JPH06333739A - Superconducting coil system - Google Patents

Superconducting coil system

Info

Publication number
JPH06333739A
JPH06333739A JP11952393A JP11952393A JPH06333739A JP H06333739 A JPH06333739 A JP H06333739A JP 11952393 A JP11952393 A JP 11952393A JP 11952393 A JP11952393 A JP 11952393A JP H06333739 A JPH06333739 A JP H06333739A
Authority
JP
Japan
Prior art keywords
superconducting coil
circuit
parallel
current
commutation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11952393A
Other languages
Japanese (ja)
Inventor
Yukio Ishigaki
幸雄 石垣
Yoji Tanaka
洋司 田中
Tomomoto Saigo
奉素 西郷
Keigo Fukaura
圭吾 深浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP11952393A priority Critical patent/JPH06333739A/en
Publication of JPH06333739A publication Critical patent/JPH06333739A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a superconducting coil system capable of avoiding a DC breaking operation impossible region near a zero current point accompanied with the switching operation of a polarity transfer switch without applying a voltage higher than necessary to a superconducting coil when interrupting a direct current. CONSTITUTION:A main circuit consisting of a power supply equipment 6 is provided, which excites a superconducting coil 2 through a superconducting coil 2 having a quenching detector 1, a current detector 3 of the superconducting coil 2, and a parallel circuit of a DC circuit breaker 4 and a resistor 5. Moreover, a commutating circuit 13 which connects in parallel a commutating capacitor 10 having a polarity transfer switch 7 connected in parallel to a DC circuit breaker 4, a charging equipment 8 and a voltage detector 9 as well as a series configuration of a first switch 11 and a commutating reactor 12 to the polarity transfer switch 7, and a controller 14 for performing overall operation, control, protection and monitoring are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導コイルシステムに
係り、特に、超電導コイルを流れる電流が時間的に変化
する場合、任意の電流値で適切な直流遮断を行わしめる
直流遮断装置を有し超電導コイルのクエンチを保護する
超電導コイルシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting coil system, and more particularly to a superconducting device having a direct current interruption device capable of performing appropriate direct current interruption at an arbitrary current value when the current flowing through the superconducting coil changes with time. The present invention relates to a superconducting coil system that protects a coil quench.

【0002】[0002]

【従来の技術】核融合装置や超電導エネルギー貯蔵装置
の分野で従来使用されて来た直流遮断装置の一般的な特
徴を以下に示す。
2. Description of the Related Art The general features of a direct current interruption device which has been conventionally used in the fields of a fusion device and a superconducting energy storage device are shown below.

【0003】常電導核融合装置では、直流遮断装置を
プラズマの着火という目的で毎回動作させることが必要
である。従って、運転条件に合わせて転流コンデンサの
充電電圧や、遮断時刻を予め設定することが可能であ
る。また、常電導コイルを用いているため、クエンチ現
象もない。
In the normal conduction nuclear fusion device, it is necessary to operate the direct current interruption device every time for the purpose of igniting plasma. Therefore, it is possible to preset the charging voltage of the commutation capacitor and the cutoff time in accordance with the operating conditions. Further, since the normal conducting coil is used, there is no quench phenomenon.

【0004】超電導核融合装置の実績は未だ少ない
が、プラズマを着火させるコイルが常電導方式のもので
は上記同様直流遮断装置を毎回動作させるので、運転
条件に合わせて転流コンデンサの充電電圧や、遮断時刻
を予め設定することが可能である。一方、超電導方式の
ものではプラズマ着火を高周波で行うものが多く、上記
の目的で直流遮断装置を設置する例は殆どないが、ク
エンチ保護を行うための直流遮断装置が新たに要求され
る。超電導コイルの電流値が小さい場合は、電磁接触器
やヒューズ等で強制的に直流遮断を行うことは可能であ
るが、数10kA級もの直流大電流を遮断するために
は、電流零点を作り出すための転流回路が必要となって
くる。
Although the track record of the superconducting nuclear fusion device is still small, since the DC interrupting device is operated every time when the coil for igniting the plasma is of the normal conducting type, the charging voltage of the commutation capacitor and the It is possible to preset the cutoff time. On the other hand, in the case of the superconducting type, there are many cases in which plasma ignition is performed at a high frequency, and there are almost no examples of installing a DC interrupting device for the above purpose, but a DC interrupting device for quench protection is newly required. When the current value of the superconducting coil is small, it is possible to forcibly cut off the direct current with an electromagnetic contactor or a fuse, but in order to cut off a large DC current of several tens of kA, a current zero point is created. The commutation circuit of is needed.

