JPS6043246A - Photo magnetic recording and reproducing device - Google Patents

Photo magnetic recording and reproducing device

Info

Publication number
JPS6043246A
JPS6043246A JP15088083A JP15088083A JPS6043246A JP S6043246 A JPS6043246 A JP S6043246A JP 15088083 A JP15088083 A JP 15088083A JP 15088083 A JP15088083 A JP 15088083A JP S6043246 A JPS6043246 A JP S6043246A
Authority
JP
Japan
Prior art keywords
light
recording layer
magnetic recording
polarizing prism
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15088083A
Other languages
Japanese (ja)
Inventor
Atsuyuki Watada
篤行 和多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP15088083A priority Critical patent/JPS6043246A/en
Publication of JPS6043246A publication Critical patent/JPS6043246A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads

Abstract

PURPOSE:To obtain such a device with good optical effect that only one head is employed with a light source having a relatively low output and the size of the head is reduced by using a polarizing prism and a Faraday effect element on an optical path in combination. CONSTITUTION:Light polarized by the polarizing prism 22 is transmitted with the plane of polarization rotated by a specific angle theta through the Faraday effect element 23, and converged on the recording layer of a magnetic recording medium 26 through an objective lens 24. The part of the recording layer irradiated with the light rises in temperature, and when the temperature rises almost up to the Curie point, the coercive force decreases to cause magnetism inversion by a magnetic field produced by an electromagnet 25. In this case, the magnetic field established by the electromagnet 25 is set smaller than the coercive force of said recording layer at room temperature, and consequently the recording layer is not magnetized except where the layer is not irradiated with the light. For the purposed, the radiation of the light source 20 is controlled according to a signal of information to be recorded to record the information on the magnetic recording medium 26.

Description

【発明の詳細な説明】 弦−A[公−jllj 本発明は、光と磁気によって情報を記録再生する装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for recording and reproducing information using light and magnetism.

:’l−D倖−術 磁気記録媒体の記@層は、例えば、T b −F e 
:'LD layer of magnetic recording medium is, for example, T b -F e
.

G d −1’ b −F cアモルファス膜等の垂直
異方性を有する光磁気記録磁性膜で構成される。この記
録層に記録しようとする情報にもとづいて変調されたレ
ーザ光を照射し、この記録層のレーザ九照射領域をほぼ
キュリ一温度まで加熱して、前記記録層の周囲の浮遊磁
界もしくは強制的に生成した強制磁界により、前記照射
領域の磁区を磁化反転させて磁気記録する光磁気記録方
法が提案されている。
It is composed of a magneto-optical recording magnetic film having perpendicular anisotropy, such as a G d -1' b -F c amorphous film. A laser beam modulated based on the information to be recorded in this recording layer is irradiated, and the laser irradiated area of this recording layer is heated to approximately one Curie temperature, and the stray magnetic field or forced magnetic field around the recording layer is heated. A magneto-optical recording method has been proposed in which magnetic recording is performed by reversing the magnetization of the magnetic domain in the irradiated area using a forced magnetic field generated by the magnetic field.

第1図は、この光磁気記録、再生、消去を行うための従
来装置の光学系の概略構成を示す1宮1てあり、lはレ
ーザ光を発生する半導体レーザ、2はレーザ光の平行光
を得るためのコリメータレンズ。
Figure 1 shows the schematic configuration of the optical system of a conventional device for performing magneto-optical recording, reproduction, and erasing. Collimator lens to obtain.

3はポラライザ、4はハーフミラ−15は対物レンズ、
6は電磁石、7は磁気記録媒体、8はアナライザ、9は
フォトダイオ−1〜である。
3 is a polarizer, 4 is a half mirror, 15 is an objective lens,
6 is an electromagnet, 7 is a magnetic recording medium, 8 is an analyzer, and 9 is a photodiode 1.

しかしながら、このような従来袋FTでは、1〜F+。However, in such conventional bag FT, 1 to F+.

