JPS6044002B2 - Method for reducing non-volatile impurities in liquid during distillation operations - Google Patents

Method for reducing non-volatile impurities in liquid during distillation operations

Info

Publication number
JPS6044002B2
JPS6044002B2 JP12320177A JP12320177A JPS6044002B2 JP S6044002 B2 JPS6044002 B2 JP S6044002B2 JP 12320177 A JP12320177 A JP 12320177A JP 12320177 A JP12320177 A JP 12320177A JP S6044002 B2 JPS6044002 B2 JP S6044002B2
Authority
JP
Japan
Prior art keywords
liquid
volatile impurities
reboiler
amount
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12320177A
Other languages
Japanese (ja)
Other versions
JPS5456076A (en
Inventor
徹也 大類
信幸 村本
治 今井
和夫 仲田
豊満 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP12320177A priority Critical patent/JPS6044002B2/en
Publication of JPS5456076A publication Critical patent/JPS5456076A/en
Publication of JPS6044002B2 publication Critical patent/JPS6044002B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】 本発明は蒸留操作のおける液中の不揮発性不純物の減
少法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for reducing non-volatile impurities in a liquid during a distillation operation.

液を蒸留し、塔頂および塔底よりそれぞれ製品液を得
る蒸留操作はよく知られており、また不揮発性不純物を
含む液から不揮発性不純物を含まない液を得るために、
不揮発性不純物を含む液を加熱することによつて蒸発さ
せ、この蒸気を凝縮させることにより、不揮発性不純物
を含まない液を得る蒸発による分離操作もよく知られて
いる方法である。
The distillation operation of distilling a liquid to obtain product liquids from the top and bottom of the column is well known.
Another well-known method is separation by evaporation, in which a liquid containing non-volatile impurities is evaporated by heating and the vapor is condensed to obtain a liquid free of non-volatile impurities.

本発明は、不揮発性不純物を含む液をサーモサイホン
型リボイラーを用いて蒸留し、塔頂および塔底よりそれ
ぞれ製品液を得る場合、塔底製品液中の不揮発性不純物
を減少させるために、前記の如き蒸発による液中の不揮
発性不純物の分離操作を蒸留操作と切離して行うことな
く蒸留操作と同時に塔底製品液中の不揮発性不純物の減
少をはかるとともに、蒸発のためにリボイラーに供給さ
れる熱量を増加させることなく、また塔底製品液の損失
を極力減少させることを目的とするものである。
In the present invention, when a liquid containing non-volatile impurities is distilled using a thermosiphon reboiler and product liquids are obtained from the top and bottom of the column, the above-mentioned It is possible to reduce the non-volatile impurities in the bottom product liquid at the same time as the distillation operation without separating the non-volatile impurities in the liquid by evaporation separately from the distillation operation, and also to reduce the non-volatile impurities in the liquid at the bottom of the column. The purpose is to reduce the loss of the bottom product liquid as much as possible without increasing the amount of heat.

蒸留操作において塔頂より出る蒸気は、ミスト等が同
判しない限り供給液の不揮発性不純物含まないので、通
常この蒸気を冷却し、凝縮させた凝縮液中には不揮発性
不純物は含まれない。
In a distillation operation, the vapor emitted from the top of the column does not contain non-volatile impurities from the feed liquid unless mist etc. are present, so the condensate obtained by cooling this vapor and condensing it usually does not contain non-volatile impurities.