【0005】上記した様に、大容量超電導コイルを適用
する機会の多い核融合,超電導エネルギー貯蔵装置等の
分野では、クエンチ保護用として転流回路を有する直流
遮断装置が必要とされることが判る。
As described above, in the fields of nuclear fusion, superconducting energy storage, etc., where large-capacity superconducting coils are often used, it is understood that a DC interrupting device having a commutation circuit for quench protection is required. .

【0006】しかしながら、クエンチ現象は特定のコイ
ル電流値にて発生するとは限らず、予め直流遮断装置の
遮断電流,動作時間等を設定することは不可能である。
However, the quench phenomenon does not always occur at a specific coil current value, and it is impossible to preset the breaking current, operating time, etc. of the DC breaking device.

【0007】一般に、直流遮断器を流れている電流Iを
遮断するためには、並列に接続されている転流回路から
放電される逆方向電流を1.2I程度に設定することが
多い。この場合、その逆方向電流の大きさは、転流回路
を構成する転流コンデンサの充電電圧で次式の様に決定
することが出来る。
Generally, in order to cut off the current I flowing through the DC circuit breaker, the reverse current discharged from the commutation circuits connected in parallel is often set to about 1.2I. In this case, the magnitude of the reverse current can be determined by the charging voltage of the commutation capacitor forming the commutation circuit as in the following equation.

【0008】 V=IC √L/C (1) ここで、Vは転流コンデンサの充電電圧、Cは転流コン
デンサの容量、Lは転流リアクトルのインダクタンス、
及びIC は逆方向電流の大きさである。
V = I C √L / C (1) where V is the charging voltage of the commutation capacitor, C is the capacity of the commutation capacitor, L is the inductance of the commutation reactor,
And I C are the magnitudes of the reverse currents.

【0009】[0009]

【発明が解決しようとする課題】このような考え方は、
上記の目的で直流遮断装置を設置する場合に通常採用
される方法であるが、超電導コイルのクエンチ保護を目
的とする場合は、上記電流Iを常に検出しておくことが
必要となる。即ち、超電導コイルにクエンチが発生する
電流値が予測不明のため、超電導コイルの定格電流値に
対応した値に転流コンデンサを常に最大充電しておかざ
るを得なくなる。従って、超電導コイルを流れる電流が
小さな場合にクエンチが発生すると、超電導コイルの定
格電流を遮断するに足る大きな値の逆電流が直流遮断器
に流れて遮断し、その後ほぼ同じ値の電流値が抵抗器に
流れ込む事になり、必要以上の電圧を超電導コイル端子
間に発生させ、超電導コイルの絶縁劣化を早める事にな
る。
[Problems to be Solved by the Invention]
This is a method that is usually adopted when installing a DC interrupting device for the above purpose, but it is necessary to always detect the current I when aiming at quench protection of the superconducting coil. That is, since the current value at which quenching occurs in the superconducting coil is uncertain, the commutation capacitor must always be fully charged to a value corresponding to the rated current value of the superconducting coil. Therefore, if a quench occurs when the current flowing through the superconducting coil is small, a reverse current of a large value sufficient to interrupt the rated current of the superconducting coil flows into the DC circuit breaker and is interrupted. It will flow into the vessel and generate more voltage than necessary between the terminals of the superconducting coil, which will accelerate the deterioration of the insulation of the superconducting coil.