化レーザlからのレーザ光と、磁気記録媒体7からの反
射光を分離するのに、ハーフミラ−4を使用しているた
めに光の損失がある。例えは、透過率が50%のハーフ
ミラ−4を使用すると、50%のレーザ光は磁気記録媒
体7まで到達しない無効の光となる。前記光学系ではコ
リメータレンズ2にNa・0.25のものを使用した場
合、ハーフミラ−4を除去した効率は、約50%程度で
あり、これにハーフミラ−4の透過率をかけたものが磁
気記録に実際に使用される光の効率(0,5X0.5=
0.25 ; 25%)となる。
Since the half mirror 4 is used to separate the laser beam from the chemical laser 1 and the reflected light from the magnetic recording medium 7, there is a loss of light. For example, if a half mirror 4 with a transmittance of 50% is used, 50% of the laser light will be ineffective light that does not reach the magnetic recording medium 7. In the above optical system, when the collimator lens 2 is made of Na.0.25, the efficiency of removing the half mirror 4 is about 50%, and multiplying this by the transmittance of the half mirror 4 is the magnetic Efficiency of light actually used for recording (0.5 x 0.5 =
0.25; 25%).

現在、光ディスク等で使用している半導体レーザの最大
定格出力は、5ミリワツト(mW)程度であり、透過率
50%のハーフミラ−を使用した場合には最大的1.2
5ミリワツトしか磁気記録媒体面に到達しない。このレ
ーザ光のパワーは、光磁気記録又は消去を行うのに必要
な1〜10ミリワノ1へ程度のレーザ光パワーとして必
ずしも充分でない。これを補うためには、高出力の半導
体レーザ、カスレーザ等の光源を使用するか、あるいは
、第2図に示すように、記録消去用ヘッド(I)と再生
用ヘッド(11)の2ヘツドの光磁気記録装置にする必
要がある。記録、消去用ヘッド(1)ではハーフミラ−
を使用しないで効率を上げている。第2図中、IOは偏
光プリズム、11は4分の1波長板であり、第1図と同
一のちのは同一符号を付け、その繰り返しの説明は省略
する。1)「記偏光プリズムlOと4分の1波長板11
は、′V導体レーザ1に磁気記録媒体7の反射光かもど
るのを防ぐ役目と、フォーカスエラー、1−ラックエラ
ー等を検出する目的で設けられている。この偏光プリズ
ム10と4分の1波長板11を設けることによる光パワ
ーの効率の低下は、10%以内と考えられる。
Currently, the maximum rated output of semiconductor lasers used in optical disks, etc. is about 5 milliwatts (mW), and when a half mirror with a transmittance of 50% is used, the maximum output power is 1.2 watts.
Only 5 milliwatts reaches the surface of the magnetic recording medium. The power of this laser beam is not necessarily sufficient as the laser beam power of about 1 to 10 milliwatts, which is necessary for magneto-optical recording or erasing. In order to compensate for this, a light source such as a high-output semiconductor laser or a laser beam can be used, or, as shown in Figure 2, two heads, the recording/erasing head (I) and the reproducing head (11), can be used. It is necessary to use a magneto-optical recording device. Half mirror for recording/erasing head (1)
efficiency is increased by not using In FIG. 2, IO is a polarizing prism, 11 is a quarter wavelength plate, and the same parts as in FIG. 1 are given the same reference numerals, and repeated explanations will be omitted. 1) Polarizing prism lO and quarter wave plate 11
is provided to prevent the reflected light from the magnetic recording medium 7 from returning to the V conductor laser 1 and to detect focus errors, 1-rack errors, etc. The reduction in optical power efficiency due to the provision of the polarizing prism 10 and quarter wavelength plate 11 is considered to be within 10%.

前記のことかられかるように、高出力の゛1′:導体レ
ーザ、ガスレーザ等の光源を使用する方法及び2ヘツド
を使用する方法ではいずれも装置が大型となり、コスト
も高くにる欠点があった。
As can be seen from the above, both the method of using a high-output light source such as a conductor laser or gas laser, and the method of using two heads have the drawback of increasing the size and cost of the equipment. Ta.

用度 本発明の目的は、簡単な構成にすることにより比較的低
出力の光源で1ヘツド化をはかり、か−)ヘッドの小型
化をはかった光効率のよい光磁気記録再生装置を提供す
ることにある。。
It is an object of the present invention to provide a magneto-optical recording/reproducing device which has a simple structure, uses a relatively low-output light source, and has a single head, and has a miniaturized head and high optical efficiency. There is a particular thing. .

本発明の前記ならびに他のLI的と新規な!l!J徴は
、本明細書の記述及び添伺図面によって明らかになるで
あろう。
The above and other LI-related and novel features of the present invention! l! J characteristics will become clear from the description of this specification and the accompanying drawings.

ル又 以下、本発明の構成について、実施例とともに説明する
The structure of the present invention will be explained below along with examples.

