JPS6043074A - Power source for nuclear fusion reactor - Google Patents

Power source for nuclear fusion reactor

Info

Publication number
JPS6043074A
JPS6043074A JP58148104A JP14810483A JPS6043074A JP S6043074 A JPS6043074 A JP S6043074A JP 58148104 A JP58148104 A JP 58148104A JP 14810483 A JP14810483 A JP 14810483A JP S6043074 A JPS6043074 A JP S6043074A
Authority
JP
Japan
Prior art keywords
thyristor
thyristor switch
superconducting load
circuit
load coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58148104A
Other languages
Japanese (ja)
Inventor
Ryuichi Shimada
隆一 嶋田
Toru Hiraoka
徹 平岡
Noboru Fujisawa
藤沢 登
Yukio Ishigaki
石垣 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Atomic Energy Agency
Original Assignee
Hitachi Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan Atomic Energy Research Institute filed Critical Hitachi Ltd
Priority to JP58148104A priority Critical patent/JPS6043074A/en
Publication of JPS6043074A publication Critical patent/JPS6043074A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/17Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only arranged for operation in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

PURPOSE:To reduce the energy loss by connecting a thyristor switch of a thyristor type DC interrupter and a thyristor switch for a feedback circuit in antiparallel, and controlling with a quench detector and a gate controller. CONSTITUTION:The second thyristor switch converter 8b to become a thyristor switch for a feedback circuit is connected in antiparallel to the first thyristor converter 8a to become a main thyristor switch. Quench detectors 10a-10n are disposed near superconductive load coils 2a-2n, and the outputs of the detectors 10a-10n are input to a gate controller 9. The controller 9 controls the first and second thyristors 8a, 8b.

Description

【発明の詳細な説明】 本発明は、核融合装置用電源に係わり、特に、超電導負
荷コイルを有する装置に好適な核融合装置用電源に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power source for a nuclear fusion device, and particularly to a power source for a nuclear fusion device suitable for a device having a superconducting load coil.

第1図は、従来の核融合装置用電源を示したもので、電
源装置1 (la、lb、 ・・in)と、保護抵抗器
7 (7a、7b・・・7n)を有する超電導負荷コイ
ル2(2a、2b・・・2n)と、主サイリスタスイッ
チ3a及び強制消弧回路3bからなるサイリスタ方式直
流遮断器3と、高電圧発生用抵抗器4と、帰路回路用サ
イリスタスイッチ5と、直流遮断器6(6a、6b・・
・6n)よシ構成されている。
Figure 1 shows a conventional power supply for a nuclear fusion device, which includes a power supply 1 (la, lb, . . . in) and a superconducting load coil having protective resistors 7 (7a, 7b, . . . 7n). 2 (2a, 2b...2n), a thyristor type DC breaker 3 consisting of a main thyristor switch 3a and a forced arc extinguishing circuit 3b, a high voltage generation resistor 4, a return circuit thyristor switch 5, and a DC Circuit breaker 6 (6a, 6b...
・6n) It is structured as follows.

第1図において、先ず、直流遮断器6と主サイリスタス
イッチ3aを閉路として、電源装置1によって超電導負
荷コイル2を励磁する。この場合の励磁電流は第1図の
実線の矢線で示されるが、各々の超電導負荷コイルに流
れる励磁電流をI!+I2・・・工、とすると、主サイ
リスクスイッチ3aを流れる帰路回路電流IRは次式に
よって表わされる。
In FIG. 1, first, the DC circuit breaker 6 and the main thyristor switch 3a are closed, and the superconducting load coil 2 is excited by the power supply device 1. The excitation current in this case is shown by the solid arrow in FIG. 1, and the excitation current flowing through each superconducting load coil is I! +I2..., then the return circuit current IR flowing through the main risk switch 3a is expressed by the following equation.