この凝縮液は一部塔頂製品液となり、残部は環流液とし
て蒸留塔塔頂へ戻される。したがつて供給液中にJ含ま
れる不揮発性不純物は全量塔底製品液中に残留するため
、塔底製品液中の不揮発性不純物濃度は供給液中の不揮
発性不純物濃度よりも大きくなる。たとえば塔底製品液
量が供給液量の112である場合には、塔底製品液中の
不揮発性不純物濃度は供給液中の不揮発性不純物濃度の
2倍となる。通常サーモサイホン型リボイラーを用いる
場合、塔底の製品液は蒸留塔塔底から抜取られる。また
リボイラーでの蒸発量の20〜4皓の液が蒸留塔塔底か
らリボイラーに供給され、該リボイラーにおいて一部蒸
発して気液混相流体として蒸留塔塔底へ戻される。した
がつて蒸留塔が一定条件下で運転されている場合は、前
記の如く塔底製品液の不揮発性不純物の濃度は供給液中
の不揮発性不純物の濃度よりも大きくなる。
A portion of this condensate becomes a product liquid at the top of the column, and the remainder is returned to the top of the distillation column as a reflux liquid. Therefore, all of the non-volatile impurities contained in the feed liquid remain in the bottom product liquid, so the concentration of non-volatile impurities in the bottom product liquid is higher than the non-volatile impurity concentration in the feed liquid. For example, if the bottom product liquid amount is 112 times the feed liquid amount, the nonvolatile impurity concentration in the bottom product liquid will be twice the nonvolatile impurity concentration in the feed liquid. Normally, when a thermosyphon reboiler is used, the product liquid at the bottom of the column is extracted from the bottom of the distillation column. Further, a liquid with an amount of 20 to 4 times the amount evaporated in the reboiler is supplied from the bottom of the distillation column to the reboiler, is partially evaporated in the reboiler, and is returned to the bottom of the distillation column as a gas-liquid mixed phase fluid. Therefore, when the distillation column is operated under certain conditions, the concentration of non-volatile impurities in the bottom product liquid will be greater than the concentration of non-volatile impurities in the feed liquid, as described above.

本発明においてはサーモサイホン型リボイラーの出口に
気液分離器を設置し、サーモサイホン型リボイラー出口
の気液混相流体をこの気液分離器において蒸気と液に分
離し、蒸気のみ蒸留塔塔底へ戻し、液はサーモサイホン
型リボイラーへ戻すとともに連続的あるいは間欠的に微
少量別個に抜取ることを特徴とする。
In the present invention, a gas-liquid separator is installed at the outlet of the thermosiphon reboiler, and the gas-liquid multiphase fluid at the outlet of the thermosiphon reboiler is separated into vapor and liquid in this gas-liquid separator, and only the vapor is sent to the bottom of the distillation column. The liquid is returned to the thermosiphon type reboiler and is continuously or intermittently drawn out in small amounts separately.

蒸留塔塔底からサーモサイホン型リボイラーへ供給され
る液はサーモサイホン型リボイラー内での蒸発量とほぼ
同量であり、リボイラーで発生した蒸気はサーモサイホ
ン型リボイラーと気液分離器を循環する液と共に気液分
離器に入り、ここで蒸気が分離されてこの蒸気は蒸留塔
塔底へ戻される。
The amount of liquid supplied from the bottom of the distillation column to the thermosiphon reboiler is approximately the same amount as the amount of evaporation within the thermosiphon reboiler, and the steam generated in the reboiler is the liquid that circulates through the thermosiphon reboiler and the gas-liquid separator. It also enters a gas-liquid separator where the vapor is separated and returned to the bottom of the distillation column.