第3図は、本発明の一実施例の光学系の概略構成を示す
図である。
FIG. 3 is a diagram showing a schematic configuration of an optical system according to an embodiment of the present invention.

第3図において、20は光源であり、例えば、半導体レ
ーザ、ガスレーザ等を使用する。21はコリメータレン
ズであり、光源20から放射された光髪平行光に変換す
るものである。22は偏光プリズムであり、例えば、第
4図に示すような構成をしたものである。すなわち、偏
光プリズム22の反射面R,Fに苅して垂直(90°)
成分(以下、1)成分という)のみ直線偏光になり、反
射面RFと平行な成分(以下、S成分という)のみを反
射するか、又はこれとは逆の成分を透過1反射する偏光
プリズムである。例えば、グラン1〜ムソンブリズ1%
 、ニコルプリズ11等が使用可能である。
In FIG. 3, 20 is a light source, for example, a semiconductor laser, a gas laser, etc. are used. A collimator lens 21 converts the light emitted from the light source 20 into parallel light. Reference numeral 22 denotes a polarizing prism, which has a configuration as shown in FIG. 4, for example. That is, perpendicular (90°) to the reflective surfaces R and F of the polarizing prism 22.
Only the component (hereinafter referred to as the 1) component) becomes linearly polarized light, and only the component parallel to the reflecting surface RF (hereinafter referred to as the S component) is reflected, or the opposite component is transmitted and reflected by a polarizing prism. be. For example, Grand 1 ~ Musomburi 1%
, Nicol Priz 11, etc. can be used.

23はファラデー効果素子であり、光の進行方向が逆の
場合も同一方向に偏光方向を回転させるものである。す
なわち、磁気旋光素子であり、自然旋光の場合と異なり
、回転角は光の進行方向をiφにしても同一なので、媒
質中で光を反射させると回転角が2倍になるものである
。磁界の強さをI+。
Reference numeral 23 denotes a Faraday effect element, which rotates the polarization direction in the same direction even when the traveling direction of the light is reversed. That is, it is a magnetic optical rotation element, and unlike the case of natural optical rotation, the rotation angle is the same even if the traveling direction of the light is iφ, so when the light is reflected in a medium, the rotation angle is doubled. The strength of the magnetic field is I+.

物質中の通過距離をり、比例定数を■とすると、前記フ
ァラデー効果素子23による偏光面の回転角Oは、 0 = V )−I L となる。強磁性金属薄膜については、磁界11の代りに
磁化Mをとれば、0との比例関係がj:(iたされる。
Assuming that the distance through which light passes through the substance is 0 and the proportionality constant is 2, the rotation angle O of the plane of polarization by the Faraday effect element 23 is as follows: 0 = V ) - I L . For a ferromagnetic metal thin film, if the magnetization M is substituted for the magnetic field 11, the proportional relationship with 0 will be j:(i).

24は対物レンズ、25は電磁石である。26は光磁気
ディスク等の磁気記録媒体であり、例えば、T b −
F e 、 G d−Tb −F C!のアモルファス
膜等の垂直異方性を有する磁気記録層(以下、記BMと
いう)を合成樹脂材あるいはガラス月の基板上に蒸着法
、スパッタリング(lN等により形成したものである。
24 is an objective lens, and 25 is an electromagnet. 26 is a magnetic recording medium such as a magneto-optical disk, for example, T b −
Fe, Gd-Tb-FC! A magnetic recording layer (hereinafter referred to as BM) having perpendicular anisotropy, such as an amorphous film, is formed on a synthetic resin or glass substrate by vapor deposition, sputtering (IN, etc.).

前記記録層の光が照射された部分は、温度が上昇し、キ
ュリ一点近傍まて渇瓜が上昇すると、保磁力が減少し、
rdlWの方向に磁化されるーものである。27はフォ
トダイオード等の受光素子である。
The temperature of the portion of the recording layer irradiated with light increases, and as the temperature increases to near the Curie point, the coercive force decreases.
It is magnetized in the direction of rdlW. 27 is a light receiving element such as a photodiode.

次に、本実施例の動作を第3図において説明する。Next, the operation of this embodiment will be explained with reference to FIG.

(1)記録を行う場合 光源20から放射された光は、コリメータレンズ21に
よって平行光に変換され、偏光プリズム22に照射され
る。照射された平行光は、偏光プリズム22の反射面R
Fに対して例えばそのP成分の光のみが直線偏光されて
透過する。
(1) When performing recording Light emitted from the light source 20 is converted into parallel light by the collimator lens 21 and irradiated onto the polarizing prism 22 . The irradiated parallel light is reflected by the reflective surface R of the polarizing prism 22.
For example, with respect to F, only the P component light is linearly polarized and transmitted.