IR−Σ II ・・・・・・ (υ −1 超電導負荷コイル群2a、2b・・・2n、の励磁電流
IRが設定値に達した時点、即ち第2図で示す時間11
で、サイリスタ方式直流遮断器を構成する強制消弧回路
3bを動作させると、主サイリスタスイッチ3aは、開
路されるので、帰路電流は高電圧発生用抵抗器4を流れ
るようになる。この場合の電流を第1図に点線の矢線で
示す。帰路電流が高電圧発生用抵抗器4を流れると、高
電圧発生用抵抗器4により、超電導負荷コイル群2a。
IR-Σ II ...... (υ -1 The time when the excitation current IR of the superconducting load coil group 2a, 2b...2n reaches the set value, that is, time 11 shown in Fig. 2)
When the forced arc extinguishing circuit 3b constituting the thyristor type DC circuit breaker is operated, the main thyristor switch 3a is opened, so that the return current flows through the high voltage generation resistor 4. The current in this case is shown by the dotted arrow in FIG. When the return current flows through the high voltage generation resistor 4, the high voltage generation resistor 4 causes the superconducting load coil group 2a to be closed.

2b、・・・2nの励磁電流Rは、急速に減衰すると共
に、超電導負荷コイル群2a、2b、・・・2nの′各
端子間に高電圧を発生させるので、超電導負荷コイル群
2a=、2b・・・2nと電磁的に結合しているプラズ
マ回路に第2図に示すようなプラズマ電流Ipが誘起さ
れることになる。更に、プラズマ電流を上昇させるため
には、電源装置1によって、超電導負荷コイル2の励磁
電流を変化させていく必要があシ、この制御により、帰
路回路電流IRは、殆んどの場合、第2図に示すように
、時間t2にて極性が反転するので、1=12にて帰路
回路用サイリスタスイッチ5を点弧して超電導負荷コイ
ル群2a、2”b・・・2nの励磁電流の帰路を第1図
の一点鎖線の矢線に示す方向に形成するようになってい
る。このようにして、従来の・装置においては、プラズ
マ電流の誘起、立ち上げ、制御がなされている。
The excitation current R of the superconducting load coil groups 2a, 2b, . A plasma current Ip as shown in FIG. 2 is induced in the plasma circuit electromagnetically coupled to 2b...2n. Furthermore, in order to increase the plasma current, it is necessary to change the excitation current of the superconducting load coil 2 using the power supply 1. Through this control, in most cases, the return circuit current IR is As shown in the figure, since the polarity is reversed at time t2, the return circuit thyristor switch 5 is fired at 1=12, and the excitation current of the superconducting load coil groups 2a, 2''b...2n is routed to the return path. is formed in the direction shown by the dashed-dotted arrow in Fig. 1.In this way, in the conventional apparatus, the plasma current is induced, started up, and controlled.

しかし、このような核融合装置用電源におい゛ては、負
荷コイルが超電導コイルの場合通常運転”の場合と同様
にクエンチ時の場合も考慮して回路を構成する必要があ
るが、従来の装置では、電源装置が超電導負荷コイル用
電源となっているために、低圧大電流型の直流電源が用
いられている。このために、クエンチ発生時に、超電導
負荷コイルに蓄積されている膨大な磁気エネル”ギーを
急速に外部回路に回生されることは困難なので、直流遮
断器6を開路して上記負荷コイルのエネルギーを保護抵
抗器7で消費させるようにしている。
However, in such a power supply for a nuclear fusion device, if the load coil is a superconducting coil, it is necessary to configure the circuit considering the quench operation as well as the normal operation. Since the power supply is used as a power source for the superconducting load coil, a low-voltage, high-current type DC power source is used.For this reason, when a quench occurs, a huge amount of magnetic energy accumulated in the superconducting load coil is used. Since it is difficult to rapidly regenerate energy into an external circuit, the DC circuit breaker 6 is opened so that the energy of the load coil is consumed by the protective resistor 7.

従って、従来の装置においては、クエンチの度に超電導
負荷コイルに蓄積された全磁気エネルギーを消費させて
しまうので電力的式損失が大きく、更に、このために保
護抵抗器の冷却水量も膨大な量を必要とするなどの問題
を有していた。
Therefore, in conventional devices, the total magnetic energy stored in the superconducting load coil is consumed every time a quench is performed, resulting in a large electric power loss.Furthermore, this requires a huge amount of cooling water for the protective resistor. It had problems such as requiring

本発明の目的は、上述の従来技術の問題を解消するもの
で、クエンチ発生の時点を問わず超電導負荷コイルに蓄
積された全磁気エネルギーを速やかに外部回路に吸収さ
せると共に、保護抵抗器の冷却のだめの大規模な冷却設
備を不要とすることにある。
It is an object of the present invention to solve the above-mentioned problems of the prior art.It is an object of the present invention to quickly absorb all the magnetic energy accumulated in the superconducting load coil into an external circuit regardless of the point at which quenching occurs, and to cool the protective resistor. The purpose is to eliminate the need for large-scale cooling equipment.

