JPS6043034B2 - Manufacturing method of switching element - Google Patents
Manufacturing method of switching elementInfo
- Publication number
- JPS6043034B2 JPS6043034B2 JP12687179A JP12687179A JPS6043034B2 JP S6043034 B2 JPS6043034 B2 JP S6043034B2 JP 12687179 A JP12687179 A JP 12687179A JP 12687179 A JP12687179 A JP 12687179A JP S6043034 B2 JPS6043034 B2 JP S6043034B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- lifetime
- phosphorus
- type layer
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 50
- 229910052698 phosphorus Inorganic materials 0.000 claims description 47
- 239000011574 phosphorus Substances 0.000 claims description 47
- 239000000758 substrate Substances 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 26
- 238000009792 diffusion process Methods 0.000 claims description 23
- 239000004065 semiconductor Substances 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 238000005530 etching Methods 0.000 claims description 3
- 239000011521 glass Substances 0.000 description 28
- 229910001385 heavy metal Inorganic materials 0.000 description 17
- 239000010931 gold Substances 0.000 description 16
- 230000008569 process Effects 0.000 description 12
- 229910052737 gold Inorganic materials 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 9
- 230000008859 change Effects 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- -1 phosphorus compound Chemical class 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 150000003017 phosphorus Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/74—Thyristor-type devices, e.g. having four-zone regenerative action
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Bipolar Transistors (AREA)
- Thyristors (AREA)
Description
【発明の詳細な説明】
本発明はパワー用トランジスタ、サイリスタ或いはゲー
トターンオフサイリスタ(以下GTOと称する)等にス
イッチング素子の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a switching element such as a power transistor, thyristor, or gate turn-off thyristor (hereinafter referred to as GTO).
一般にパワー用トランジスタ、サイリスタ或いはGTO
等のスイッチング素子は、スイッチングの速さと共に、
熱損失の低減が要求される。Generally power transistor, thyristor or GTO
Switching elements such as
Reduction of heat loss is required.
特に、 れトΔ41、 Φ爪−f、111−−0、、田
、、られる電力用のスイッチング素子には、装置の小型
化、大容量化の為に上記性能の他に大電流、高耐圧であ
ることが要求される。これらの性能は素子の内部の構成
で決まることが多く、それらの性能の間には各々トレー
ドオフの関係がある。例えば高耐圧化にはベース層とな
る中間層の幅を広くする必要があるが、輻を広くすると
オン電圧が増加して熱損失の増加を招き、さらに中間層
の容積増加のためにスイッチオフ時の過剰キャリア消滅
に時間を要し、スイッチング動作が遅くなるというよう
に性能の間に各々トレードオフの関係がある。そこで実
際、電力量のスイッチング素子を得る場合は用途に応じ
て各特性間のトレードオフ点の最適化を行なつている。
しカル素子のパラメータの中にはトレードオフ関係外の
ものてあり、例えは制御電極を有する半導体層内の少数
キャリアライフタイムは、高ければ高い程この層をベー
スとするトランジスタの電流増加率が増加し、スイッチ
ング性能が向上すると共にオン電圧が低くなり、さらに
リーク電流も減少するというように素子性能がほとんど
改善される。In particular, switching elements for electric power such as Δ41, Φclaw-f, 111--0, , , are required to have high current and high withstand voltage in addition to the above-mentioned performance in order to miniaturize the device and increase capacity. is required. These performances are often determined by the internal configuration of the element, and there is a trade-off relationship between these performances. For example, to increase the withstand voltage, it is necessary to widen the width of the intermediate layer that serves as the base layer, but widening the width increases the on-state voltage, which increases heat loss, and further increases the volume of the intermediate layer, which causes the switch to turn off. There is a trade-off relationship between the performances, such that it takes time for excess carriers to disappear and the switching operation becomes slow. In practice, therefore, when obtaining a switching element with a low power consumption, the trade-off point between each characteristic is optimized depending on the application.
There are some parameters of the current control device that are not in a trade-off relationship; for example, the higher the minority carrier lifetime in the semiconductor layer containing the control electrode, the higher the current increase rate of the transistor based on this layer. The switching performance is improved, the on-voltage is lowered, and the leakage current is also reduced, so that the device performance is almost improved.
