JPS6043389B2 - Method for increasing the strength of hydrated soft soil using sulfuric acid modified blast furnace slag - Google Patents

Method for increasing the strength of hydrated soft soil using sulfuric acid modified blast furnace slag

Info

Publication number
JPS6043389B2
JPS6043389B2 JP10467080A JP10467080A JPS6043389B2 JP S6043389 B2 JPS6043389 B2 JP S6043389B2 JP 10467080 A JP10467080 A JP 10467080A JP 10467080 A JP10467080 A JP 10467080A JP S6043389 B2 JPS6043389 B2 JP S6043389B2
Authority
JP
Japan
Prior art keywords
blast furnace
sulfuric acid
furnace slag
strength
soft soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10467080A
Other languages
Japanese (ja)
Other versions
JPS5730783A (en
Inventor
一 三好
悦男 麻薙
修 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP10467080A priority Critical patent/JPS6043389B2/en
Publication of JPS5730783A publication Critical patent/JPS5730783A/en
Publication of JPS6043389B2 publication Critical patent/JPS6043389B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

【発明の詳細な説明】 本発明は、硫酸により変成された微細急冷高炉滓とボル
トランドセメントを強度増加剤に用い、含水軟弱土の強
度増加を経済的にかつ効率よく行う方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for economically and efficiently increasing the strength of hydrous soft soil by using finely quenched blast furnace slag modified with sulfuric acid and Boltland cement as strength increasing agents. .

従来、海、港湾、河川、湖沼などに堆積した含水軟弱土
を改良するために、あるいは浚渫して埋− 一゛ 、±
Lココ霊3L匍tM^ ! バ、−lii二゛、υを:
ル朽扶セ±n、ゼ匹1 ホ(日丁能となるように、それ
ら含水軟弱土を強度増加させることは一般に知られてい
る。
Traditionally, it has been used to improve soft, water-containing soil deposited in the sea, ports, rivers, lakes, etc., or to dredge and bury it.
L Coco Spirit 3L tM^! ba, -lii 2゛, υ:
It is generally known that water-containing soft soil can be strengthened to increase its strength.

このような軟弱士の強度増加方法の中で、比較的短時間
て大きな強度増加を達成し得る方法として強度増加剤あ
るいは固化剤を用いる方法が行われている。この場合、
強度増加剤としては、セメント、生石灰、水ガラス、ア
スファルト、有機高分子物質などが提案されているが、
いずれも強度増加の点で劣つたり、経済性の点で採算が
合わなかつたりなどの欠”点を有し、満足すべきもので
はない。殊に、ヘドロなどの含水比の大きな軟弱士の処
理の場合、その1回当りの処理量は数万〜数十万イにも
達することから、適用する強度増加剤量も必然的に多量
になり、従つて、この強度増加剤は可能な限り安・価で
かつ少量で大きな強度増加を示すものでなければならな
い。本発明者らは、先に安価で効果的な含水軟弱±の強
度増加法を提案した(特願昭54−8915号、特願和
55−4395号、以下先願技術と言う)。
Among such methods for increasing the strength of weak athletes, a method using a strength increasing agent or a solidifying agent is used as a method that can achieve a large increase in strength in a relatively short period of time. in this case,
Cement, quicklime, water glass, asphalt, organic polymer substances, etc. have been proposed as strength increasing agents.
All of them have drawbacks such as being inferior in terms of strength increase and being unprofitable in terms of economic efficiency, so they are not satisfactory.Especially in the treatment of soft materials with a high water content such as sludge. In this case, since the amount of treatment per process reaches tens of thousands to hundreds of thousands of units, the amount of strength-increasing agent to be applied is necessarily large, and therefore, this strength-increasing agent must be used as cheaply as possible. The present inventors have previously proposed an inexpensive and effective method for increasing the strength of water-containing soft and weak materials (Japanese Patent Application No. 8915/1989, No. 55-4395 (hereinafter referred to as the prior art).

これらフの先願技術は、含水軟弱士の強度増加において
、公知の通常の方法より添加剤使用量を減少させ、かつ
含水軟弱土の所要強度に達するまでの時間を短縮させる
ことに成功したものである。即ち、これらの方法は、ボ
ルトランドセメント・高炉滓・5石コウ系の強度増加剤
を2種の添加剤に分け、それらの添加剤の添加順序割合
及び添加剤粒度までも特定することによつて、各添加成
分の相互の反応及びそれら各成分と土壌成分との反応な
どの含水軟弱土の強度増加に関与する反応を効率よく円
滑に生起させるものである。本発明者らは、これらの一
連の技術について更に研究を重ねた結果、産業廃棄物を
資源として有効利用し、エコロジカルな面及び経済的な
面で更に優れた本発明に到達した。即ち、本発明は、含
水軟弱土に硫酸により変成された粒径300μ以下の微
細急冷高炉滓とボルトランドセメントを添加混合するこ
とからなり、該硫酸により変成された微細急冷高炉滓は
、高炉滓10鍾量部あたり硫酸3〜5唾量部を用いて変
成されたものであることを特徴とする含水軟弱土の強度
増加方法を提供するものである。
These prior art technologies succeeded in increasing the strength of hydrated soft soil by reducing the amount of additives used compared to conventional methods and shortening the time it takes to reach the required strength of hydrated soft soil. It is. In other words, these methods divide boltland cement, blast furnace slag, and gypsum-based strength-increasing agents into two types of additives, and specify the addition order ratio and additive particle size of these additives. As a result, reactions involved in increasing the strength of hydrated soft soil, such as mutual reactions between each added component and reactions between these components and soil components, occur efficiently and smoothly. As a result of further research into a series of these techniques, the present inventors have arrived at the present invention, which effectively utilizes industrial waste as a resource and is even more superior from an ecological and economic perspective. That is, the present invention consists of adding and mixing Bortland cement with finely quenched blast furnace slag having a particle size of 300 μm or less, which has been modified with sulfuric acid, into hydrous soft soil. The present invention provides a method for increasing the strength of hydrous soft soil, characterized in that the soil is modified using 3 to 5 parts of sulfuric acid per 10 parts of soil.

