタ13のベースに接続されている。
Further, the output of the operational amplifier 23 is voltage-divided by resistors 35 and 36, and is applied to the positive input terminal of the operational amplifier 41 of the discharge limiting circuit. A potential obtained by dividing the power supply voltage by a second thermistor 37 and a resistor 38 is applied to its negative input terminal via a resistor 39, and at the same time, the output is fed back through a resistor 40, and the amplifier 41 is an inverting amplifier circuit. It consists of That is, the difference between the potential L at the midpoint of the resistors 35 and 36 and the midpoint potential K between the sensor 37 and the resistor 38 is amplified by a factor of amplification (resistance 40/resistance 39). amplifier 4
The output of transistor 45 is divided by resistors 42 and 43 and applied to the base of transistor 45.
The emitter is connected to the negative terminal of the DC power supply 9 via the emitter resistor 44, and the collector is connected to the base of the transistor 13.

給水温度が高い場合にはセンサ37の抵抗値が
小さいため、Kの電位は低い。このため、増幅器
41の出力は高く、トランジスタ45は導通し、
トランジスタ13のベース電流を低下させる。水
温が低い場合にはセンサ37は大きく、トランジ
スタ45の導通量は少なくなり、したがつてトラ
ンジスタ13のベース電位の低下量も少ない。コ
ンデンサ17の充電電荷は抵抗14,33を通し
て放電されるため、トランジスタ13のベース電
位に比例して放電量は変化する。そのため給水温
度が低い場合には放電量は少なく、温度が高い場
合には放電量は多い。以上のことは全てタイマ動
作中であり、タイマが動作しない時は増幅器23
の出力は低であるため、Lの電位は零になり、セ
ンサ37の抵抗値に関係なく増幅器41の出力も
零となり、トランジスタ45はオフとなり続け
る。
When the water supply temperature is high, the resistance value of the sensor 37 is small, so the potential of K is low. Therefore, the output of the amplifier 41 is high and the transistor 45 is conductive.
The base current of transistor 13 is reduced. When the water temperature is low, the sensor 37 is large, the amount of conduction of the transistor 45 is small, and therefore the amount of decrease in the base potential of the transistor 13 is also small. Since the charge in the capacitor 17 is discharged through the resistors 14 and 33, the amount of discharge changes in proportion to the base potential of the transistor 13. Therefore, when the water supply temperature is low, the amount of discharge is small, and when the temperature is high, the amount of discharge is large. All of the above occurs while the timer is operating, and when the timer does not operate, the amplifier 23
Since the output of is low, the potential of L becomes zero, the output of amplifier 41 also becomes zero regardless of the resistance value of sensor 37, and transistor 45 continues to be off.

以上説明して来たように本発明によれば、次の
ような作用効果が得られる。すなわち、給水温度
が低ければある設定温度を得るための負荷は大き
いから第8図の電流′は大きくなる。このため
積分放電量を少くして、すぐに′に移行できる
ようになる。反対に給水温度が高ければ負荷は小
さいため、″は小さい。これに応じて積分放電
量も多くして″に近づけることが可能となる。
As explained above, according to the present invention, the following effects can be obtained. That is, if the water supply temperature is low, the load required to obtain a certain set temperature is large, so the current ' in FIG. 8 becomes large. Therefore, it becomes possible to reduce the integrated discharge amount and immediately shift to ''. On the other hand, if the water supply temperature is high, the load is small, so `` is small. Accordingly, it is possible to increase the integrated discharge amount so as to approach ``.