従つてスイッチング素子においては一般にライフタイム
キラー原子例えば金(Au)原子を拡散する前の半導体
基体のキャリアライフタイムをできる限り高くすること
が望ましい。しかしながら実際の製造プロセスでは半導
体基体に不純物を導入するために、拡散等の100σC
以上の高温熱処理が行なわれるこによつて、熱処理中に
容器から混入する重金属や熱処理によつて半導体基体に
生ずる熱ひずみにより、キャリアのトラップ準位が作ら
れ、キャリアライフタイムを低うしている。Therefore, in a switching element, it is generally desirable to make the carrier lifetime of a semiconductor substrate as high as possible before diffusing lifetime killer atoms, such as gold (Au) atoms. However, in the actual manufacturing process, in order to introduce impurities into the semiconductor substrate, 100σC
When the above-mentioned high-temperature heat treatment is performed, carrier trap levels are created due to heavy metals mixed in from the container during the heat treatment and thermal strain generated in the semiconductor substrate due to the heat treatment, reducing the carrier lifetime. .
この現象は、ライフタイムキラー原子の拡散のような意
識的なライフタイム制御と異なり、素子性能の劣化や素
子製造の再現性の低下を引き起す主因となつてきた。こ
の問題の解決法の一つとしてリンゲツター法が良く知ら
れている。This phenomenon, unlike intentional lifetime control such as the diffusion of lifetime killer atoms, has been a major cause of deterioration of device performance and reproducibility of device manufacturing. The Ringetter method is well known as one of the solutions to this problem.
これはリン化合物を半導体基体上に形成(デポジション
)し、リン化合物のリンを半導体基体中に拡散する時に
、半導体基体中に含まれるFe,.Cuなどの重金属が
熱によつて拡散し、半導体基体上のリン化合物層に吸着
され、その結果半導体基体中の重金属量が減少し、ライ
フタイムが高くなるという効果を利用したものである。
このリンゲツタ効果を利用した方法を、第1図a−dを
参照して具体的に説明する。この第1図a−dに示すの
はスイッチング素子の一つサイリスタの製造工程の一例
である。まずn型Si基板11の両側より例えばGaを
拡散してアノード層となるp型層12と後にゲート電極
が形成されpベース層となるp型層13とを形成してp
−n−p構造のSi基体旦を得る(第1図a)。次にp
ベース層となるp型層13上にリンガラス層14を形成
(デポジション)する(第1図b)。このリンガラス層
14形成時に、Sj基体中に含む重金属及び外部にある
重金属がリンガラス層14に吸着する。この後リンガラ
ス層14を除去し、S1基体11表面近傍に含むリンを
拡散してカソード層となるn型層15を形成する(第1
図c)。なおこの工程でリンガラス層14を除去した後
にリンを拡散するのはカソード層となるn型層の表面濃
度、深さを制御する為である。しかる後アノード層とな
るp型層12側よりライフタイムキラー原子(図中点々
で示す)を拡散する(第1図d)。最後に図示してない
が、アノード層となるp型層12にアノード電極、pベ
ース層となるp型層13にゲート電極、カソード層とな
るn型層15にカソード電極を形成してサイリスタ素子
が得られる。このようにして得られたサイリスタ素子は
、リンゲツター効果を利用している為、Si基体旦中の
重金属の量が減少しライフタイムが向上する。This is because when a phosphorus compound is formed (deposited) on a semiconductor substrate and the phosphorus of the phosphorus compound is diffused into the semiconductor substrate, Fe, . This method takes advantage of the effect that heavy metals such as Cu are diffused by heat and adsorbed to the phosphorus compound layer on the semiconductor substrate, resulting in a decrease in the amount of heavy metals in the semiconductor substrate and an increase in lifetime.
A method using this Ringetter effect will be specifically explained with reference to FIGS. 1a to 1d. What is shown in FIGS. 1A to 1D is an example of the manufacturing process of a thyristor, which is one of the switching elements. First, a p-type layer 12 that will become an anode layer by diffusing, for example, Ga from both sides of an n-type Si substrate 11 and a p-type layer 13 that will later become a p-base layer on which a gate electrode will be formed are formed.