本発明においては、強度増加剤の成分の1つとして、硫
酸により変成された微細急冷高炉滓を用いることを特酸
とする。
In the present invention, as one of the components of the strength increasing agent, finely quenched blast furnace slag modified with sulfuric acid is used as a special acid.

本発明者らの研究によれば、この硫酸変成急冷高炉滓は
強度増加成分として、極めて顕著な効果を示すことが見
出された。即ち、微細急冷高炉滓を硫酸と接触させて反
応させた場合、(a)高炉滓は酸により分解して、その
表面のシリカやアルミナ成分は活性化されると同時に、
高炉滓の比表面積は著しく増大する。(b)硫酸は最終
的に高炉滓に含まれているカルシウム成分と作用し、2
水石コウの結晶として変成高炉滓に残る。従つて、前記
したような硫酸処理効果により、この硫酸変成高炉滓は
、全体的には強度増加剤成分として著しく高められた反
応性を示す。本発明における硫酸変成高炉滓は、微細急
冷高炉滓を反応器中でかきまぜながら硫酸と反応させて
得ることができる。この場合、微細急冷高炉滓は、製鉄
高炉から副生する高炉滓(スラグ)を急冷して得た粗粒
状のものを更に粒径300p以下に!粉砕したものであ
る。高炉滓の急冷は、水で粒状化急冷する湿式法、少量
の水ど空気を利用した半乾式法、空気のみを利用した乾
式法により行われる。一般的には、湿式法による、所謂
、高炉水滓と呼ばれているものが原料として好適である
。こ1れは、製鉄高炉の副生物であるスラグを水で急冷
して1〜57nmぐらいの砂状ないしは粒状に砕いた水
滓である。この組成は、鉄鉱石の成分やその高炉や操作
方針によつて若干異なるが、およそ次の様なものである
。SlO23O〜35%,Al2O3l3〜18%,C
aO38〜45%,Fe2O3O.5〜1.0%,Mg
O3〜6%,SO.5〜1.0%,MnOO.5〜1.
5%,TiO2O.5〜1.5%。本発明において用い
る微細急冷高炉滓はアルカリなどの刺激作用により水硬
性を発揮し得る潜在水硬性を有するものである。
According to the research conducted by the present inventors, it has been found that this sulfuric acid modified quenched blast furnace slag exhibits a very remarkable effect as a strength increasing component. That is, when finely quenched blast furnace slag is brought into contact with sulfuric acid and reacted, (a) the blast furnace slag is decomposed by the acid, and at the same time, the silica and alumina components on its surface are activated;
The specific surface area of blast furnace slag increases significantly. (b) Sulfuric acid finally acts with the calcium component contained in the blast furnace slag, and
It remains in the metamorphosed blast furnace slag as crystals of suiseki ko. Therefore, due to the effect of the sulfuric acid treatment as described above, this sulfuric acid modified blast furnace slag exhibits significantly enhanced reactivity as a strength enhancer component as a whole. The sulfuric acid modified blast furnace slag in the present invention can be obtained by reacting finely quenched blast furnace slag with sulfuric acid while stirring it in a reactor. In this case, the fine quenched blast furnace slag is obtained by rapidly cooling the blast furnace slag (slag) produced as a by-product from a steelmaking blast furnace, and is further reduced to a particle size of 300p or less! It is crushed. Blast furnace slag is rapidly cooled by a wet method in which it is granulated and rapidly cooled with water, a semi-dry method in which a small amount of water and air is used, and a dry method in which only air is used. Generally, so-called blast furnace slag produced by a wet method is suitable as a raw material. This slag is made by quenching slag, a byproduct of iron-making blast furnaces, with water and crushing it into sand or granules of about 1 to 57 nm in size. This composition varies slightly depending on the composition of the iron ore, the blast furnace used, and the operating policy, but it is approximately as follows. SlO23O~35%, Al2O3l3~18%, C
aO38-45%, Fe2O3O. 5-1.0%, Mg
O3-6%, SO. 5-1.0%, MnOO. 5-1.
5%, TiO2O. 5-1.5%. The finely quenched blast furnace slag used in the present invention has latent hydraulic properties that can exhibit hydraulic properties when stimulated by alkali or the like.

このような潜在水硬性は、高炉滓を急冷し、その結晶化
を回避して、結晶化エネルギーを内部に保存した非結晶
(ガラフス状)のものとすることによつて得ることがで
きる。高炉滓を徐冷して得た結晶質のものは、メリライ
ト(ゲーレナイトCa2Al。SlO7・オケルマナイ
トCa2MgSi2O7系固溶体)とオルトケイ酸カル
シウムを主要構成物とする緻密の結晶質てあり、7潜在
水硬性がないので不適当である。また、この急冷高炉滓
は、反応剤として利用するため、できるだけ微細な状態
で用いることが必要である。通常の1〜5?の粗粒状の
ものは、硫酸変成における硫酸との反応及び変成高炉滓
の土壌やセメントLとの反応に寄与する表面積が小さす
ぎ、反応性が著しく低下するので不適当である。本発明
の場合、300p以下、殊に100〜1pの微細急冷高
炉滓を用いるのが好ましい。本発明に適用される微細急
冷高炉滓の工業的に好ましい硫酸処理方法は次の2種類
は次の2種類に大別される。
Such latent hydraulic properties can be obtained by rapidly cooling the blast furnace slag, avoiding its crystallization, and making it amorphous (glass-like) in which crystallization energy is stored internally. The crystalline material obtained by slowly cooling blast furnace slag is a dense crystalline material whose main constituents are melilite (Gehlenite Ca2Al, SlO7/okermanite Ca2MgSi2O7 solid solution) and calcium orthosilicate, and has no latent hydraulic properties. Therefore, it is inappropriate. Moreover, since this rapidly cooled blast furnace slag is used as a reactant, it is necessary to use it in as fine a state as possible. Normal 1-5? Coarse particles are unsuitable because the surface area that contributes to the reaction with sulfuric acid during sulfuric acid modification and the reaction with the soil and cement L of the transformed blast furnace slag is too small, resulting in a marked decrease in reactivity. In the case of the present invention, it is preferable to use finely quenched blast furnace slag of 300 p or less, especially 100 to 1 p. The industrially preferable sulfuric acid treatment method for finely quenched blast furnace slag applied to the present invention is roughly divided into the following two types.