ここで、光源20として半導体レーザ等を用いると、そ
の放射レーザ光は、ある程度の偏光特性を持っているた
め、この偏光方向を偏光プリズム22のP偏光(直線偏
光)の方向に設定しておけば、はとんどのレーザ光が偏
光プリズム22を透過し、光の損失は少ない。
Here, if a semiconductor laser or the like is used as the light source 20, the emitted laser light has a certain degree of polarization characteristics, so this polarization direction should be set to the direction of P polarization (linear polarization) of the polarizing prism 22. For example, most of the laser light passes through the polarizing prism 22, with little loss of light.

前記偏光プリズム22で偏光した光は、ファラデー効果
素子23により偏光面が所定角度0だけ回転して透過し
、対物レンズ24によって磁気記録媒体26の記録層に
集束される。該記録層の光が照射された部分は、温度が
上昇し、キュリ一点近傍まで温度が上昇すると、保磁力
が減少し、電磁石25によって作られる磁界により磁化
反転される。電磁石25によって作られる磁界を前記記
録層の常温での保磁力より小さくしておけば、光の照射
されない部分は磁界の方向に磁化されない。
The light polarized by the polarizing prism 22 passes through the Faraday effect element 23 with its plane of polarization rotated by a predetermined angle of 0, and is focused by the objective lens 24 onto the recording layer of the magnetic recording medium 26 . The temperature of the portion of the recording layer irradiated with light increases, and when the temperature rises to near the Curie point, the coercive force decreases and the magnetization is reversed by the magnetic field created by the electromagnet 25. If the magnetic field created by the electromagnet 25 is made smaller than the coercive force of the recording layer at room temperature, the portion that is not irradiated with light will not be magnetized in the direction of the magnetic field.

したがって、前記光源20の放射を記録したい情報の信
号に応じて制御することにより、磁気記録媒体26上に
情報が記録される。
Therefore, information is recorded on the magnetic recording medium 26 by controlling the radiation of the light source 20 according to the signal of the information desired to be recorded.

(2)消去を行う場合 磁気記録媒体26の記録層に記録された情報を消去する
動作は、記録動作の場合とほとんど同しであるが、前記
光源20から光を連続的に放射させ、電磁石25には記
録動作とは逆の電流を流して磁気記録媒体26に印加さ
れる磁界を逆方向にすることにより、磁気記録媒体26
の記録層が記録された情報と逆方向に磁化される。すな
わち、前記記録情報が消去されたことになる。
(2) When performing erasing The operation of erasing information recorded on the recording layer of the magnetic recording medium 26 is almost the same as the recording operation, but the light source 20 continuously emits light and the electromagnetic By passing a current opposite to that of the recording operation through the magnetic recording medium 25 and reversing the magnetic field applied to the magnetic recording medium 26, the magnetic recording medium 26 is
The recording layer is magnetized in the opposite direction to the recorded information. In other words, the recorded information is erased.

(3)再生を行う場合 磁気記録媒体26の記録層に記録された情報を再生する
時は、電磁石25による磁界を印加しないで、光源20
から放射される光パワーも磁気記録媒体26の記録層の
磁化が反転しない程度の強さにする。
(3) When reproducing information When reproducing information recorded on the recording layer of the magnetic recording medium 26, the light source 20
The optical power emitted from the magnetic recording medium 26 is also set to such a level that the magnetization of the recording layer of the magnetic recording medium 26 is not reversed.

光源20から放射された光は、コリメータレンズ21で
BP性行光変換され、偏光プリズム22に入射される。
The light emitted from the light source 20 undergoes BP conversion by the collimator lens 21 and enters the polarizing prism 22 .

偏光プリズム22に入射された平行光は、偏光プリズム
22の反射面RFに対してそのP成分のみが直線偏光さ
れて透過する。この偏光した光は、ファラデー効果素子
23により偏光面が所定角度φだけ回転され、対物レン
ズ24により集束されて磁気記録媒体26の記@層に照
射される。この照射された光は、記録Mで反射される。
In the parallel light incident on the polarizing prism 22, only its P component is linearly polarized and transmitted through the reflecting surface RF of the polarizing prism 22. The plane of polarization of this polarized light is rotated by a predetermined angle φ by the Faraday effect element 23, focused by the objective lens 24, and irradiated onto the recording layer of the magnetic recording medium 26. This irradiated light is reflected by the recording M.