したがつて通常のサーモサイホン型リボイラーの場合、
リボイラーにおいて蒸発する液量の20〜4皓の蒸留塔
塔底液が蒸留塔の塔底よりサーモサイホン型リボイラー
に供給され、またこれと同量の気液混相流体がサーモサ
イホン型リボイラーから蒸留塔塔底へ戻されるのである
が、本発明方.法においては、リボイラーでの蒸発量と
ほぼ同量の塔底液が気液分離器とリボイラーを循環する
液即ちリボイラーにおいて蒸発する液量の20〜4皓の
液とともにサーモサイホン型リボイラーに供給され、蒸
留塔の塔底へはリボイラーで蒸発した蒸.気のみが戻さ
れることになる。蒸留塔の塔底へ戻される蒸気はミスト
等が同判しない限り不揮発性不純物を含まないので、蒸
留塔の塔底からサーモサイホン型リボイラーに供給され
る液中に含まれる不揮発性不純物は気液分離一器におい
て分離される循環液中に残留することになる。
Therefore, in the case of a normal thermosiphon reboiler,
Distillation column bottom liquid of 20 to 4 times the amount of liquid evaporated in the reboiler is supplied from the bottom of the distillation column to the thermosiphon reboiler, and the same amount of gas-liquid multiphase fluid is supplied from the thermosyphon reboiler to the distillation column. However, in the method of the present invention, it is returned to the bottom of the tower. In the method, the bottom liquid in an amount approximately equal to the amount evaporated in the reboiler is supplied to the thermosiphon reboiler together with the liquid that circulates through the gas-liquid separator and the reboiler, that is, 20 to 4 times the amount of liquid that evaporates in the reboiler. The bottom of the distillation column is filled with steam evaporated by the reboiler. Only the Qi will be returned. The steam returned to the bottom of the distillation column does not contain non-volatile impurities unless it is mixed with mist, so the non-volatile impurities contained in the liquid supplied from the bottom of the distillation column to the thermosyphon reboiler are gas-liquid. It will remain in the circulating fluid separated in the separator.

したがつてサーモサイホン型リボイラーと気液分離器を
循環する液中の不揮発性不純物は時間とともに増加する
ことになる。この循環液中の不揮発性不純物濃度は、不
揮発性不純物が循環液より析出する濃度より小さく保つ
必要があり、このためには循環している不揮発性不純物
の濃縮液を連続的にあるいは間欠的に微少量別個に抜取
ることが必要となる。抜取る液中の不揮発性不純物の濃
度を不揮発性不純物が液中より析出する濃度近くまで大
きくすることによつて、抜取る液量を微少量とすること
ができ、製品損失を極力防止するとともに、この抜取り
液により持ち去られる熱・量を極力少なくすることが可
能になる。たとえば蒸留塔への供給液量が2旺/Hrで
かつ重金属濃度が5ppm(重量)、塔底製品液が12
.5T/Hrおよび蒸留塔塔底よりサーモサイホン型リ
ボイラーへ供給される塔底液が39T/Hrである場に
は、塔底製品液中の重金属濃度は2.5ppm(重量)
と半減する。
Therefore, the amount of non-volatile impurities in the liquid circulating through the thermosyphon reboiler and gas-liquid separator increases over time. The concentration of non-volatile impurities in this circulating fluid must be kept lower than the concentration at which non-volatile impurities precipitate from the circulating fluid. It is necessary to extract small amounts separately. By increasing the concentration of non-volatile impurities in the liquid to be extracted to a level close to the concentration at which non-volatile impurities precipitate from the liquid, the amount of liquid to be extracted can be reduced to a very small amount, and product loss can be prevented as much as possible. , it becomes possible to minimize the amount of heat carried away by this extraction liquid. For example, the amount of liquid fed to the distillation column is 2 O/Hr, the heavy metal concentration is 5 ppm (weight), and the bottom product liquid is 12
.. 5T/Hr and the bottom liquid supplied from the bottom of the distillation column to the thermosiphon reboiler is 39T/Hr, the heavy metal concentration in the bottom product liquid is 2.5 ppm (weight).
and halved.

サーモサイホン型リボイラーと気液分離器を循環する液
量はリボイラーでの蒸発液量39T/Hrのたとえば3
皓の1170T/Hrであるが、この循環液の重金属濃
度を10000ppmであるとすれば9.75kg/H
rの循環液を抜出せばよい。この抜出し量は塔底製品液
のわずか0.078%であり、製品損失は微少量となる
。以上の説明においては蒸留塔の塔頂および塔底から製
品が得られるとして記述してきたが、前記の説明から明
らかなように塔頂および塔底から得られる液は製品であ
る必要はなく、プロセス内で循環使用されるものでもよ
い。
The amount of liquid circulating through the thermosyphon type reboiler and the gas-liquid separator is, for example, 3 of the amount of evaporated liquid in the reboiler of 39T/Hr.
It is 1170T/Hr of Hao, but if the heavy metal concentration of this circulating fluid is 10000ppm, it is 9.75kg/Hr.
All you have to do is draw out the r circulating fluid. This withdrawal amount is only 0.078% of the product liquid at the bottom of the column, resulting in a very small amount of product loss. In the above explanation, it has been described that the product is obtained from the top and bottom of the distillation column, but as is clear from the above explanation, the liquid obtained from the top and bottom of the column does not necessarily have to be a product, but rather It may also be something that is used cyclically within the organization.