【0010】また、直流遮断器に流れていた電流がその
極性を変えるような場合は、その都度、極性切換器を構
成するそれぞれの切換器を開閉させる必要があり、その
ため開閉操作の時間遅れにより、電流零点近傍、即ち極
性変化前後で直流遮断動作が不可能な領域が発生してく
る。
In addition, when the current flowing through the DC circuit breaker changes its polarity, it is necessary to open and close each of the switching devices constituting the polarity switching device each time. In the vicinity of the current zero point, that is, before and after the polarity change, a region in which the DC cutoff operation is impossible occurs.

【0011】本発明は上述の点に鑑みなされたもので、
その目的とするところは、超電導コイルを流れる任意の
電流値,動作時間等で直流遮断を行う際、必要以上の電
圧を上記超電導コイルに印加させることなく、且つ極性
切換器の開閉操作に伴う電流零点近傍での直流遮断動作
不可能領域の回避を行うことが可能なクエンチ保護装置
を有する超電導コイルシステムを提供することにある。
The present invention has been made in view of the above points,
The purpose of this is to cut the direct current at an arbitrary current value flowing through the superconducting coil, operating time, etc., without applying an unnecessarily high voltage to the superconducting coil, and to prevent the current associated with the opening / closing operation of the polarity switching device. It is an object of the present invention to provide a superconducting coil system having a quench protection device capable of avoiding a DC cutoff inoperable region near the zero point.

【0012】[0012]

【課題を解決するための手段】本発明は上記目的を達成
するために、クエンチ検出器を有する超電導コイル,該
超電導コイルの電流検出器,直流遮断器と抵抗器の並列
回路を介して該超電導コイルを励磁する電源装置からな
る主回路,前記直流遮断器に並列接続される極性切換
器,充電装置及び電圧検出器を有する転流コンデンサと
第1の開閉器及び転流リアクトルの直列構成を前記極性
切換器に並列接続した転流回路、および全体の運転,制
御,保護,監視を行うための制御装置からなる超電導コ
イルシステムにおいて、前記超電導コイルの電流検出器
は、前記超電導コイルの励磁電流値を逐次該制御装置へ
送って定められた演算を行い、その結果で転流回路を構
成する転流コンデンサの充電電圧を逐次制御することが
可能な充電方式を設けることにより、超電導コイルの電
流が逐次変動している場合でも適切な直流遮断が可能と
ならしめるものである。
In order to achieve the above object, the present invention provides a superconducting coil having a quench detector, a current detector for the superconducting coil, and a superconducting circuit through a parallel circuit of a DC breaker and a resistor. A main circuit including a power supply device for exciting a coil, a polarity switching device connected in parallel to the DC circuit breaker, a commutation capacitor having a charging device and a voltage detector, a first switch and a commutation reactor are connected in series. In a superconducting coil system including a commutation circuit connected in parallel to a polarity switcher and a control device for performing overall operation, control, protection, and monitoring, a current detector for the superconducting coil is a magnetizing current value for the superconducting coil. Is sequentially sent to the control device to perform a predetermined calculation, and as a result, a charging method capable of sequentially controlling the charging voltage of the commutation capacitor forming the commutation circuit is set up. The Rukoto, those occupying become possible proper DC blocking even if the current of the superconducting coil is varied sequentially.

【0013】更に、前記極性切換器を省略した構成にお
いて、前記第1の開閉器を方向性の有するスイッチの逆
並列回路とすることにより、超電導コイルの電流極性に
対応した直流遮断が可能となる。
Further, in the structure in which the polarity switching device is omitted, the first switch is an anti-parallel circuit of directional switches, so that the direct current cutoff corresponding to the current polarity of the superconducting coil becomes possible. .