A Si substrate having a -np structure is obtained (FIG. 1a). Then p
A phosphorus glass layer 14 is formed (deposited) on the p-type layer 13 which becomes the base layer (FIG. 1b). When this phosphorus glass layer 14 is formed, heavy metals contained in the Sj substrate and heavy metals present outside are adsorbed to the phosphorus glass layer 14. Thereafter, the phosphorus glass layer 14 is removed, and the phosphorus contained near the surface of the S1 substrate 11 is diffused to form an n-type layer 15 that will become a cathode layer (first
Figure c). Note that the reason why phosphorus is diffused after removing the phosphorus glass layer 14 in this step is to control the surface concentration and depth of the n-type layer that will become the cathode layer. Thereafter, lifetime killer atoms (indicated by dots in the figure) are diffused from the side of the p-type layer 12, which will become the anode layer (FIG. 1d). Finally, although not shown, an anode electrode is formed on the p-type layer 12 that becomes the anode layer, a gate electrode is formed on the p-type layer 13 that becomes the p-base layer, and a cathode electrode is formed on the n-type layer 15 that becomes the cathode layer to form a thyristor element. is obtained. Since the thyristor element thus obtained utilizes the Ringetter effect, the amount of heavy metals in the Si substrate is reduced and the lifetime is improved.
しかしながらライフタイムが向上するのは、わずかであ
つて、結果的にリンゲツター効果を利用しない方法のサ
イリスタとほとんど変りがない。この理由として考えら
れることは、リンを拡散する時にリンガラス層14が形
成されていない為、Si基体11表面付近に吸引された
重金属が、リンを拡散する時に再拡散され、Si基体旦
中に侵入する為である。このようにリンガラス層の形成
(デポジション)時に一度ライフタイムを上げて置きな
がら、リンの拡散時にキャリアライフタイムを下げると
いう製造工程における致命的な欠点があつた。本発明は
上記した欠点に鑑みなされたもので、キャリアライフタ
イムを高くしスイッチング特性を良くしたスイッチング
素子の製造方法を提供するものである。However, the improvement in lifetime is only slight, and as a result, it is almost the same as a thyristor using a method that does not utilize the Ringetter effect. A possible reason for this is that because the phosphorus glass layer 14 is not formed when phosphorus is diffused, the heavy metals that have been sucked into the vicinity of the surface of the Si substrate 11 are re-diffused during the phosphorus diffusion, and the It's for invading. As described above, there was a fatal flaw in the manufacturing process in that while the lifetime was once increased during the formation (deposition) of the phosphorus glass layer, the carrier lifetime was lowered during the diffusion of phosphorus. The present invention has been made in view of the above-mentioned drawbacks, and it is an object of the present invention to provide a method for manufacturing a switching element that increases carrier lifetime and improves switching characteristics.
即ち本発明は半導体基体中にリン(n型不純″物)を拡
散してn型層(エミッタ層)を形成した後、再びリンを
含む層を半導体基体に形成して、n型層形成温度より低
く且つAu拡散温度より高い700℃〜1100℃の温
度でリンゲツターを行い、再び半導体基体のライフタイ
ムを向上せしめる方法である。That is, the present invention diffuses phosphorus (n-type impurity) into a semiconductor substrate to form an n-type layer (emitter layer), and then forms a layer containing phosphorus on the semiconductor substrate again to reduce the n-type layer formation temperature. In this method, ring etching is performed at a temperature of 700° C. to 1100° C., which is lower and higher than the Au diffusion temperature, thereby improving the lifetime of the semiconductor substrate again.
以下図面を参照して本発明の一実施例を説明する。An embodiment of the present invention will be described below with reference to the drawings.