本発明は、サイリスク方式直流遮断器のサイリスタスイ
ッチと帰路回路用サイリスタスイッチを逆並列接続とす
ると共に、超電導負荷コイルの近くに配置したクエンチ
検出器と、該クエンチ検出器の出力に応答するゲート制
御装置とを設けて上記目的を達成せんとするものである
The present invention connects the thyristor switch of a thyrisk type DC breaker and the thyristor switch for the return circuit in antiparallel, and also includes a quench detector placed near a superconducting load coil, and a gate control responsive to the output of the quench detector. The purpose of the present invention is to provide a device to achieve the above object.

以下、本発明の1実施例を第3図に基づいて説明する。Hereinafter, one embodiment of the present invention will be described based on FIG.

第3図において、8aは主サイリスタスイッチとなる第
1のサイリスタ変換器で、8bは帰路回路用サイリスタ
スイッチとなる第2のサイリスタスイッチ変碗器で、9
は第1・及び第2のサイリスタを制御するだめのゲート
制御装置で、10 (10a、10b・・40.n)は
ゲート制御装置へ信号を出力するだめのクエンチ検出器
である。
In FIG. 3, 8a is the first thyristor converter which becomes the main thyristor switch, 8b is the second thyristor switch transformer which becomes the return circuit thyristor switch, and 9
10 (10a, 10b, . . . 40.n) is a quench detector that outputs a signal to the gate control device.

電源装置1 (la、xb・・・in)により超電導負
荷コイル2(2a、2b・・・2n)を励磁するが、励
磁電流Iriの帰路回路は第3図に実線の矢線で示した
ように第1のサイリスタ変換器8aとなっている。この
時、第1のサイリスタ変換器8aはバイパス・ペア状態
であシ、第2のサイリスタ変換器8bはゲートブロック
状態となっている。
The superconducting load coils 2 (2a, 2b...2n) are excited by the power supply device 1 (la, xb...in), and the return circuit of the exciting current Iri is as shown by the solid arrow in Fig. 3. The first thyristor converter 8a is the first thyristor converter 8a. At this time, the first thyristor converter 8a is in a bypass pair state, and the second thyristor converter 8b is in a gate block state.

このような状態で、超電導負荷コイル群2a。In this state, the superconducting load coil group 2a.

2b・・・2nの励磁電流IRが設定値に達した時点で
強弧回路3bを動作させると、第1のサイリスタ変換器
8aは開路されるので、帰路電流は第3図に点線の矢線
で示すように高電圧発生用抵抗器4を流れるようになる
。そして、帰路電流が高電圧発生用抵抗器4を流れると
、高電圧発生用抵抗器4により、超電導負荷コイル群2
a、2b・・・2nの励磁電流は急速に減衰すると共に
、超電導負荷コイル群2a、2b・・・2nの各端子間
に高電圧を発生させるので、超電導負荷コイル群2 a
 。
When the strong arc circuit 3b is operated when the excitation current IR of 2b...2n reaches the set value, the first thyristor converter 8a is opened, so the return current is as shown by the dotted arrow in FIG. The current flows through the high voltage generating resistor 4 as shown in FIG. Then, when the return current flows through the high voltage generation resistor 4, the high voltage generation resistor 4 causes the superconducting load coil group 2 to
The excitation currents of superconducting load coil groups 2a, 2b, .
.