【0014】[0014]

【作用】電源装置は、直流遮断器と抵抗器の並列回路を
介して超電導コイルを励磁するのに用いる。超電導コイ
ルを流れる電流は電流検出器により逐次制御装置に取り
込められ、適当な演算を施されて転流コンデンサの充電
電圧値を決定する。超電導コイルに設けられたクエンチ
検出器にてクエンチ発生を検出した場合には、制御装置
を介して直流遮断器を開路するが、同時に転流回路の第
1の開閉器を閉路し、直流遮断器を流れる直流電流に電
流零点を作り出す。また、極性切換器は、直流遮断器を
流れる直流電流の極性が変化した場合、転流コンデンサ
の放電電流が直流電流に電流零点を作り出す方向となる
ように適宜切り替えられる。更に、第2の開閉器は、直
流遮断器の遮断動作時に同期して閉路され、電源装置を
過電圧から保護する。また、極性切換器を省略した構成
における第1の開閉器は、転流回路の転流コンデンサを
放電するのに用いる。
The power supply device is used to excite the superconducting coil through the parallel circuit of the DC breaker and the resistor. The current flowing through the superconducting coil is sequentially taken into the control device by the current detector, and an appropriate calculation is performed to determine the charging voltage value of the commutation capacitor. When the quench detector provided in the superconducting coil detects the occurrence of the quench, the DC circuit breaker is opened via the control device, but at the same time, the first switch of the commutation circuit is closed, and the DC circuit breaker is closed. A zero current is created in the DC current flowing through. Further, the polarity switcher is appropriately switched so that when the polarity of the DC current flowing through the DC circuit breaker changes, the discharge current of the commutation capacitor tends to create a current zero point in the DC current. Further, the second switch is closed in synchronization with the breaking operation of the DC breaker to protect the power supply device from overvoltage. Further, the first switch in the configuration in which the polarity switch is omitted is used to discharge the commutation capacitor of the commutation circuit.

【0015】[0015]

【実施例】以下、図示した実施例に基づいて本発明を詳
細に説明する。
The present invention will be described in detail below with reference to the illustrated embodiments.

【0016】図1に本発明の一実施例を示す。FIG. 1 shows an embodiment of the present invention.

【0017】該図に示す如く、本実施例では、クエンチ
検出器1を有する超電導コイル2,該超電導コイル2の
電流検出器3,直流遮断器4と抵抗器5の並列回路を介
して超電導コイル2を励磁する電源装置6からなる主回
路,直流遮断器4に並列接続される極性切換器7,充電
装置8及び電圧検出器9を有する転流コンデンサ10と
第1の開閉器11及び転流リアクトル12の直列構成を
極性切換器7に並列接続した転流回路13、および全体
の運転,制御,保護,監視を行うための制御装置14か
ら構成される。
As shown in the figure, in this embodiment, a superconducting coil having a quench detector 1, a current detector 3 for the superconducting coil 2, a DC circuit breaker 4 and a resistor 5 are connected in parallel through a superconducting coil. 2, a main circuit consisting of a power supply device 6 for exciting 2, a polarity switching device 7 connected in parallel to the DC breaker 4, a charging device 8 and a commutation capacitor 10 having a voltage detector 9, a first switch 11 and a commutation. The reactor 12 comprises a commutation circuit 13 in which a series configuration of the reactor 12 is connected in parallel to the polarity switching device 7, and a control device 14 for operating, controlling, protecting, and monitoring the whole.

【0018】超電導コイル2は電源装置6にて励磁され
るが、励磁途中等、クエンチが発生した場合は、超電導
コイル2の損傷防止のため、出来るだけ速く超電導コイ
ル2に蓄積されたエネルギーを外部の抵抗器5にて消費
させる必要がある。このためには、超電導コイル2に直
列接続された直流遮断器4を開路させる必要があるが、
直流遮断器4を流れている電流は直流であるから、転流
回路13を動作させ電流零点を作り出して直流遮断する
必要がある。この電流零点は、直流遮断時、直流遮断器
4に流れていた電流値をIとすれば、並列に接続されて
いる転流回路13から放電される逆方向電流を1.2I
程度に設定することが一般的である。この場合、その逆
方向電流の大きさは、転流回路13を構成する転流コン
デンサ10の充電電圧Vで前記(1)式の様に決定するこ
とが出来る。
The superconducting coil 2 is excited by the power supply device 6. However, if a quench occurs during excitation or the like, the energy stored in the superconducting coil 2 should be transferred to the outside as quickly as possible in order to prevent damage to the superconducting coil 2. It is necessary to consume it in the resistor 5 of. For this purpose, it is necessary to open the DC circuit breaker 4 connected in series to the superconducting coil 2,
Since the current flowing through the DC breaker 4 is DC, it is necessary to operate the commutation circuit 13 to create a current zero point and cut off the DC. At this current zero point, if the value of the current flowing in the DC circuit breaker 4 at the time of DC interruption is I, the reverse current discharged from the commutation circuit 13 connected in parallel is 1.2I.
Generally, it is set to a degree. In this case, the magnitude of the reverse current can be determined by the charging voltage V of the commutation capacitor 10 forming the commutation circuit 13 as shown in the equation (1).