第2図a−eは本発明の一実施例てあつて、第1図に対
応してサイリスタの製造工程を示す工程断面図である。
この第2図のa−c迄は第1図”のa−cと同様である
。即ちまずn型S1基板11の両側よりGaを拡散して
アノード層となるp型層12と後にゲート電極が形成さ
れpベース層となるp型層13とを形成してp−n−p
構造のS】基体旦を得る(第2図a)。次にpベース層
となるp型層13上にリンガラス層14を形成(デポジ
ション)する(第2図b)。この時通常アノード層とな
るp型層12側を図示していないがSiO2膜等で被覆
して置く。このリンガラス層14形成時に、Sl基体中
に含む重金属及び外部にあ・る重金属がリンガラス層1
4に吸着する。従つてこの工程でSi基体特にpベース
層となるp型層のライフタイムは、後に説明する如く数
十倍向上する。この後リンガラス層14を除去し、Si
基体↓±に含むリンを1200℃位の温度て5時間位拡
散してカソード層となるn型層15を形成する(第2図
c)。このリンを拡散する工程で、従来例で述べた如く
Si基体表面近傍に吸引されていた重金属がSi基体中
に再拡散され、Si基体特にpベース層となるp型層1
3のライフタイムが下がり、後に説明(第3図)する如
く元の値にもどつてしまう。ここ迄が従来即ち第1図と
同様な方法である。次の工程が本発明の重要な工程であ
る。即ちリンをSi基体所謂るpベース層となるp型層
13に拡散した後、その表面に再びリンガラス層26を
形成(デポジション)する(第2図d)工程である。こ
のように再びリンガラス層26を形成すると、リンの拡
散工程で下がつたライフタイムが再び向上し、後に説明
(第3図)する如くリンの拡散直後の数十倍向上する。
しかる後第1図dの工程と同様にアノード層となるp型
層12側よりライフタイムキラー原子であるAu原子(
図中点々で示す)を拡散する。このAu原子の拡散工程
は850℃の温度で3紛位行うが、リンの拡散より低い
温度で且つ短かい時間の為、重金属の再拡散が少ない。
またこのAu原子の拡散工程時に、リンガラス層26を
必ずしも除去する必要がない。この理由としては、上記
の説明と同様にAu原子の拡散がリン拡散時の温度より
低く且つ短時間である為、リンの再拡散が生じなく、最
初の不純物(リン)濃度の状態でしかも深さもほとんど
変化しないからである。最後に図示してないが従来例と
同様アノード層となるp型層12にアノード電極、pベ
ース層となるp型層13にゲート電極、カソード層とな
るn型層15にカソード電極を形成してサイリスタ素子
が得られる。このようにして得られたサイリスタ素子は
、従来即ち第1図a−dのようにして得られたサイリス
タ素子に比べ、Si基体特にpベース層となるp型層の
ライフタイムが高く良好なスイッチング特性を有するよ
うになる。2A to 2E are cross-sectional views showing the manufacturing process of a thyristor according to an embodiment of the present invention, corresponding to FIG.
The process from a to c in FIG. 2 is the same as a to c in FIG. is formed to form a p-type layer 13 which becomes a p-base layer.
[S] Structure of the substrate is obtained (Fig. 2a). Next, a phosphorus glass layer 14 is formed (deposited) on the p-type layer 13 which will become the p-base layer (FIG. 2b). At this time, the p-type layer 12 side, which normally becomes an anode layer, is covered with a SiO2 film or the like, although not shown. When forming the phosphor glass layer 14, the heavy metals contained in the Sl substrate and the heavy metals present on the outside are removed from the phosphor glass layer 14.
Adsorb to 4. Therefore, in this step, the lifetime of the Si substrate, especially the p-type layer which becomes the p-base layer, is improved several tens of times as will be explained later. After that, the phosphor glass layer 14 is removed and the Si
Phosphorus contained in the substrate ↓± is diffused at a temperature of about 1200° C. for about 5 hours to form an n-type layer 15 that will become a cathode layer (FIG. 2c). In this step of diffusing phosphorus, the heavy metals that have been attracted near the surface of the Si substrate as described in the conventional example are re-diffused into the Si substrate, and the Si substrate, especially the p-type layer 1 which becomes the p base layer.