2b・・・2nと電磁的に結合しているプラズマ回路に
プラズマ電流が誘起されるようになる。そして、更にこ
のプラズマ電流を上昇させるためには、電源装置1によ
って超電導負荷コイル2の励磁電流I+ 、I2・・・
工、を変化させる必要がある。この制御によυ、帰路回
路電流IRは第2図に示すように、殆んどの場合時間t
2にて極性が反転するので、t−12にて、第2のサイ
リスク変換器のゲートブロックを解除して、超電導負荷
コイル群2a、2b・・・2nの励磁電流の帰路回路を
第3図に1点鎖線の矢線で示すような電流路を形成する
A plasma current is induced in the plasma circuit electromagnetically coupled to 2b...2n. In order to further increase this plasma current, the power supply device 1 uses the excitation currents I+, I2, etc. of the superconducting load coil 2.
It is necessary to change the engineering. With this control, υ, the return circuit current IR changes over time t in most cases, as shown in Figure 2.
Since the polarity is reversed at t-12, the gate block of the second Cyrisk converter is released and the return circuit of the excitation current of the superconducting load coil groups 2a, 2b, . . . 2n is set as shown in FIG. A current path as shown by the dashed-dotted arrow line is formed.

次に、第2図における各時間区分毎に分けて第3図の乱
路9ゲート制御装置9及びクエンチ検出器10 (10
a、10b、−・Ion)の動作を説明する。第2図に
おいて0≦t≦11の時点でクエンチ検出器10によシ
クエンチ発生を検出した場合は、ゲート制御装置9によ
シ、第1のサイリスタ変換器8aのバイパス・ペアを解
除し、インバータ動作をさせる。次に、11−≦t≦t
2にてクエンチが発生した場合には、同様にして、第1
のサイリスタ変換器8aをインバータ動作させ、t2≦
tにてクエンチが発生した場合にはやはり同様にして、
第2のサイリスク変換器8bをインバータ動作させるよ
うにしたものである。
Next, the turbulent road 9 gate control device 9 and quench detector 10 (10
a, 10b, -.Ion) will be explained. In FIG. 2, when the quench detector 10 detects the occurrence of a quench at a time point of 0≦t≦11, the gate control device 9 cancels the bypass pair of the first thyristor converter 8a and inverts the inverter. Make it work. Next, 11−≦t≦t
If a quench occurs in step 2, similarly, quench occurs in step 1.
The thyristor converter 8a is operated as an inverter, and t2≦
If a quench occurs at t, do the same again,
The second Cyrisk converter 8b is operated by an inverter.

このような回路の動作をさせることにより、クエンチ発
生時には、第1のサイリスク変換器8a又は、第2のサ
イリスタ変換器8bが低圧電流用の電源装置1と共に動
作し、超電導負荷コイル2に蓄積されている全磁気エネ
ルギーを速やかに外部回路に吸収させることができる。
By operating such a circuit, when a quench occurs, the first thyristor converter 8a or the second thyristor converter 8b operates together with the low-voltage current power supply 1, and the current is accumulated in the superconducting load coil 2. All of the magnetic energy generated can be quickly absorbed into the external circuit.

以上述べ丸ように、本発明によれば、主サイリスタスイ
ッチとなる第1のサイリスタ変換器と、帰路回路用サイ
リスタスイッチとなる第2のサイリスク変換器を逆並列
接続してサイリスタ変換器としてこれをクエンチ検出器
及びゲート制御装置によって制御することによって、超
電導負荷コイルに蓄積されたエネルギーを外部回路に吸
収させてエネルギー損失を減少させると共に、冷却のた
めの大規模冷却設備を不要にできる効果を有する。
As stated above, according to the present invention, the first thyristor converter serving as the main thyristor switch and the second thyristor converter serving as the return circuit thyristor switch are connected in inverse parallel to each other to form a thyristor converter. By controlling the quench detector and gate control device, the energy stored in the superconducting load coil is absorbed into the external circuit, reducing energy loss and eliminating the need for large-scale cooling equipment. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の核融合装置用電源の回路図、第2図は帰
路回路電流の時間的変化を示す図、第3図は本発明の1
実施例による核融合装置用電源の回路図である。 1(la、1b、・・・1n)電源装置、2(2a。
Fig. 1 is a circuit diagram of a conventional power supply for a fusion device, Fig. 2 is a diagram showing temporal changes in return circuit current, and Fig. 3 is a diagram of a conventional power supply for a fusion device.
FIG. 2 is a circuit diagram of a power source for a nuclear fusion device according to an embodiment. 1 (la, 1b, . . . 1n) power supply device, 2 (2a.