【0019】但し、超電導コイル2にクエンチが発生す
るタイミングを予測することは困難である。そこで、超
電導コイル2に流れている直流電流値を逐次検出し、こ
の値に見合った転流コンデンサ10の充電電圧を同様に
逐次制御することにより、最適条件での直流遮断が可能
となる。電源装置6は、上記直流遮断時に過電圧が印加
されないように、通常、短絡モードとする。
However, it is difficult to predict the timing at which the quench occurs in the superconducting coil 2. Therefore, the DC current value flowing in the superconducting coil 2 is sequentially detected, and the charging voltage of the commutation capacitor 10 corresponding to this value is sequentially controlled in the same manner, whereby the DC cutoff under the optimum condition becomes possible. The power supply device 6 is normally in a short-circuit mode so that an overvoltage is not applied when the direct current is cut off.

【0020】図2に本発明の他の実施例を示す。即ち、
該図は、電源装置6に並列に第2の開閉器15を設けた
ものであり、直流遮断時に、電源装置6に過電圧が印加
されないようにしたものである。この場合は、図1での
電源装置6による短絡モードは行わなくてもよい。
FIG. 2 shows another embodiment of the present invention. That is,
In the figure, a second switch 15 is provided in parallel with the power supply device 6 so that an overvoltage is not applied to the power supply device 6 when the direct current is cut off. In this case, the short circuit mode by the power supply device 6 in FIG. 1 may not be performed.

【0021】また、図3に本発明の更に他の実施例を示
す。即ち、該図は、図1の各種構成要素のうち、第1の
開閉器11を方向性スイッチの逆並列回路16とし、更
に極性切換器7を省略したもので、転流コンデンサ10
の充電電圧だけではなく、充電極性をも超電導コイル2
の電流値およびその極性に応じて制御することが可能な
充電方式を設けるようにしたものである。例えば、図4
に示すような直流遮断器4を流れている電流では、正か
ら負へ電流極性が変化する場合、極性切換器7を開閉さ
せる必要があるが、この切り換え操作に遅れ時間が発生
し、そのため、直流遮断動作不可能領域17が発生する
ことになる。即ち、方向性スイッチの逆並列回路16を
設けることにより、転流回路13を構成する転流コンデ
ンサ10の充電電圧の極性も逐次制御することが可能と
なるものである。
FIG. 3 shows still another embodiment of the present invention. That is, in the figure, among the various constituent elements of FIG. 1, the first switch 11 is an antiparallel circuit 16 of a directional switch, and the polarity switch 7 is further omitted.
Not only the charging voltage of the superconducting coil 2
The charging method that can be controlled according to the current value and its polarity is provided. For example, in FIG.
In the current flowing through the DC circuit breaker 4 as shown in (1), when the current polarity changes from positive to negative, the polarity switch 7 needs to be opened and closed, but a delay time occurs in this switching operation, so that The DC cutoff inoperable region 17 is generated. That is, by providing the anti-parallel circuit 16 of the directional switch, it is possible to successively control the polarity of the charging voltage of the commutation capacitor 10 forming the commutation circuit 13.