この反射時に、前記記録層の磁化方向によ−、て左又は
右方向に角度ekだけ反射光の偏光方向が回転される。
At the time of this reflection, the polarization direction of the reflected light is rotated to the left or right by an angle ek depending on the magnetization direction of the recording layer.

前記磁気記録媒体26の記録層で反射された光は、対物
レンズ24により、再び平行光になり、ファラデー効果
素子23によりさらに偏光面が所定角度φだけ回転し、
偏光プリズ1122に入射される。この時の光の偏光方
向は、偏光プリズム22の反射面RFでS成分のみが反
射される。この反射された偏光ビームの光量は、入射光
に対してsjn”(2φ±ek)をかけたものになる。
The light reflected by the recording layer of the magnetic recording medium 26 is turned into parallel light again by the objective lens 24, and the plane of polarization is further rotated by a predetermined angle φ by the Faraday effect element 23.
The light is incident on the polarization prism 1122. Regarding the polarization direction of the light at this time, only the S component is reflected by the reflecting surface RF of the polarizing prism 22. The amount of light of this reflected polarized beam is the incident light multiplied by sjn'' (2φ±ek).

この式中の±θにのr−4−J、r−Jの符号は、磁気
記録媒体26の記録層の光が照射された部分の磁化方向
によって変わる。すなわち、前記光が照射された記録層
の磁化方向によって記録された情報を検出する。ここで
、前記ファラデー効果素子23は従来装置におけるアナ
ライザ8と同じ役目をしている。
The signs of r-4-J and r-J for ±θ in this equation change depending on the magnetization direction of the portion of the recording layer of the magnetic recording medium 26 that is irradiated with light. That is, recorded information is detected based on the magnetization direction of the recording layer irradiated with the light. Here, the Faraday effect element 23 plays the same role as the analyzer 8 in the conventional device.

前記偏光プリズム22により反射された光は、フォート
ダイオ−1く等からなる受光素子27により入射される
。この入射光の強度変化によって前記磁気記録媒体26
の記録層に記録されている情報を読み取ることができる
The light reflected by the polarizing prism 22 is incident on a light receiving element 27 made of a fort diode or the like. This change in the intensity of the incident light causes the magnetic recording medium 26 to
information recorded on the recording layer of the device can be read.

前記ファラデー効果素子23の回転能は、少しでもあれ
ば効果はあるが、前記角度(−)k以−にであることが
望ましい。しかし22.5°以上は必要ない。
Although it is effective if the rotational power of the Faraday effect element 23 is even small, it is desirable that the rotational power is less than the angle (-) k. However, 22.5° or more is not necessary.

また、前記受光素子27にアバランシエフ第1−ダイオ
ードを使用した場合には、ファラデー効果素子23の回
転能は比較的小さくてもよい。
Further, when an avalanche effect first diode is used as the light receiving element 27, the rotational power of the Faraday effect element 23 may be relatively small.

匁米 以上、説明したように、本明細書の記述及び添(す図面
によって開示された技術手段によれば、光路上に偏光プ
リズムとファラデー効果素子とを併用することにより、
従来装置のポラライザ、ハーフミラ−、アナライザ、4
分の1波長板等を省略することができるようにしたので
、装置の小型化がはかれる。また、比較的低出力の光源
で1ヘツド化がはかれる。例えば、コリメータレンズに
Na・0.25のものを使用すると、光源から放射され
る光の約50%(従来の約2倍)は磁気記録媒体まで到
達させることができるので、低出力の光源の1ヘツドで
も記録及び消去に必要な光パワーを十分に供給すること
ができる。
As explained above, according to the technical means disclosed in the description of this specification and the accompanying drawings, by using a polarizing prism and a Faraday effect element together on the optical path,
Conventional equipment polarizer, half mirror, analyzer, 4
Since the half-wave plate and the like can be omitted, the device can be made smaller. Furthermore, a single head can be achieved using a relatively low output light source. For example, if a collimator lens with Na 0.25 is used, approximately 50% of the light emitted from the light source (approximately twice as much as before) can reach the magnetic recording medium, so it can be used as a collimator lens for low-power light sources. Even one head can sufficiently supply the optical power necessary for recording and erasing.