Claims (1)

【特許請求の範囲】 1、直列接続した超電導負荷コイルと電源装置の複数個
を並列接続回路とし、更に、該並列接続回路に、主サイ
リスクスイッチとなる第1のサイリスタ変換器と、該第
1のサイリスタ変換器に接続した強制消弧回路と、帰路
回路用サイリスタスイッチとなる第2のサイリスタ変換
器と、高電圧発生用抵抗器とを並列接続した核融合装置
用電源において、前記第2のサイリスク変換器を前記第
1のサイリスク変換器方逆接続とすると共に、前記超電
導負荷コイルの近傍に配置したクエンチ検出器と、尊り
エンj検出器の出力に応答するゲート制御装置とを設け
、前記第1及び第2のサイリスタ検出器を制御するよう
にしたことを特徴とする核融沿l用電源。 2、前記クエンチ検出器は、前記超電導負荷コイルの各
々に設けられていることを特徴とする特許請求の範囲第
1項記載の核融合装置用電源。
[Claims] 1. A plurality of superconducting load coils and power supplies connected in series are connected in parallel, and the parallel connection circuit further includes a first thyristor converter serving as a main thyristor switch, and a first thyristor converter serving as a main thyristor switch. In a power supply for a nuclear fusion device in which a forced arc extinguishing circuit connected to the first thyristor converter, a second thyristor converter serving as a return circuit thyristor switch, and a high voltage generation resistor are connected in parallel, the second A quench detector is arranged in the vicinity of the superconducting load coil, and a gate control device responsive to the output of the quench detector is provided. , the first and second thyristor detectors are controlled. 2. The power source for a nuclear fusion device according to claim 1, wherein the quench detector is provided in each of the superconducting load coils.
JP58148104A 1983-08-15 1983-08-15 Power source for nuclear fusion reactor Pending JPS6043074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58148104A JPS6043074A (en) 1983-08-15 1983-08-15 Power source for nuclear fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58148104A JPS6043074A (en) 1983-08-15 1983-08-15 Power source for nuclear fusion reactor

Publications (1)

Publication Number Publication Date
JPS6043074A true JPS6043074A (en) 1985-03-07

Family

ID=15445330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58148104A Pending JPS6043074A (en) 1983-08-15 1983-08-15 Power source for nuclear fusion reactor

Country Status (1)

Country Link
JP (1) JPS6043074A (en)

Similar Documents

Publication Publication Date Title
JP2001197680A (en) Apparatus and method for switching power system
US4490769A (en) Solid-state circuit breaker with current limiting characteristic using a superconducting coil
US5532638A (en) Superconducting energy storage apparatus
Honbu et al. Parallel operation techniques of GTO inverter sets for large ac motor drives
US4349853A (en) Strong magnetic field generator and method of operating the same
JPH0586052B2 (en)
JPS62141977A (en) Plasma exciter
US4249223A (en) High voltage DC contactor with solid state arc quenching
JPS6043074A (en) Power source for nuclear fusion reactor
JPH0114818B2 (en)
US5110534A (en) Power source for nuclear fusion reactor
JPH0676681A (en) Ac circuit breaker
KR102264598B1 (en) Flux-Coupling type superconducting fault current limiter with two triggered current limiting levels
CN112309743B (en) Bi-directional gamma source direct-current zero-current breaking solid-state circuit breaker
JP2691106B2 (en) Superconducting coil quench protection method and circuit using iron core reactor
JPH06168820A (en) Power supply for nuclear fusion device
Bernard et al. Performance analysis of transformer–rectifier flux pumps
US5038052A (en) Double swing power unit
JPH0199498A (en) Exciter of synchronous machine
JP2714147B2 (en) Gate pulse generator for reactive power compensator
JPH04359191A (en) Power source device for nuclear fusion device
JPS62230363A (en) Controlled rectifier
JPS6056390B2 (en) Fusion device power supply
Ise et al. Modular based design for a small to medium scale toroidal type SMES
JPH06333739A (en) Superconducting coil system