(1)微細急冷高炉滓に硫酸を直接に作用させる。(2
)排煙脱硫処理に於て、排ガス中のSOOを吸収酸化し
て得られる硫酸分を微細急冷高炉滓に作用させる。(1
)の方法において用いられる硫酸は、市販の硫酸でもよ
いが、経済性及びエコロジイの面からは、各種化学工場
から排出される廃硫酸の使用が好適である。
(1) Sulfuric acid is applied directly to the finely quenched blast furnace slag. (2
) In the flue gas desulfurization treatment, the sulfuric acid content obtained by absorbing and oxidizing SOO in the flue gas is made to act on the finely quenched blast furnace slag. (1
The sulfuric acid used in the method (2) may be commercially available sulfuric acid, but from the economic and ecological standpoints, it is preferable to use waste sulfuric acid discharged from various chemical factories.

この硫酸処理は種々の方法で行うことができ、例えば、
(a)硫酸水溶液に高炉滓を添加・混合したり、(b)
硫酸処理高炉滓の分離した母液に、高炉滓を分散させ、
これに所定の硫酸を添加・混合したり、(c)高炉滓に
硫酸を1回又は多数回に分けて添加混合したり、また、
(d)高炉滓に過剰の硫酸を添加混合し、これに高炉滓
を1回又は多数回に分けて添加混合する方法などがある
。この場合、添加する硫酸量は特に制約されないが、強
度増加剤として好ましい変成高炉滓を得るには、高炉滓
10鍾量部に対し、硫酸(100%硫酸換算)を3〜5
鍾量部、好ましくは5〜3哩量部の割合で作用させる。
添加する硫酸濃度は、高炉滓に所定量の硫酸が均一に分
散混合するような液量を形成する濃度であればよい。高
炉滓に硫酸を接触させると、前記した様にシリカとアル
ミナ成分は活性化され、硫酸の大部分は最終的に2水石
コウとなる。
This sulfuric acid treatment can be carried out in various ways, for example,
(a) Adding and mixing blast furnace slag to an aqueous sulfuric acid solution, (b)
Blast furnace slag is dispersed in the separated mother liquor of sulfuric acid-treated blast furnace slag,
Adding and mixing a specified amount of sulfuric acid to this, (c) adding and mixing sulfuric acid to the blast furnace slag once or in multiple batches, or
(d) There is a method of adding and mixing an excess of sulfuric acid to blast furnace slag, and adding and mixing the blast furnace slag to this in one time or in multiple batches. In this case, the amount of sulfuric acid to be added is not particularly limited, but in order to obtain modified blast furnace slag that is preferable as a strength increasing agent, 3 to 5 parts of sulfuric acid (in terms of 100% sulfuric acid) should be added to 10 parts by weight of blast furnace slag.
It is applied in a proportion of 1 part by weight, preferably 5 to 3 parts by weight.
The concentration of sulfuric acid to be added may be such that a predetermined amount of sulfuric acid is uniformly dispersed and mixed in the blast furnace slag. When sulfuric acid is brought into contact with blast furnace slag, the silica and alumina components are activated as described above, and most of the sulfuric acid eventually becomes dihydrate.

この場合、高炉滓のアルカリ成分は1部硫酸と反応し溶
解するが、硫酸カルシウムの溶解度が他の硫酸塩より小
さいので、最終的には2水石コウの結晶に変り、変成高
炉滓に残る。従つて、この硫酸変成高炉滓の製造に当り
、製品を分離した母液を硫酸の希釈溶液に繰り返し用い
ることが好ましい。この母線を用いることにより、高炉
滓からMgOやAI2O3分の溶出を抑制し、さらに処
理により生ずる2水石コウの溶解によるロス(室温でC
asO4換算量で水に約0.2%溶解)を防ぐことがで
きる。尚、本発明では硫酸変成高炉滓のスラリー溶液と
共にB剤(ボルトランドセメント)を含水軟弱土に添加
・混合する場合がある。この時には、最終的にスラリー
溶液の濃度が所定の値となるように配慮する。また、前
記(2)の方法を実施する具体的手法としては次の2通
りがある。(a)排煙脱硫工程で得られた希硫酸を高炉
滓に添加し、反応させる。
In this case, a portion of the alkaline component of the blast furnace slag reacts with sulfuric acid and dissolves, but since the solubility of calcium sulfate is lower than other sulfates, it ultimately turns into dihydrate crystals and remains in the transformed blast furnace slag. Therefore, in producing this sulfuric acid modified blast furnace slag, it is preferable to repeatedly use the mother liquor from which the product is separated as a dilute solution of sulfuric acid. By using this generatrix, the elution of MgO and AI2O3 from the blast furnace slag can be suppressed, and the loss due to the dissolution of dihydrate (C
(asO4 equivalent amount dissolved in water at approximately 0.2%) can be prevented. In the present invention, agent B (Boltland cement) may be added to and mixed with the hydrated soft soil together with the slurry solution of sulfuric acid modified blast furnace slag. At this time, care is taken so that the final concentration of the slurry solution becomes a predetermined value. Further, there are the following two specific methods for implementing the method (2) above. (a) Dilute sulfuric acid obtained in the flue gas desulfurization process is added to blast furnace slag and reacted.