【0022】[0022]

【発明の効果】以上説明した本発明の超電導コイルシス
テムによれば、クエンチ発生時に動作させる直流遮断器
の転流コンデンサ充電電圧を、逐次最適に制御出来るた
め、必要以上の過電圧を超電導コイルに印加させなくて
よく、超電導コイルの絶縁劣化を大幅に抑制することが
可能となる。また、方向性スイッチを逆並列接続して使
用することにより、極性切換器が省略可能となり、転流
コンデンサの充電電圧のみならず、充電極性をも制御
し、且つ極性の切り換え時間を短縮して直流遮断不可能
領域を回避することが可能となり、その効果は多大であ
る。
According to the superconducting coil system of the present invention described above, the commutation capacitor charging voltage of the DC circuit breaker that operates when a quench occurs can be optimally controlled successively, so that an excessive voltage is applied to the superconducting coil. It is not necessary to do so, and it is possible to significantly suppress the insulation deterioration of the superconducting coil. Also, by using the directional switch in anti-parallel connection, the polarity switch can be omitted, not only the charging voltage of the commutation capacitor but also the charging polarity can be controlled and the switching time of the polarity can be shortened. It becomes possible to avoid the area where direct current cannot be cut off, and the effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超電導コイルシステムの一実施例を示
す回路図である。
FIG. 1 is a circuit diagram showing an embodiment of a superconducting coil system of the present invention.

【図2】本発明の超電導コイルシステムの他の実施例を
示す回路図である。
FIG. 2 is a circuit diagram showing another embodiment of the superconducting coil system of the present invention.

【図3】本発明の超電導コイルシステムの更に他の実施
例を示す回路図である。
FIG. 3 is a circuit diagram showing still another embodiment of the superconducting coil system of the present invention.

【図4】本発明の超電導コイルシステムを構成する直流
遮断器を流れる電流波形の一例を示す図である。
FIG. 4 is a diagram showing an example of a waveform of a current flowing through a DC circuit breaker constituting the superconducting coil system of the present invention.

【符号の説明】[Explanation of symbols]

1…クエンチ検出器、2…超電導コイル、3…電流検出
器、4…直流遮断器、5…抵抗器、6…電源装置、7…
極性切換器、8…充電装置、9…電圧検出器、10…転
流コンデンサ、11…サイリスタスイッチ、12…転流
リアクトル、13…転流回路、14…制御装置、15…
投入器、16…サイリスタスイッチの逆並列回路、17
…直流遮断動作不可能領域。
1 ... Quench detector, 2 ... Superconducting coil, 3 ... Current detector, 4 ... DC circuit breaker, 5 ... Resistor, 6 ... Power supply device, 7 ...
Polarity changer, 8 ... Charging device, 9 ... Voltage detector, 10 ... Commutation capacitor, 11 ... Thyristor switch, 12 ... Commutation reactor, 13 ... Commutation circuit, 14 ... Control device, 15 ...
Inserter, 16 ... Anti-parallel circuit of thyristor switch, 17
... DC cutoff operation impossible area.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西郷 奉素 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 深浦 圭吾 茨城県日立市幸町三丁目2番2号 株式会 社日立エンジニアリングサービス内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hojin Saigo Inventor 3-1, 1-1 Saiwaicho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Factory (72) Inventor Keigo Fukaura 3-chome, Saiwaicho, Hitachi City, Ibaraki Prefecture No. 2-2 Hitachi Engineering Service Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】クエンチ検出器を有する超電導コイル,該
超電導コイルの電流検出器,直流遮断器と抵抗器の並列
回路を介して該超電導コイルを励磁する電源装置からな
る主回路,前記直流遮断器に並列接続される極性切換
器,充電装置、及び電圧検出器を有する転流コンデンサ
と第1の開閉器、及び転流リアクトルの直列構成を前記
極性切換器に並列接続した転流回路、及び全体の運転,
制御,保護,監視を行うための制御装置からなる超電導
コイルシステムにおいて、前記転流コンデンサの充電電
圧を前記超電導コイルの通電電流値に応じて制御するこ
とが可能な充電方式を有していることを特徴とする超電
導コイルシステム。
1. A superconducting coil having a quench detector, a current detector for the superconducting coil, a main circuit comprising a power supply device for exciting the superconducting coil via a parallel circuit of a DC breaker and a resistor, and the DC breaker. Commutation capacitor having a polarity switcher, a charging device, and a voltage detector connected in parallel to the first switch, and a commutation circuit in which a series configuration of a commutation reactor is connected in parallel to the polarity switcher, and the whole. Driving,
In a superconducting coil system including a control device for controlling, protecting and monitoring, the superconducting coil system has a charging method capable of controlling the charging voltage of the commutation capacitor according to the current value of the superconducting coil. Is a superconducting coil system.
【請求項2】請求項1において、前記直流遮断器の開極
時に同期して閉路する第2の開閉器を前記電源装置に並
列に配したことを特徴とする超電導コイルシステム。
2. The superconducting coil system according to claim 1, wherein a second switch which is closed in synchronization with the opening of the DC circuit breaker is arranged in parallel with the power supply device.
【請求項3】請求項1において、前記第1の開閉器をイ
グナイトロンやサイリスタ等の方向性を有する開閉器類
の逆並列回路となし、且つ前記極性切換器を省略して直
接転流回路を前記直流遮断器に並列接続したことを特徴
とする超電導コイルシステム。
3. The direct commutation circuit according to claim 1, wherein the first switch is an antiparallel circuit of directional switches such as ignitron and thyristor, and the polarity switch is omitted. Is connected in parallel with the DC circuit breaker, a superconducting coil system.
JP11952393A 1993-05-21 1993-05-21 Superconducting coil system Pending JPH06333739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11952393A JPH06333739A (en) 1993-05-21 1993-05-21 Superconducting coil system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11952393A JPH06333739A (en) 1993-05-21 1993-05-21 Superconducting coil system