The lifetime of 3 decreases and returns to its original value, as will be explained later (FIG. 3). The process up to this point is the same as the conventional method, that is, the method shown in FIG. The following step is an important step of the present invention. That is, after phosphorus is diffused into the p-type layer 13 of the Si substrate, which becomes the so-called p-base layer, a phosphorus glass layer 26 is again formed (deposited) on the surface thereof (FIG. 2d). When the phosphorus glass layer 26 is formed again in this manner, the lifetime, which had been lowered during the phosphorus diffusion process, is improved again, and as will be explained later (FIG. 3), the lifetime is improved by several tens of times after immediately after the phosphorus diffusion.
After that, similar to the process shown in FIG. 1d, Au atoms (
(shown as dots in the figure). This Au atom diffusion step is carried out at a temperature of 850° C., but since the temperature is lower and the time is shorter than that of phosphorus diffusion, there is little re-diffusion of heavy metals.
Furthermore, it is not necessarily necessary to remove the phosphor glass layer 26 during this Au atom diffusion step. The reason for this is that, as explained above, the diffusion of Au atoms is lower and for a shorter time than the temperature during phosphorus diffusion, so phosphorus re-diffusion does not occur, and the initial impurity (phosphorus) concentration is maintained at a deep level. This is because there is almost no change. Finally, although not shown, as in the conventional example, an anode electrode is formed on the p-type layer 12 that becomes the anode layer, a gate electrode is formed on the p-type layer 13 that becomes the p-base layer, and a cathode electrode is formed on the n-type layer 15 that becomes the cathode layer. A thyristor element is obtained. The thyristor element obtained in this way has a longer lifetime of the Si substrate, especially the p-type layer serving as the p-base layer, and has better switching performance than the conventional thyristor element obtained as shown in FIGS. 1a to 1d. It comes to have characteristics.
次に、上記実施例の如く得られたサイリスタ素子のSi
基体即ちpベース層となるp型層13のライフタイムが
、従来即ち第1図a−dのようにして得られたサイリス
タ素子のpベース層となるp型層13のライフタイムよ
り、具体的にどの程度良好であるかを第3図を参照して
説明する。Next, the Si of the thyristor element obtained as in the above example is
The lifetime of the p-type layer 13, which becomes the substrate, that is, the p-base layer, is more specific than the lifetime of the p-type layer 13, which becomes the p-base layer of the conventional thyristor element, that is, obtained as shown in FIGS. The degree to which this is good will be explained with reference to FIG.
この第3図は従来の第1図a−d及び本発明一実施例の
第2図a−eに対応のa″〜d″、a″″〜e″″に対
するサイリスタ素子のnベース層となるn型層11のラ
イフタイム(μSec.)を示した曲線図で、点線が従
来の場合、実線が本発明一実施例の場合である。この第
3図から明らかのように、従来の場合はSi基体のnベ
ース層となるn型層のライフタイムが0.6〜1.1μ
Sec.位で、一方本発明の一実施例の場合はn型層の
ライフタイムが1.1〜1.3psec.位であつた。
即ち従来の場合は目標値の1.2μSec.にみたない
ものが多く且つバラツキが大きかつた。これに対し本発
明の一実施例の場合は目標値の値にほとんど達成し且つ
バラツキも少なかつた。このようにライフタイムが目標
値にほとんど達成し且つバラツキも少なく(再現性が良
い)なつた理由としては、土述した如くリンを拡散した
後に再びリンガラス層26を形成(デポジション)して
いる為である。即ちリンを拡散した後にリンガラス層2
6をデポジションすることによつて、Si基体中に再拡
散された重金属及び外部の重金属が再びリンガラス層2
6に吸着され、この後に850℃位の温度で金拡散を施
しても、リンを拡散する直後のSi基体中の重金属が少
なくなる為である。なお第3図におけるライフタイムの
測定はダイオード電圧降下法によつて行つたもので、又
この第3図に示すのは700゜C以上の熱処理工程を有
する所のライフタイムの変化である。このようにnベー
ス層となるn型層のライフタイムはほぼ目標値になるが
、pベース層となるp型層13のライフタイムは残念な
がら直接測定する手段が現在のところ見当らないが、n
型層のライフタイム・から計算により求める方法や素子
特性から類推する方法により十分に判る。よく用いられ
る計算式の深さの関数であるライフタイム、τN8はn
型層11のライフタイム、CNBはn型層11の不純物
濃度、CPB(X)はp型層13の深さの関数てある不
純物濃度を各々表わす。p型層の平均的なライ川こ見積
れる。ここてC=はp型層の平均不純物濃度てある。第
3図に示した実験に用いた試料はCNB=4×1013
礪−3,閣=ニ4×1α7d−3であるから7詞=γN
B/100となるから、第3図に示すn型層のライフタ
イムを11100にすればp型層のライフタイムが得ら
れる。This FIG. 3 shows the n base layer of the thyristor element for a'' to d'' and a'' to e'''' corresponding to conventional FIG. 1 a to d and FIG. 2 a to e of an embodiment of the present invention. This is a curve diagram showing the lifetime (μSec.) of the n-type layer 11, where the dotted line is for the conventional case and the solid line is for the embodiment of the present invention. As is clear from FIG. 3, in the conventional case, the lifetime of the n-type layer, which is the n-base layer of the Si substrate, is 0.6 to 1.1μ.