(b)高炉滓を水中に懸濁させた懸濁液に、懸濁液のP
Hを1.5〜4.0の範囲に保持するように高炉滓を外
部から添加しながら、SOO含有排煙と接触させ、得ら
れた懸濁液を口過し、変成高炉滓を回収する。
(b) P of the suspension is added to the suspension of blast furnace slag in water.
While adding blast furnace slag from the outside so as to maintain H in the range of 1.5 to 4.0, it is brought into contact with SOO-containing flue gas, the resulting suspension is passed through the mouth, and the transformed blast furnace slag is recovered. .

これらの(a),(b)のいずれの方法においても、前
記(1)の場合と同様に、高炉滓に反応させる硫酸量を
適当範囲に調節する。
In either method (a) or (b), the amount of sulfuric acid reacted with the blast furnace slag is adjusted to an appropriate range, as in the case of (1) above.

本発明において用いる強度増加剤の他方の成分はボルト
ランドセメント(以下B剤という)である。
The other component of the strength increasing agent used in the present invention is Bortland cement (hereinafter referred to as agent B).

通常一般的に用いられるものは日本工業規格JISR5
2lOrポルトランドセメントョに於ける普通セメント
に準するものであるが、含水軟弱土処理の条件によつて
は、中庸熱セメント、早強セメント及び超早強セメント
などの規格に準するボルトランドセメントの単独または
これらを混合したものを使用することもある。本発明の
方法は、含水軟弱土に対し、前記したA剤及びB剤を強
度増加剤の必須成分として添加混合するものである。
The commonly used one is Japanese Industrial Standard JISR5.
It is equivalent to ordinary cement in 2l Or Portland cement, but depending on the conditions of treating soft soil with water, it can be used alone as boltland cement that conforms to standards such as moderate heat cement, early strength cement, and ultra early strength cement. Or a mixture of these may be used. The method of the present invention involves adding and mixing the above-mentioned agents A and B as essential components of a strength increasing agent to water-containing soft soil.

この場合、脱臭性、親和性、早強性を一層高めるために
適当な他の添加剤を補助成分として添加することもでき
る。本発明に於いてA剤とB剤の添加重量比A/Bは7
0/30〜35/65の範囲である。
In this case, other suitable additives may be added as auxiliary components in order to further enhance deodorizing properties, affinity, and early strength. In the present invention, the addition weight ratio A/B of agent A and agent B is 7.
It is in the range of 0/30 to 35/65.

本発明に用いる添加剤Aと添加剤Bの含水軟弱土への添
加重口比A/Bは、7V30〜3V65の範囲に保持す
ることが含水軟弱土の強度増加を効率よく円滑に達成す
るのに重要である。
The weight ratio A/B of Additive A and Additive B used in the present invention to the hydrated soft soil should be maintained in the range of 7V30 to 3V65 in order to efficiently and smoothly increase the strength of the hydrated soft soil. is important.

即ち、添加重量比A/B比が70/30より大きいと含
水軟弱土中に於ける諸反応の誘発が不十分で、一方、3
5/65より小さいと総合的最適組成物のバランス比外
となり、含水軟弱土の強度増加の効果が小さくなる。ま
た、B剤の添加量比が大きすぎると、即ち、A/Bが小
さすぎると、強度増加効果が小さくなる弊害の他に次の
(a)〜(d)如き問題を生じる。(a)強度増加処理
に際し発熱が大きくなつて処理土中に内部ヒズミが発生
するなどの問題を生じたりする。(b)処理土には水酸
化カルシウムが多量に含まれるようになることから処理
土がアルカリ性の強いものになる。(c)下水や海水に
よつて容易に侵食されやすくなる。(d)添加剤のコス
トが高くなる。本発明を好ましく実施するには、ます、
含水軟弱土に対しA剤を添加混合する。
That is, when the addition weight ratio A/B ratio is larger than 70/30, various reactions in the water-containing soft soil are insufficiently induced;
If it is smaller than 5/65, it will be out of the balance ratio of the overall optimum composition, and the effect of increasing the strength of the hydrated soft soil will be small. Furthermore, if the ratio of the amount added of agent B is too large, that is, if A/B is too small, the following problems (a) to (d) will occur in addition to the disadvantage that the strength increasing effect becomes small. (a) During strength-increasing treatment, heat generation increases and problems such as internal distortions occur in the treated soil. (b) Since the treated soil contains a large amount of calcium hydroxide, the treated soil becomes highly alkaline. (c) Easily eroded by sewage and seawater. (d) The cost of additives is high. In order to preferably implement the present invention, first,
Add and mix agent A to the moist soft soil.

この添加混合により、含水軟弱土の作業性は改善され、
後続のB剤の混合が均一かつ容易に行え得るようになる
。また、A剤中の石コウ質は、水100Vに対し無水物
CasO4換算として約0.2gも溶解するために、゛
B剤が加えられた場合にはA剤とB剤及び土壌成分との
反応でエトリンガイド(3Ca0−Al.O3・3Ca
S04・32H20)が生成しやすい条件となつている
。次に、このような反応性の高められた含水軟弱、土に
対し、B剤を添加混合する。
This additive mixture improves the workability of soft soil containing water.
The subsequent mixing of agent B can be performed uniformly and easily. In addition, since the gypsum in agent A dissolves approximately 0.2 g in terms of anhydrous CasO4 per 100V of water, when agent B is added, agent A and agent B and soil components are dissolved. Etrin guide (3Ca0-Al.O3・3Ca
S04/32H20) is a condition that makes it easy to generate. Next, agent B is added and mixed to such water-containing soft soil with increased reactivity.