第9図は温度設定を可変する場合の回路例であ
る。温度設定値を可変する場合は給水温度が一定
であつても負荷が変化して第8図の′が変化す
る。例えば温度設定が高ければ負荷は大きく、
′も大で、設定が低ければ′は小さくなる。第
9図の回路では給水温度と設定温度の差を取り、
その値に応じて積分放電量を制御する構成となつ
ている。演算増幅器12の正入力端子には電源9
の電圧を抵抗45および設定抵抗46で分圧した
電位Kが印加され、電位K、Dを比較し、その差
により出力される。今、設定抵抗46が大ならば
電位Kは上昇し、増幅器12の出力も上昇する。
これによりトランジスタ13が導通して比例制御
弁5へ通れる電流が増加する。これにより湯温が
上昇し、センサ7の抵抗値が低下するため、電位
Dは上昇し安定した点で止まる。また演算増幅器
41はKの電位が抵抗39を介して負入力端子に
印加され、第二の温度センサ37と抵抗38との
中点のM電位を正入力端子に印加され、K電位で
設定温度を、M電位で給水温度をそれぞれ検出
し、その差分をゲイン(R40/R39)で増幅してト
ランジスタ45のベースに印加している。またタ
イマが動作していない時は演算増幅器23の出力
は低であるため、ダイオード47を通してトラン
ジスタ45のベースはマイナスに引かれているた
め、K、Mの電位に無関係にオフしている。
FIG. 9 is an example of a circuit for varying temperature settings. When the temperature setting value is varied, the load changes and '' in FIG. 8 changes even if the water supply temperature is constant. For example, the higher the temperature setting, the greater the load.
′ is also large, and the lower the setting, the smaller ′ is. In the circuit shown in Figure 9, the difference between the supply water temperature and the set temperature is taken,
The configuration is such that the integrated discharge amount is controlled according to the value. A power supply 9 is connected to the positive input terminal of the operational amplifier 12.
A potential K obtained by dividing the voltage of 1 by a resistor 45 and a setting resistor 46 is applied, the potentials K and D are compared, and the difference is output. Now, if the setting resistor 46 is large, the potential K will rise and the output of the amplifier 12 will also rise.
As a result, the transistor 13 becomes conductive and the current that can pass to the proportional control valve 5 increases. As a result, the temperature of the water increases and the resistance value of the sensor 7 decreases, so the potential D increases and stops at a stable point. Further, in the operational amplifier 41, the potential K is applied to the negative input terminal via the resistor 39, the M potential at the midpoint between the second temperature sensor 37 and the resistor 38 is applied to the positive input terminal, and the set temperature is set at the K potential. The supply water temperature is detected at the M potential, and the difference is amplified by a gain (R 40 /R 39 ) and applied to the base of the transistor 45. Further, when the timer is not operating, the output of the operational amplifier 23 is low, so the base of the transistor 45 is pulled negative through the diode 47, so it is turned off regardless of the potentials of K and M.

以上の回路構成で給水温度、設定温度のどちら
が変化しても積分放電量を制御することができる
ものである。
With the above circuit configuration, the integrated discharge amount can be controlled regardless of whether the water supply temperature or the set temperature changes.

第10図はさらに給湯量を可変した場合によつ
ても積分放電量を制御できるような構成のもので
ある。弁の制御電位′は湯沸器の負荷量と比例
する。また負荷L=(T2−T1)×Qで計算でき
る。
FIG. 10 shows a configuration in which the integral discharge amount can be controlled even when the amount of hot water supplied is varied. The control potential ′ of the valve is proportional to the load of the water heater. Also, it can be calculated as load L=(T 2 −T 1 )×Q.

T2=湯沸器設定温度 T1=湯沸器入口温度 Q=給湯流量 以上から積分放電量も負荷Lに比例して制御す
ることが理想となる。そこで第10図において4
8は給湯蛇口に取付けられ蛇口の開度に比例して
動作する可変抵抗で、蛇口を開く程抵抗が小さく
なる構成になつている。つまり蛇口を開き給湯量
が増加する程、演算増幅器41のゲインR48/R49
は高くなる。出力は(電位K−電位M)×ゲイン
となるため、上記負荷Lの式と同等となる。
T 2 = Water heater set temperature T 1 = Water heater inlet temperature Q = Hot water supply flow rate From the above, it is ideal to control the integral discharge amount in proportion to the load L. Therefore, in Figure 10, 4
A variable resistor 8 is attached to the hot water faucet and operates in proportion to the degree of opening of the faucet, and the resistance becomes smaller as the faucet is opened. In other words, the more the faucet is opened and the amount of hot water increases, the gain R 48 /R 49 of the operational amplifier 41 increases.
becomes higher. Since the output is (potential K−potential M)×gain, it is equivalent to the equation for the load L described above.