Sec. On the other hand, in the case of one embodiment of the present invention, the lifetime of the n-type layer is 1.1 to 1.3 psec. It was at that rank.
That is, in the conventional case, the target value of 1.2μSec. There were many things that I had never seen before, and there was wide variation. On the other hand, in the case of one embodiment of the present invention, the target value was almost achieved and there was little variation. The reason why the lifetime almost reached the target value and had little variation (good reproducibility) is that the phosphorus glass layer 26 was formed (deposited) again after the phosphorus was diffused as mentioned above. It is for the sake of being there. That is, after diffusing phosphorus, the phosphorus glass layer 2
6, the heavy metals re-diffused into the Si substrate and the external heavy metals are returned to the phosphor glass layer 2.
This is because the amount of heavy metals in the Si substrate immediately after phosphorus is diffused decreases even if gold is adsorbed to Si substrate 6 and then subjected to gold diffusion at a temperature of about 850° C. immediately after phosphorus is diffused. Note that the lifetime measurement in FIG. 3 was carried out by the diode voltage drop method, and what is shown in FIG. 3 is the change in lifetime when a heat treatment process is performed at 700° C. or higher. In this way, the lifetime of the n-type layer that becomes the n-base layer is almost the target value, but unfortunately there is currently no means to directly measure the lifetime of the p-type layer 13 that becomes the p-base layer.
This can be fully understood by calculating the lifetime of the mold layer or by analogy with the device characteristics. The lifetime, τN8, which is a function of depth in a commonly used calculation formula, is n
The lifetime of the type layer 11, CNB represents the impurity concentration of the n-type layer 11, and CPB(X) represents the impurity concentration as a function of the depth of the p-type layer 13, respectively. The average value of the p-type layer can be estimated. Here, C= is the average impurity concentration of the p-type layer. The sample used in the experiment shown in Figure 3 is CNB = 4 x 1013
Since 礪-3, kaku = ni4×1α7d-3, 7 words = γN
Since it is B/100, if the lifetime of the n-type layer shown in FIG. 3 is set to 11100, the lifetime of the p-type layer can be obtained.
ただし、金拡散工程におけるライフタイムは、上記の関
係式を用いることはできず、選択的に金拡散されるn型
層のライフタイムは前工程より下がるが、金拡散の影響
が殆ど及ばないp型層のライフタイムは前工程の値が殆
ど維持されることになる。従つて第3図によれば、本発
明のp型層ライフタイムは従来例に比べて約40倍もの
大きさになる。However, the above relational expression cannot be used for the lifetime in the gold diffusion process, and the lifetime of the n-type layer in which gold is selectively diffused is lower than that in the previous process, but the p-type layer, which is hardly affected by gold diffusion, is As for the lifetime of the mold layer, most of the values from the previous process are maintained. Therefore, according to FIG. 3, the lifetime of the p-type layer according to the present invention is about 40 times longer than that of the conventional example.