このB剤の添加により、その水和反応が始まると、B剤
とA剤中の各成分との反応、及びこれら添加剤AとBの
各々の成分と微細土壌の成分との反応が誘発され、含水
軟弱土の強度は増加される。この場合、ノ上記の如く、
添加剤Aが加えられた含水軟弱土は、誘発される諸反応
が生起し易い土壌基盤に改質され、さらに作業性も向上
しているために、後続の添加剤Bの添加・混合は均一か
つ容易に行なわれ、含水軟弱土中の強度増加反応は極め
て効率良く進行する。本発明においては、前記のように
、含水軟弱土の強度増加処理を行う場合、A剤とB剤の
成分及び土壌との間で陽イオン交換反応エトリンガイド
生成反応、ポゾラン反応等の諸反応が起るが、第1添加
処理に於て、A剤と含水軟弱土が均一に混合されるので
、第2添加処理のB剤の添加により、これらの強度増反
応に関与する諸反応は、含水軟弱土全体にわたつて均一
かつ円滑に進行し、含水軟弱土の迅速な強度増加が達成
される。
When the hydration reaction starts due to the addition of agent B, reactions between agent B and each component in agent A, and reactions between each component of additives A and B and the components of fine soil are induced. , the strength of water-containing soft soil is increased. In this case, as mentioned above,
The hydrated soft soil to which Additive A has been added has been modified into a soil base that makes it easier for the various reactions to occur, and workability has also been improved, so subsequent addition and mixing of Additive B can be done uniformly. It is easy to carry out, and the strength-increasing reaction in hydrated soft soil proceeds extremely efficiently. In the present invention, as mentioned above, when carrying out a treatment to increase the strength of hydrated soft soil, various reactions such as cation exchange reaction, ettrin guide production reaction, pozzolan reaction, etc., occur between the components of agents A and B and the soil. However, in the first addition treatment, the A agent and the water-containing soft soil are uniformly mixed, so by the addition of the B agent in the second addition treatment, the various reactions involved in these strength increasing reactions are The process progresses uniformly and smoothly over the entire soft soil containing water, and a rapid increase in the strength of the soft soil containing water is achieved.

以上の如く、含水軟弱土の強度増加処理を行うに際し、
A剤を添加混合した後にB剤を添加混合することが最も
望ましいが、次に望ましいのが、A剤とB剤を含水軟弱
土に同時に添加混合することである。含水軟弱土の強度
増加に於て、B剤を添加混合した後にA剤を添加混合す
ると、その作業性が悪くあるので、この楊合は特殊の施
工機械を用いることが必要となる。含水軟弱土に、まず
B剤を加えると、含水軟弱土の粘性、ゲルトレングス及
びPH値に著しい悪影響を与える。これに起因し、必然
的に操作処理の作業性が悪くなり、含水軟弱土の均一混
合操作がむずかしくなる。これに伴い後続のA剤の添加
混合による均一分散及びその反応にも悪影響を与えて含
水軟弱土の強度増加の発現が悪くなる。B剤を加えるこ
とによる含水軟弱土の粘性、ゲルストレングス及びPH
値に及ぼす悪影響の原因は、セメン■中のCa2+と0
H−である。このCa2+と0H−に起因する悪影響も
前記したように、A剤とB剤の添加順序を特定すること
によつて克服され、その結果、含水軟弱土の.強度増加
の操作の作業性は改善され、しかも、その化学的諸特性
を効果的に利用することができる。本発明の大きな特長
は、前記したように、強度増加剤の必須成分の1つとし
て、硫酸によ″り変成こされた微細急冷高炉滓を用いる
ことである。
As mentioned above, when performing strength increasing treatment on hydrated soft soil,
It is most desirable to add and mix the B agent after adding and mixing the A agent, but the second most desirable is to add and mix the A agent and the B agent to the water-containing soft soil at the same time. In order to increase the strength of water-containing soft soil, if agent A is added and mixed after agent B is added and mixed, the workability is poor, so it is necessary to use a special construction machine for this process. When Agent B is first added to hydrated soft soil, it has a significant negative effect on the viscosity, gel strength, and pH value of hydrated soft soil. Due to this, the workability of the operation treatment inevitably deteriorates, and it becomes difficult to uniformly mix the hydrated soft soil. This adversely affects the subsequent uniform dispersion of agent A and its reaction, making it difficult to increase the strength of the hydrated soft soil. Viscosity, gel strength and PH of hydrous soft soil by adding agent B
The cause of the negative effect on the value is Ca2+ and 0 in cement.
It is H-. As mentioned above, the adverse effects caused by Ca2+ and 0H- can be overcome by specifying the order of addition of Part A and Part B. The workability of strength-increasing operations is improved, and its chemical properties can be effectively utilized. A major feature of the present invention, as described above, is that fine quenched blast furnace slag modified with sulfuric acid is used as one of the essential components of the strength enhancer.