また、サーモサイホン型リボイラー出口に設置した気液
分離器において分離された蒸気中にはミスト等の同判が
ないとして説明してきたが、循環液中の不揮発性不純物
の濃度は非常に大きいので蒸気中へのミスト等の同伴を
極力防止する必要がある。このため必要ならばミストセ
パレータ等を設置しなければならない。以上述べてきた
ように、本発明はサーモサイホン型リボイラーとその出
口に設置された気液分離器の循環液を不揮発性不純物の
濃縮液とし、この濃縮液を微少量抜取ることによつて蒸
留塔塔底から直接抜取られる製品液中の不揮発性不純物
を減少させる方法であり、蒸発のためにリボイラーに供
給される熱量を増加させることなく、また製品損失を極
力減少させることが可能となる。
In addition, although it has been explained that there is no mist etc. in the steam separated in the gas-liquid separator installed at the outlet of the thermosyphon type reboiler, the concentration of non-volatile impurities in the circulating fluid is extremely high, so It is necessary to prevent mist etc. from entering inside as much as possible. For this reason, if necessary, a mist separator or the like must be installed. As described above, the present invention converts the circulating liquid of the thermosiphon reboiler and the gas-liquid separator installed at its outlet into a concentrated liquid of non-volatile impurities, and performs distillation by extracting a small amount of this concentrated liquid. This method reduces non-volatile impurities in the product liquid that is extracted directly from the bottom of the tower, making it possible to minimize product loss without increasing the amount of heat supplied to the reboiler for evaporation.

以下本発明を図面によつて説明する。The present invention will be explained below with reference to the drawings.

第1図は本発明方法の1実施態様を示す工程説明図であ
るが、本発明はこれによつて何ら制限されるものではな
い。不揮発性不純,力を含む液がライン1を通じて蒸留
塔2に供給され、不揮発性不純物を含まない塔頂蒸気は
シイン3を通じて凝縮器4に供給され、ここで凝縮され
る。
Although FIG. 1 is a process explanatory diagram showing one embodiment of the method of the present invention, the present invention is not limited thereby. A liquid containing non-volatile impurities is supplied to a distillation column 2 through a line 1, and an overhead vapor free of non-volatile impurities is supplied to a condenser 4 through a sheath 3, where it is condensed.

この凝縮液はライン5を通じて、一部は不揮発性不純物
を含まない塔頂製品液としてライン6より抜取られ、残
部は環流液としてライン7を通じて蒸留塔2へ戻される
。ライン1の供給液中に含まれる不揮発性不純物は全量
蒸留塔2の塔底液中に残留する。
This condensate is taken out through line 5, a part of which is taken out through line 6 as an overhead product liquid containing no non-volatile impurities, and the remainder is returned to the distillation column 2 through line 7 as a reflux liquid. The non-volatile impurities contained in the feed liquid in line 1 remain in the bottom liquid of total distillation column 2.