なお、本発明は、前記実施例に限定されることなく、そ
の要旨を変更しない範囲において種々変更し得ることは
勿論である。
It goes without saying that the present invention is not limited to the embodiments described above, and can be modified in various ways without changing the gist thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、従来の磁気記録再生装置の光学系
の概略構成を示す図、 第3図は、本発明の一実施例の光学系の概略構成を示す
図、 第4図は、偏光プリズムの例を示す図である。 20・・・光源、 21 ・・コリメータレンズ、22
・・・偏光プリズム、 23・・・ファラデー効果素子、 24・・・対物レンズ、25・・・電磁石、26・・・
磁気記録媒体、 27・・・受光素子。 代理人 弁理士 秋田収喜 第2図 第3図 (II) ■
1 and 2 are diagrams showing a schematic configuration of an optical system of a conventional magnetic recording/reproducing device. FIG. 3 is a diagram showing a schematic configuration of an optical system of an embodiment of the present invention. , is a diagram showing an example of a polarizing prism. 20...Light source, 21...Collimator lens, 22
...Polarizing prism, 23...Faraday effect element, 24...Objective lens, 25...Electromagnet, 26...
Magnetic recording medium, 27... Light receiving element. Agent Patent Attorney Shuki Akita Figure 2 Figure 3 (II) ■

Claims (1)

【特許請求の範囲】[Claims] 光と磁気によって情報を記録再生する装置において、光
源と磁気記録媒体との間の光路」二に設けられた偏光プ
リズムと、該偏光プリズムと前記磁気記録媒体との間の
光路」二に設けられた偏光面を所定角度だけ回転させる
ファラデー効果素子と、前記偏光プリズムの反射光を受
光し、光電気変換する受光素子を具備したことを特徴と
する光磁気記録再生装置。
In an apparatus for recording and reproducing information using light and magnetism, a polarizing prism provided in an optical path "2" between a light source and a magnetic recording medium; and a polarizing prism provided in an optical path "2" between the polarizing prism and the magnetic recording medium. What is claimed is: 1. A magneto-optical recording and reproducing apparatus comprising: a Faraday effect element that rotates a plane of polarized light by a predetermined angle; and a light receiving element that receives reflected light from the polarizing prism and converts it into electricity.
JP15088083A 1983-08-17 1983-08-17 Photo magnetic recording and reproducing device Pending JPS6043246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15088083A JPS6043246A (en) 1983-08-17 1983-08-17 Photo magnetic recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15088083A JPS6043246A (en) 1983-08-17 1983-08-17 Photo magnetic recording and reproducing device

Publications (1)

Publication Number Publication Date
JPS6043246A true JPS6043246A (en) 1985-03-07

Family

ID=15506397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15088083A Pending JPS6043246A (en) 1983-08-17 1983-08-17 Photo magnetic recording and reproducing device

Country Status (1)

Country Link
JP (1) JPS6043246A (en)

Similar Documents

Publication Publication Date Title
US4571650A (en) Magneto-optic information storage system utilizing a self-coupled laser
US5200934A (en) Method and apparatus for direct overwrite on magneto-optical recording media using circularly polarized microwaves
JPS6043246A (en) Photo magnetic recording and reproducing device
JPH0115932B2 (en)
JPS615459A (en) Magneto-optics reproducing device
EP0520813B1 (en) Magneto-optical recording and reproducing apparatus
JPH0673191B2 (en) Semiconductor laser drive device
JP2619372B2 (en) Magneto-optical recording method
JP2648084B2 (en) Semiconductor laser driver
JP2606258B2 (en) Optical head for magneto-optical recording and reproduction
JP2606257B2 (en) Optical head for magneto-optical recording and reproduction
JPS59121637A (en) Magneto-optical recording and reproducing device
JPS6113461A (en) Photomagnetic disk device
JPH0445134Y2 (en)
JPS61206947A (en) Pickup for photomagnetic recording and reproducing device of simultaneous erasing and recording type
JP2851399B2 (en) Magneto-optical recording / reproducing device
JP2859519B2 (en) Optical information reproducing device
JPS61237241A (en) Photomagnetic recording and reproducing device
JPH0219540B2 (en)
JPH0261845A (en) Magneto-optical recording medium driving device
JPS58199466A (en) Optical information processor
JPH0386953A (en) Magneto-optical recording and reproducing device
JPH0689478A (en) Method for setting relative position of perpendicular magnetic field and magneto-optical disk for setting relative position used
JPH05109141A (en) Magnetooptical head
JPS6035353A (en) Photomagnetic reproducing device