この硫酸変成高炉滓は、硫酸との反応により高炉滓中の
カルシウム分は石コウ分に変換され、同時に高炉滓中の
シリカ分及びアルミナ分は活性状態に変換され、さらに
高炉滓中の他の微量成分は1時的ηに硫酸塩となつて表
面部から溶出し、再び高炉滓中のカルシウム分の作用に
よりその表面に固体とし付着されるなどの複雑化学変化
を受けているため、その含水軟弱土の強度増加反応に対
する反応性は極めて大きく、単に高炉滓と石コウとを混
合して得られるものよりも、その強度増加の発現効果は
著しく大きい。この硫酸変成高炉滓は、それ自身では格
別の水硬性は示さないが、含水軟弱土中でのボルトラン
ドセメントの水和反応により生じる消石灰分により効果
的に刺激されて水硬性を示す。本発明による含水軟弱土
の強度増加処理においては、適用する硫酸変成高炉滓の
すぐれた反応性により、含水軟弱土の強度増加に関与す
る土ノ壌の陽イオン交換反応、エトリンガイト形成反応
及びポゾラン反応が効率よく起り、含水軟弱土の迅速か
つ効率的な強度増加発現が達成される。本発明を実施す
る場合、A剤及びB剤はいずれも粉末またはスラリー状
で添加することができ・る。処理対象土は、一般的に、
粘土鉱物の種類、細粒分の含有量、有機分の含有量及び
PH値によりその反応性は異なり、さらに初期含水比に
よつてもその反応性の影響を受ける。しかし、通常の所
要強度の目的達成のために用いる本発明による強・度増
加剤の添加量は、含水軟弱土1d当り、A剤及びB剤の
乾燥総量で通常50〜100k9程度である。また含水
軟弱土に有機質を多量に含む場合、通常の方法ではその
影響により含水軟弱土の強度増加作用に弊害を受けるが
、本発明の方法ではその弊害は比較的に少ない。この有
機質を多量に含む含水軟弱土を処理する場合は、本発明
の方法てはA剤とB剤の添加総量を通常の場合より約5
0%程度増加すればその目的は達成し得る。しかし、含
水軟弱土に反応性が高い粘土鉱物を多く含み強度増加反
応に適している場合には、有機質を多量に含んでもその
添加総量の増加は小さくてすむ。本発明の方法は、含水
軟弱土の含水比によつて制約されることはなく、含水比
50〜200%の軟弱土はもちろん、500〜1000
%という極めて高い含水比の軟弱土に対しても適用する
ことができる。含水比が高い軟弱土に対して本発明を適
用した場合、一定量以上の水はプリージングにより処理
土から分離し表面に浮上する。本発明によれば、前記し
たように、含水軟弱土の効率のよい強度増加を達成する
ことが可能であるが、この場合、B剤として用いたセメ
ントの添加量は比較的少量であるから、その水和反応に
より生じる発熱は著しく抑制され、処理土にヒズミが発
生するようなこともなく、その上、処理土中の残留アル
カリ量が少ないことから処理土のアルカリ上昇も見られ
ず、また下水や海水によつて処理土が侵食されるような
こともない。
In this sulfuric acid modified blast furnace slag, the calcium content in the blast furnace slag is converted to gypsum content by the reaction with sulfuric acid, and at the same time, the silica content and alumina content in the blast furnace slag are converted to an active state, and furthermore, the silica content and alumina content in the blast furnace slag are converted into active state. Trace components temporarily become sulfates and elute from the surface, and then undergo complex chemical changes such as being solidified and attached to the surface by the action of calcium in the blast furnace slag. The reactivity of soft soil to the strength increase reaction is extremely large, and its strength increase effect is significantly greater than that obtained by simply mixing blast furnace slag and gypsum. This sulfuric acid-converted blast furnace slag does not exhibit exceptional hydraulic properties by itself, but it exhibits hydraulic properties when it is effectively stimulated by slaked lime content produced by the hydration reaction of Boltland cement in soft, water-containing soil. In the treatment for increasing the strength of hydrated soft soil according to the present invention, due to the excellent reactivity of the applied sulfuric acid modified blast furnace slag, cation exchange reactions, ettringite formation reactions, and pozzolanic reactions of the soil, which are involved in increasing the strength of hydrated soft soil, can be carried out. occurs efficiently, and a rapid and efficient increase in strength of hydrated soft soil is achieved. When carrying out the present invention, both Part A and Part B can be added in the form of powder or slurry. The soil to be treated is generally
The reactivity varies depending on the type of clay mineral, the content of fine particles, the content of organic components, and the pH value, and is further influenced by the initial moisture content. However, the amount of the strength/durability increasing agent according to the present invention used to achieve the purpose of normal required strength is usually about 50 to 100 k9 in dry total amount of A and B agents per 1 d of soft soil. In addition, when a large amount of organic matter is contained in the hydrated soft soil, the conventional method suffers from the effect of increasing the strength of the hydrated soft soil, but the method of the present invention has relatively few such disadvantages. When treating soft, water-containing soil containing a large amount of organic matter, the method of the present invention increases the total amount of Agents A and B by approximately 5% compared to the usual case.
If it increases by about 0%, the objective can be achieved. However, if the hydrated soft soil contains a large amount of highly reactive clay minerals and is suitable for strength-increasing reactions, even if a large amount of organic matter is included, the increase in the total amount of organic matter added will be small. The method of the present invention is not limited by the water content ratio of the water-containing soft soil, and can be used not only for soft soil with a water content of 50 to 200%, but also to
It can also be applied to soft soils with an extremely high water content of 50%. When the present invention is applied to soft soil with a high water content ratio, water in excess of a certain amount is separated from the treated soil by pleating and floats to the surface. According to the present invention, as described above, it is possible to efficiently increase the strength of hydrous soft soil, but in this case, since the amount of cement used as agent B is relatively small, The heat generated by the hydration reaction is significantly suppressed, and no distortion occurs in the treated soil.Furthermore, because the amount of residual alkali in the treated soil is small, no increase in alkalinity in the treated soil is observed. The treated soil will not be eroded by sewage or seawater.