給湯量の検出方法は第10図以外の方法であつ
てもよい。
The method of detecting the amount of hot water supplied may be a method other than that shown in FIG.

以上説明して来たように本発明によれば、積分
要素のある制御系での一方向(湯温が上昇する方
向)における負荷変動を検出し、これにより駆動
されるタイマで積分コンデンサの充電電荷をその
負荷での最適充電量に強制的に移行させる回路を
設けたため、負荷変動による湯温の上昇を押える
とともに過放電による温度降下をも制限でき、快
適な給湯湯温を得ることができ、しかも火傷等の
危険もなく安全性も向上するという工業価値大な
るものである。
As explained above, according to the present invention, load fluctuations in one direction (increasing water temperature) are detected in a control system with an integral element, and the integral capacitor is charged by a timer driven by this. By installing a circuit that forcibly shifts the charge to the optimum charge amount for the load, it is possible to suppress the rise in water temperature due to load fluctuations and also limit the temperature drop due to overdischarge, making it possible to obtain a comfortable hot water temperature. Moreover, it has great industrial value as it eliminates the danger of burns and improves safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は比例制御方式の湯沸器の給湯特性図、
第2図は比例積分方式の湯沸器の給湯特性図、第
3図は本発明を使用しない場合の湯温と負荷電流
の過渡応答特性図で、特に湯沸器能力域から制御
域に至る場合を示す。第4図は湯沸器の制御シス
テム図、第5図は従来の比例積分制御回路を示す
図、第6図は本発明の一実施例における回路を示
す図、第7図は本発明のポイントとなる放電量制
御回路を設けない場合の過渡応答特性図で、負荷
が大負荷から小負荷に変化する時を示す。第8図
は本発明を実施した場合の過渡応答特性を示す
図、第9図は本発明の他の実施例の回路図、第1
0図は本発明のさらに他の実施例の回路図であ
る。 1……水入口(水路)、2……熱交換器、5…
…比例制御弁(比例制御器)、6……バーナ、7
……給湯温度検知センサ(第1の温度センサ)、
37……給水温度検知センサ(第2の温度セン
サ)、46……湯温設定用可変抵抗器(温度設定
器)、48……給水流量検知用流量センサ、…
…制御回路、……タイマ回路、……放電制限
回路。
Figure 1 shows the hot water supply characteristics of a proportional control type water heater.
Figure 2 is a water supply characteristic diagram of a proportional-integral water heater, and Figure 3 is a transient response characteristic diagram of hot water temperature and load current when the present invention is not used, especially from the water heater capacity range to the control range. Indicate the case. Fig. 4 is a diagram of a water heater control system, Fig. 5 is a diagram showing a conventional proportional-integral control circuit, Fig. 6 is a diagram showing a circuit in an embodiment of the present invention, and Fig. 7 is a diagram showing key points of the present invention. This is a transient response characteristic diagram when a discharge amount control circuit is not provided, and shows when the load changes from a large load to a small load. FIG. 8 is a diagram showing transient response characteristics when the present invention is implemented, FIG. 9 is a circuit diagram of another embodiment of the present invention, and FIG.
FIG. 0 is a circuit diagram of still another embodiment of the present invention. 1...Water inlet (water channel), 2...Heat exchanger, 5...
...Proportional control valve (proportional controller), 6...Burner, 7
...Hot water temperature detection sensor (first temperature sensor),
37... Water supply temperature detection sensor (second temperature sensor), 46... Variable resistor for hot water temperature setting (temperature setting device), 48... Flow rate sensor for detection of water supply flow rate,...
...control circuit, ...timer circuit, ...discharge limit circuit.