この塔底液は塔底製品液としてライン8を通じて抜取ら
れるともにサーモサイホン型リボイラー9での蒸発量と
ほぼ同量の液がライン10を通じてサーモサイホン型リ
ボイラー9に供給される。サーモサイホン型リボイラー
へは、塔底液がライン10を通じて、また気液分離器1
1で分離されライン12を通じて気液分離器より抜取ら
れる液の大部分がライン13を通じて供給される。サー
モサイホン型リボイラー9において蒸発する液量はライ
ン10を通じて供給される液とほぼ同量である。サーモ
サイホン型リボイラーを出る気液混相流体はライン14
を通じて気液分離器11に供給され、ここで蒸気と液に
分離される。このうち蒸気はライン15を通じて蒸留塔
2に戻され、液はライン12、さらにライン13を通じ
てサーモサイホン型リボイラー9に循環されるとともに
、ライン16を通じて微少量が抜取られることになる。
したがつて蒸留塔2からはライン10を通じて塔底液が
抜取られ、これと同量の液がサーモサイホン型リボイラ
ー9で蒸発し、ライン15を通じて蒸留塔2へ戻される
ことになり、塔底液の前記循環において、塔底液中の不
揮発性不純物の除去が行なわれるわけである。
This column bottom liquid is withdrawn as a column bottom product liquid through line 8, and at the same time, approximately the same amount of liquid as the amount of evaporation in thermosiphon reboiler 9 is supplied to thermosyphon reboiler 9 through line 10. The bottom liquid is sent to the thermosyphon reboiler through line 10 and gas-liquid separator 1.
Most of the liquid separated in step 1 and withdrawn from the gas-liquid separator through line 12 is supplied through line 13. The amount of liquid evaporated in the thermosiphon reboiler 9 is approximately the same amount as the liquid supplied through the line 10. The gas-liquid multiphase fluid exiting the thermosyphon reboiler is line 14.
The gas is supplied to the gas-liquid separator 11 through the gas-liquid separator 11, where it is separated into vapor and liquid. Of these, the steam is returned to the distillation column 2 through line 15, and the liquid is circulated through line 12 and further to line 13 to thermosyphon reboiler 9, and a very small amount is extracted through line 16.
Therefore, the bottom liquid is extracted from the distillation column 2 through the line 10, and the same amount of liquid is evaporated in the thermosiphon reboiler 9 and returned to the distillation column 2 through the line 15. In the circulation, non-volatile impurities in the bottom liquid are removed.

そのためライン10を通じてサーモサイホン型リボイラ
ー9に供給される液量が多いほど、換言すればサーモサ
イホン型リボイラー9における蒸発量が多いほどライン
8を通じて抜取られる塔底製品液中の不揮発性不純物の
濃度は小さくなるがこの蒸発量は蒸留操作条件で決まつ
てくるものであり、特に塔底製品液中の不揮発性不純物
を減少させるために蒸発量を多くする必要はない。この
蒸発量を多くするためには、たとえば環流液量を増加さ
せればよいが、環流液量の増加分に相当する熱量をリボ
イラーに余分に供給する必要がある。塔底製品液中の不
揮発性不純物の減少のメリットがこの熱量増加のデメリ
ツトより大きいならばリボイラーでの蒸発量の増加はは
かられるべきであろう。サーモサイホン型リボイラー9
と気液分離器11を循環する液量は、サーモサイホン型
リボイラー9で蒸発する液量の通常20〜4皓であり、
この循環液中の不揮発性不純物の濃度は不揮発性不純物
が循環液から析出する濃度近くまでできるだけ高めるこ
とが望ましく、この場合はライン16から抜取られる液
量を極力減少でき、製品損失を極力少なくするとともに
、抜取り液により持ち去られる熱量を極力少なくするこ
とが可能となる。
Therefore, the greater the amount of liquid supplied to the thermosyphon reboiler 9 through the line 10, in other words, the greater the amount of evaporation in the thermosyphon reboiler 9, the higher the concentration of non-volatile impurities in the bottom product liquid extracted through the line 8. Although the amount of evaporation is small, it is determined by the distillation operating conditions, and there is no need to increase the amount of evaporation especially in order to reduce non-volatile impurities in the product liquid at the bottom of the column. In order to increase the amount of evaporation, for example, the amount of recirculated liquid may be increased, but it is necessary to supply an extra amount of heat to the reboiler corresponding to the increase in the amount of recirculated liquid. If the advantage of reducing non-volatile impurities in the bottom product liquid outweighs the disadvantage of increasing the amount of heat, then the amount of evaporation in the reboiler should be increased. Thermosiphon type reboiler 9
The amount of liquid circulating through the gas-liquid separator 11 is usually 20 to 4 times the amount of liquid evaporated in the thermosyphon reboiler 9.
It is desirable to increase the concentration of non-volatile impurities in this circulating fluid as much as possible, close to the concentration at which non-volatile impurities precipitate from the circulating fluid. In this case, the amount of fluid drawn from line 16 can be reduced as much as possible, and product loss can be minimized. At the same time, it becomes possible to minimize the amount of heat carried away by the extraction liquid.