また、本発明の場合、総添加剤使用量が少なく、しかも
セメントの添加量を少なくし、その上A剤が廃棄物から
構成される硫酸変成高炉滓として用いることから経済的
にもすぐれたものである。次に、本発明を実施例により
詳細に説明する。
In addition, in the case of the present invention, the total amount of additives used is small, the amount of cement added is small, and the A agent is used as sulfuric acid converted blast furnace slag consisting of waste, so it is economically superior. It is. Next, the present invention will be explained in detail using examples.

なお、後記実施例において、強度増加剤のA剤としては
市販の微細高炉水滓を硫酸処理したものを用い、B剤と
してはボルトランドセメントにおける普通セメント(プ
レーン法測定による比表面積3300a1/y)を用い
た。市販の微細高炉水滓の組成と粒径は第1表と第2表
の通りである。またこの市販の微細高炉水滓は、ほとん
どがガラス質であることを偏光顕微鏡による観察により
確認した。また、原料含水軟弱土としては、含水比26
0%、粒度組成がO〜2μ14%、2〜5μ42%、5
〜10μ19%、10〜20p25%、含水比260%
に於ける密度1.21g/dである大阪南港浚渫底泥を
用いた。
In the examples described below, commercially available fine blast furnace water slag treated with sulfuric acid was used as the strength increasing agent A, and ordinary cement in Bortland cement (specific surface area 3300 a1/y by plane method measurement) was used as the B agent. was used. The composition and particle size of commercially available fine blast furnace water slag are shown in Tables 1 and 2. Furthermore, it was confirmed by observation using a polarizing microscope that most of this commercially available fine blast furnace water slag was glassy. In addition, the raw material water-containing soft soil has a water content ratio of 26
0%, particle size composition is O~2μ14%, 2~5μ42%, 5
~10μ19%, 10~20p25%, water content 260%
Osaka Nanko dredging bottom mud with a density of 1.21 g/d was used.

また、所定の強度増加剤を添加混合した混合試料は、内
径50TWL1高さ100瓢の円筒型モールドに注入し
、恒温恒湿養成器内でその飽和度20±1℃、に保持し
て所定期間養生した後脱型し、その1軸強さをJISA
l2l6T,l976(土の1軸圧縮試験法)に従い測
定した。
In addition, the mixed sample containing the specified strength increasing agent was poured into a cylindrical mold with an inner diameter of 50 TWL and a height of 100 gourds, and kept at a saturation level of 20 ± 1°C in a constant temperature and humidity incubator for a specified period of time. After curing, the mold is removed and its uniaxial strength is determined by JISA.
It was measured according to l2l6T, l976 (uniaxial compression test method for soil).

実施例1 400yの水(母液)に硫酸26.8kgを溶解し、こ
の室温状態下の溶液に微細高炉水滓100kgを添加し
て2時間混合した。
Example 1 26.8 kg of sulfuric acid was dissolved in 400 y of water (mother liquor), and 100 kg of fine blast furnace water slag was added to the solution at room temperature and mixed for 2 hours.

このスラリー溶液を遠心分離機にかけ、母液と分離し、
母液を32.5重量%含有する硫酸変成高炉滓195k
9を得た(空乾基準換算で131.7kg)。調製に用
いた水は、硫酸変成高炉滓を濾別して得られた母液に水
を加え、繰り返し、微細高炉滓の硫酸処理に使用されて
回収された母液に水を加えたものである。この生成物5
4.4k9(空乾基準で36.7k9)をA剤として原
料軟泥土1TrIに添加して混練機て均一に混合し、次
いで、B剤30.5kgを添加し、混練機で充分混合し
た。
This slurry solution is centrifuged to separate it from the mother liquor,
Sulfuric acid modified blast furnace slag 195k containing 32.5% by weight of mother liquor
9 (131.7 kg on air-dry basis). The water used in the preparation was obtained by adding water to the mother liquor obtained by filtering the sulfuric acid modified blast furnace slag, and then adding water to the mother liquor recovered after being used repeatedly for the sulfuric acid treatment of the fine blast furnace slag. This product 5
4.4k9 (36.7k9 on an air-dried basis) was added as agent A to 1 TrI of raw soft mud and mixed uniformly in a kneader, and then 30.5 kg of agent B was added and thoroughly mixed in a kneader.

この試料をその1軸強さの測定に供した。また、比較の
ために、硫酸未処理の微細高炉水滓A剤として用いた以
外は同様にして試験を行つた。その結果を第1表に示す
。尚、参考比較のためにA剤中に含まれる2水石コウの
割合が上記のものと同程度のもの、即ち、2水石コウ3
6k9、微細高炉水滓64k9の割合からなる混合物を
A剤の替りに用い、上記と同様な試験を行なつた。
This sample was subjected to measurement of its uniaxial strength. For comparison, a test was conducted in the same manner except that the fine blast furnace water slag was used as the A agent without sulfuric acid treatment. The results are shown in Table 1. In addition, for reference comparison, the proportion of dihydrite contained in agent A is similar to that above, that is, dihydrite 3
A test similar to the above was conducted using a mixture consisting of 6k9 fine blast furnace water slag and 64k9 fine blast furnace water slag instead of agent A.

その結果、処理土の材令14日の一軸圧縮強さは1.3
k9/dであつた。実施例2 原料軟弱土1dに対し、硫酸処理条件の異なつた各種A
剤30.6k9を用い、及びB剤36.6kgを用いる
以外は実施例1と同様にして試験を行つた。
As a result, the unconfined compressive strength of the treated soil at 14 days of age was 1.3.
It was k9/d. Example 2 Various types A with different sulfuric acid treatment conditions for 1 d of raw material soft soil
The test was conducted in the same manner as in Example 1 except that 30.6k9 of Agent B and 36.6 kg of Agent B were used.