Claims (1)

【特許請求の範囲】 1 熱交換器を途中に有する水路と、熱交換器を
加熱するバーナと、電流量に応じてバーナの燃焼
量を比例的に制御する比例制御器と、熱交換器の
出湯温度を検出する第1の温度センサと、熱交換
器の給水温度を検出する第2の温度センサと、第
1の温度センサの出力信号に応じて比例積分を行
ない比例制御器を駆動する制御回路と、第1の温
度センサの出力信号を検出して上記制御回路の積
分コンデンサの電荷を一定時間放電させるタイマ
回路と、第2の温度センサの出力信号に応じて上
記積分コンデンサの放電電荷量を制御する放電制
限回路とを備えたことを特徴とする湯沸器。 2 制御回路は湯温を設定する温度設定器を有
し、放電制限回路は温度設定信号と第二の温度セ
ンサからの出力信号の差により放電電荷量を制御
する特許請求の範囲第1項記載の湯沸器。 3 放電制限回路は給水量検知用の流量センサを
有し、温度設定信号と第二の温度センサからの出
力信号の差と、流量センサからの信号とを乗じた
値により、放電電荷量を制御する特許請求の範囲
第2項記載の湯沸器。
[Scope of Claims] 1. A water channel having a heat exchanger in the middle, a burner that heats the heat exchanger, a proportional controller that proportionally controls the combustion amount of the burner according to the amount of current, and A first temperature sensor that detects the hot water temperature, a second temperature sensor that detects the water supply temperature of the heat exchanger, and control that performs proportional integration according to the output signal of the first temperature sensor and drives the proportional controller. a timer circuit that detects the output signal of the first temperature sensor and discharges the electric charge of the integrating capacitor of the control circuit for a certain period of time; and an amount of electric charge discharged from the integrating capacitor according to the output signal of the second temperature sensor. A water heater characterized by comprising a discharge limiting circuit for controlling. 2. The control circuit has a temperature setting device that sets the temperature of the hot water, and the discharge limiting circuit controls the amount of discharged charge based on the difference between the temperature setting signal and the output signal from the second temperature sensor. water heater. 3 The discharge limiting circuit has a flow rate sensor for detecting the amount of water supplied, and controls the amount of discharged charge based on the value obtained by multiplying the difference between the temperature setting signal and the output signal from the second temperature sensor by the signal from the flow rate sensor. A water heater according to claim 2.
JP15565278A 1978-12-14 1978-12-14 Water heater Granted JPS5582253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15565278A JPS5582253A (en) 1978-12-14 1978-12-14 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15565278A JPS5582253A (en) 1978-12-14 1978-12-14 Water heater

Publications (2)

Publication Number Publication Date
JPS5582253A JPS5582253A (en) 1980-06-20
JPS6154155B2 true JPS6154155B2 (en) 1986-11-20

Family

ID=15610636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15565278A Granted JPS5582253A (en) 1978-12-14 1978-12-14 Water heater

Country Status (1)

Country Link
JP (1) JPS5582253A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115242A (en) * 1981-12-26 1983-07-08 Yamatake Honeywell Co Ltd Temperature controller of instantaneous water heater
JPS58168840A (en) * 1982-03-30 1983-10-05 Noritsu Co Ltd Performance control device for instantaneous water heater
CN108006988B (en) * 2017-11-09 2019-01-18 珠海格力电器股份有限公司 Water heater control method and device and computer readable storage medium

Also Published As

Publication number Publication date
JPS5582253A (en) 1980-06-20

Similar Documents

Publication Publication Date Title
US4393858A (en) Combustion control system
JPS6157976B2 (en)
JPS6154155B2 (en)
JPS6134049B2 (en)
JPS6144111Y2 (en)
JPS6122216B2 (en)
JPS5833050A (en) Forced draft combustion type gas water heater
JPS6157541B2 (en)
JPH0113016B2 (en)
JPH0240443Y2 (en)
JPS6056967B2 (en) water heater
JPS6034010B2 (en) gas water heater
JPS58168840A (en) Performance control device for instantaneous water heater
JPH0240444Y2 (en)
JPS6227403B2 (en)
JPH018848Y2 (en)
JPS6133394Y2 (en)
JPS6125975B2 (en)
JPH029266Y2 (en)
JPS58178115A (en) Electronic gas governor device
JP2820583B2 (en) Water heater temperature control device
JPH0220607Y2 (en)
JPS6316991Y2 (en)
JPH0315089B2 (en)
JP2501089B2 (en) Hot air heater