以下本発明方法を実施例によつて具体的に説明するが、
本発明の方法はこの実施例にのみ限定されるものではな
い。実施例1 30wt%の硝酸を蒸留し、62Wt%まで濃縮して製
品硝酸を製造する場合、塔頂よりほとんど硝酸を含まな
い水を系外へ排出する必要があるが、供l給液中に5p
pm(重量)の鉄、クロム、ニッケルを主体とする重金
属を含んでいるので、塔底製品硝酸液中の重金属濃度を
減少させるために、第1図に示すフローにしたがつて処
理を行なつた。
The method of the present invention will be specifically explained below with reference to Examples.
The method of the invention is not limited only to this example. Example 1 When producing product nitric acid by distilling 30 wt% nitric acid and concentrating it to 62 wt%, it is necessary to discharge water containing almost no nitric acid from the top of the column, but there is no water in the feed liquid. 5p
pm (by weight) of heavy metals, mainly iron, chromium, and nickel, so in order to reduce the heavy metal concentration in the nitric acid solution at the bottom of the column, the process is carried out according to the flow shown in Figure 1. Ta.

この場合の各部の流量、硝酸濃度、重金属濃度、温7度
、圧力を第1表に示す。
Table 1 shows the flow rate, nitric acid concentration, heavy metal concentration, temperature of 7 degrees Celsius, and pressure at each part in this case.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施態様の一例を示す工程説明図
てあり、図中の1は不揮発性不純物を含む液の供給ライ
ン、2は蒸留塔、4は凝縮器、8は塔底液抜出ライン、
9はサーモサイホン型リボイラー、11は気液分離器、
16は不揮発性不純物を含む液の抜出ラインをそれぞれ
示す。
FIG. 1 is a process explanatory diagram showing an example of an embodiment of the method of the present invention, in which 1 is a supply line for a liquid containing non-volatile impurities, 2 is a distillation column, 4 is a condenser, and 8 is a bottom liquid. extraction line,
9 is a thermosiphon type reboiler, 11 is a gas-liquid separator,
Reference numerals 16 and 16 respectively indicate extraction lines for liquids containing non-volatile impurities.

Claims (1)