得られた処理土について、その14日目(材令14日)
の一軸圧縮強さを第2表に示す。実施例3 実施例1において、A剤とB剤の重量割合を種変化させ
た以外は実施例1と同様にして試験行つた。
Regarding the obtained treated soil, on the 14th day (14th day of material age)
The unconfined compressive strength of is shown in Table 2. Example 3 A test was carried out in the same manner as in Example 1, except that the weight ratio of Part A and Part B was changed.

得られた処理土について、その14日目28日目の一軸
圧縮強さを第3表に示す。実施例4 9%の硫酸水溶液83.3k9に微細高炉滓27.9k
9を加えて2時間かきまぜた後、室温迄冷却し、次いで
B剤30.5k9を添加し均一に混合してスラリー溶液
を調製する。
Table 3 shows the unconfined compressive strength of the obtained treated soil on the 14th and 28th days. Example 4 9% sulfuric acid aqueous solution 83.3k9 and fine blast furnace slag 27.9k
After adding 9 and stirring for 2 hours, the mixture was cooled to room temperature, and then 30.5k9 of agent B was added and mixed uniformly to prepare a slurry solution.

Claims (1)

【特許請求の範囲】 1 含水軟弱土に硫酸により変成された粒径300μ以
下の微細急冷高炉滓とポルトランドセメントを添加混合
することからなり、該硫酸により変成された微細急冷高
炉滓は、高炉滓100重量部あたり硫酸3〜50重量部
を用いて変成されたものであることを特徴とする含水軟
弱土の強度増加方法。 2 含水軟弱土に硫酸により変成された微細急冷高炉滓
を添加した後にポルトランドセメントを添加混合する特
許請求の範囲第1項の方法。 3 含水軟弱土に硫酸により変成された微細急冷高炉滓
とポルトランドセメントの混合物を添加混合する特許請
求の範囲第1項の方法。 4 硫酸により変成された微細急冷高炉滓Aとポルトラ
ンドセメントBの重量比A/Bが70/30〜35/6
5である特許請求の範囲第1項〜第3項のいずれかの方
法。
[Claims] 1. It consists of adding and mixing finely quenched blast furnace slag with a particle size of 300 μm or less and Portland cement that has been modified with sulfuric acid to hydrous soft soil, and the finely quenched blast furnace slag that has been modified with sulfuric acid is A method for increasing the strength of hydrous soft soil, characterized in that the soil is modified using 3 to 50 parts by weight of sulfuric acid per 100 parts by weight. 2. The method according to claim 1, in which finely quenched blast furnace slag modified with sulfuric acid is added to hydrated soft soil, and then Portland cement is added and mixed. 3. The method according to claim 1, which comprises adding and mixing a mixture of finely quenched blast furnace slag modified with sulfuric acid and Portland cement to hydrated soft soil. 4 The weight ratio A/B of finely quenched blast furnace slag A modified with sulfuric acid and Portland cement B is 70/30 to 35/6
5. The method according to any one of claims 1 to 3.
JP10467080A 1980-07-30 1980-07-30 Method for increasing the strength of hydrated soft soil using sulfuric acid modified blast furnace slag Expired JPS6043389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10467080A JPS6043389B2 (en) 1980-07-30 1980-07-30 Method for increasing the strength of hydrated soft soil using sulfuric acid modified blast furnace slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10467080A JPS6043389B2 (en) 1980-07-30 1980-07-30 Method for increasing the strength of hydrated soft soil using sulfuric acid modified blast furnace slag

Publications (2)

Publication Number Publication Date
JPS5730783A JPS5730783A (en) 1982-02-19
JPS6043389B2 true JPS6043389B2 (en) 1985-09-27

Family

ID=14386900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10467080A Expired JPS6043389B2 (en) 1980-07-30 1980-07-30 Method for increasing the strength of hydrated soft soil using sulfuric acid modified blast furnace slag

Country Status (1)

Country Link
JP (1) JPS6043389B2 (en)

Also Published As

Publication number Publication date
JPS5730783A (en) 1982-02-19

Similar Documents

Publication Publication Date Title
US4465518A (en) Process for strengthening soft soil
JPS6314028B2 (en)
Mehta et al. Properties of alite cements
Garg et al. Some aspects of the durability of a phosphogypsum-lime-fly ash binder
JP2003306359A (en) Cement composition and hydrated hardened body
JP2003520749A (en) Reactive magnesium oxide cement
CN110467368B (en) Active excitant for inorganic solid waste building material and preparation method thereof
US7537653B2 (en) Microsilica materials with improved pozzolanic activity
KR100968073B1 (en) Slag cement composition
JP4663999B2 (en) Soil neutral solidification material and soil neutral solidification improvement method
JPH10165920A (en) Nodulizing agent of slurry and solidifying agent using the same
US4115138A (en) Raw mixture for the production of cement
JPS6219798B2 (en)
JPS6043389B2 (en) Method for increasing the strength of hydrated soft soil using sulfuric acid modified blast furnace slag
JPS5832680A (en) Method of strengthening water-containing soft ground by use of blast furnace slag modified with sulfuric acid
JPH0214308B2 (en)
Midgley et al. Hydrothermal reactions between lime and aggregate fines
JPS6244794B2 (en)
JP2004105783A (en) Solidification material and solidification method for soil
JPS6365717B2 (en)
JPH08301639A (en) Solidification and materialization of fly ash powder with geopolymer
JP2753194B2 (en) Ground improvement material and ground improvement method
JPS6158239B2 (en)
KR100592870B1 (en) A concrete with steel-making slag aggregate
RU2371405C2 (en) Cement production method