Publications (1)

Publication Number Publication Date
JPH06333739A true JPH06333739A (en) 1994-12-02

Family

ID=14763390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11952393A Pending JPH06333739A (en) 1993-05-21 1993-05-21 Superconducting coil system

Country Status (1)

Country Link
JP (1) JPH06333739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7898778B2 (en) 2005-04-19 2011-03-01 Kabushiki Kaisha Toshiba Superconducting coil quench detection method and device, and superconducting power storage unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7898778B2 (en) 2005-04-19 2011-03-01 Kabushiki Kaisha Toshiba Superconducting coil quench detection method and device, and superconducting power storage unit

Similar Documents

Publication Publication Date Title
CA2166225C (en) Circuit breaker and circuit breaking apparatus
US6067217A (en) Current limiter
US6075684A (en) Method and arrangement for direct current circuit interruption
US4805062A (en) DC circuit breaker and method of commutation thereof
US7633725B2 (en) Micro-electromechanical system based soft switching
US5218505A (en) Superconductor coil system and method of operating the same
US5303111A (en) Superconducting coil protective system
JPH06333739A (en) Superconducting coil system
JP7242575B2 (en) DC current interrupter
JPH0581973A (en) Dc circuit breaker
JPH11355905A (en) Interruption system for power converter
JP2003007178A (en) Direct current breaker
JPH0212367B2 (en)
JP2691106B2 (en) Superconducting coil quench protection method and circuit using iron core reactor
JP2002110006A (en) Direct current breaker
JP2000090787A (en) Breaking device and d.c. power transmission system with its application
CA1309487C (en) Apparatus for reducing stresses that initiate restrike of breakers in disconnecting capacitor banks
GB2487918A (en) DC power network protection system
JPH06168820A (en) Power supply for nuclear fusion device
JP2001333537A (en) Power supply facility
JPH11146555A (en) Superconducting current limiter
JPH05236646A (en) Current limiter
JPH0513222A (en) Superconducting coil device
EP1040497A1 (en) An electric switching device and a method for performing electric disconnection of a load
JP2724321B2 (en) Superconducting coil system and operating method thereof