【特許請求の範囲】[Claims] 1 不揮発性不純物を含む液をサーモサイホン型リボイ
ラーを用いて蒸留し、塔頂および塔底よりそれぞれ留出
液および缶出液を得る方法においてサーモサイホン型リ
ボイラーから出る気液混相流体を気液分離器において蒸
気と液に分離した後、蒸気は蒸留塔塔底へ戻し、液は蒸
留塔塔底よりサーモサイホン型リボイラーに供給される
リボイラーでの蒸発量とほぼ同量の塔底液とともにサー
モサイホン型リボイラーに戻すことによて、サーモサイ
ホン型リボイラーと気液分離器の循環液を不揮発性不純
物の濃縮液とし、この循環液を微少量別個に抜取ること
により蒸留塔塔底缶出液中の不揮発性不純物を減少させ
ることを特徴とする蒸留操作における液中の不揮発性不
純物の減少法。
1 A method in which a liquid containing non-volatile impurities is distilled using a thermosiphon reboiler to obtain distillate and bottoms from the top and bottom of the column, respectively.The gas-liquid multiphase fluid coming out of the thermosiphon reboiler is separated into gas and liquid. After separating into vapor and liquid in the distillation vessel, the vapor is returned to the bottom of the distillation column, and the liquid is fed from the bottom of the distillation column to a thermosiphon reboiler. By returning the circulating liquid to the thermosiphon type reboiler and gas-liquid separator, it becomes a concentrated liquid containing non-volatile impurities, and by separately withdrawing a minute amount of this circulating liquid, it is added to the bottom liquid of the distillation column. A method for reducing non-volatile impurities in a liquid in a distillation operation, characterized by reducing non-volatile impurities in a liquid.
JP12320177A 1977-10-13 1977-10-13 Method for reducing non-volatile impurities in liquid during distillation operations Expired JPS6044002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12320177A JPS6044002B2 (en) 1977-10-13 1977-10-13 Method for reducing non-volatile impurities in liquid during distillation operations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12320177A JPS6044002B2 (en) 1977-10-13 1977-10-13 Method for reducing non-volatile impurities in liquid during distillation operations

Publications (2)

Publication Number Publication Date
JPS5456076A JPS5456076A (en) 1979-05-04
JPS6044002B2 true JPS6044002B2 (en) 1985-10-01

Family

ID=14854688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12320177A Expired JPS6044002B2 (en) 1977-10-13 1977-10-13 Method for reducing non-volatile impurities in liquid during distillation operations

Country Status (1)

Country Link
JP (1) JPS6044002B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0142085Y2 (en) * 1983-10-27 1989-12-11
JPH0526565Y2 (en) * 1985-05-01 1993-07-06
JPH0526567Y2 (en) * 1985-05-15 1993-07-06

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0142085Y2 (en) * 1983-10-27 1989-12-11
JPH0526565Y2 (en) * 1985-05-01 1993-07-06
JPH0526567Y2 (en) * 1985-05-15 1993-07-06

Also Published As

Publication number Publication date
JPS5456076A (en) 1979-05-04

Similar Documents

Publication Publication Date Title
JP4575459B2 (en) Methanol recovery method
US4783242A (en) Distillation system and process
US3294650A (en) Process for concentrating sulfuric acid in a quartz rectifying column
US2698286A (en) Dehydration of hydrazine solutions
US4035242A (en) Distillative purification of alkane sulfonic acids
US3337633A (en) Production of isophorone
KR830000537A (en) An improved recovery device that separates ethylene oxide from impure aqueous solutions
US4021531A (en) Process for the separation of zirconium and hafnium tetrachlorides from mixtures thereof
US4362601A (en) Method for distilling ethyl alcohol by adding salt or salts
US2381995A (en) Production of anhydrous magnesium chloride
US3106515A (en) Process and apparatus for concentrating nitric acid
JPS6044002B2 (en) Method for reducing non-volatile impurities in liquid during distillation operations
WO2006109999A1 (en) Recovering method of acetic acid from effluent of terephthalic acid production process
JPH01149778A (en) Improvement in ethylene oxide process
US3378468A (en) Distillation and recovery of trioxane from aqueous formaldehyde-acidic catalyst solutions
JPS6075478A (en) Method and apparatus for manufacturing trioxane from commercial formaldehyde aqueous solution
US3493469A (en) Distillation and decanting system for separating components
EP0016506B1 (en) Process for increasing the efficiency of the separation of a solution into its volatile and non-volatile components
US3442770A (en) Process for the purification of methanol by extractive distillation and plural stage distillation recovery
US3147199A (en) Steam
US2690992A (en) Formaldehyde distillation by use of ethers
US5705040A (en) Process for preparing a substantially pure aqueous solution of hydrogen peroxide
JPS6044003B2 (en) Method for reducing non-volatile impurities in liquid during distillation operation
US3325532A (en) Manufacture of adiponitrile
US3426040A (en) Process of producing trioxane