これを立証する素子特性の例として、なお、リンガラス
層の形成にはPOCl。などを拡散ソースとした900
℃以上のデポジションが効果がある。CVDによりリン
ガラスの形成は通常500℃程度の温度で行なわれるが
、半導体中の主な汚染重金属である銅(Cu)、鉄(F
e)、金(Au)の拡散定数は、500℃でCu,.F
eは6×10−0cIt/Secに対して、900℃て
は10−0cTi/SeclAuは500℃で10−1
1c1t/Secに対して9000Cで10−7d/S
ecで、いずれも900℃の方が2桁から4桁程が大き
い。これは本発明の一部であるリンゲツター工程で重要
なことで高温程重金属の拡散が促進されて半導体中の重
金属がリンガラス層に吸着されることになる。しかし、
温度があまり高いとリンが半導体中に拡散されて不純物
濃度分布を変えるので、本発明のリンガラス層形成温度
は700〜1100℃の範囲が適当である。このリンガ
ラス層の形成温度即ちリンゲツター温度は第4図に示す
実験結果からも700℃〜1100℃の温度が良いこと
が判る。この第4図はリンゲツター温度(横軸)に対す
るライフタイム(縦軸)の変化を示すもので、この図か
ら700℃〜1100℃のリンゲツター温度ではライフ
タイムが高く且つバラツキも少ないことが判り、又リン
ゲツターの温度上昇に伴つてライフタイムが向上するこ
ととは限らないということも判る。さらに上記のリンガ
ラス層形成温度をSi基体に加える−と、リングゲツタ
ー効果と同時に、アニール効果によりSi基体中の結晶
欠陥が減少する。例えば1000℃1時間程度の加熱に
よつて結晶欠陥は加熱前の1桁〜2桁に減少し、それに
伴いライフタイムは増加する。なおCVDによるリンガ
ラス形成−は加熱温度が最高でも600℃以下であり、
上記したアニール効果がほとんどない。第5図にサイリ
スタの順方向阻止特性を従来aと本発明の一実施例bと
を比較して示し、第6図に順方向導通特性を同様に従来
aと本発明の一実施例とを比較して示す。このうち第5
図からは順方向阻止電圧が本発明の一実施例の方法が従
来(第1図)方法に比べ、約2倍増加することが判り、
第6図からはアノード電流100QAでのオン電圧が約
112に減少していることが判る。以上説明したように
本発明によれば、スイッチング特性(時間的)を少し良
く(複数個並列接続した場合は上記したような作用効果
がある)し、高耐圧化及び低熱損失化が可能”となり、
さらに製造工程における再現性と制御範囲が改善される
。なお上記実施例において、サイリスタに適用したが、
本発明の方法はパワー用のトランジスタ、G′IO或い
は光サイリスタ等のスイッチング素子に適用できること
は勿論である。As an example of device characteristics that prove this, POCl was used to form the phosphorus glass layer. 900 with spread sources such as
Deposition above ℃ is effective. Formation of phosphorus glass by CVD is usually carried out at a temperature of about 500°C, but it does not contain copper (Cu) and iron (F), which are the main contaminating heavy metals in semiconductors.
e) The diffusion constant of gold (Au) is the same as that of Cu, . F
e is 6 x 10-0 cIt/Sec, whereas 10-0 cTi/SeclAu at 900°C is 10-1 at 500°C.
10-7d/S at 9000C for 1c1t/Sec
ec, the values at 900°C are two to four orders of magnitude larger. This is important in the Ringetter process which is a part of the present invention; the higher the temperature, the more the diffusion of heavy metals will be promoted, and the heavy metals in the semiconductor will be adsorbed into the phosphorus glass layer. but,
If the temperature is too high, phosphorus will diffuse into the semiconductor and change the impurity concentration distribution, so the temperature for forming the phosphorus glass layer in the present invention is preferably in the range of 700 to 1100°C. It can be seen from the experimental results shown in FIG. 4 that the formation temperature of this phosphor glass layer, that is, the ringer temperature, is preferably 700 DEG C. to 1100 DEG C. This figure 4 shows the change in lifetime (vertical axis) with respect to Ringeter temperature (horizontal axis). From this figure, it can be seen that at Ringeter temperature between 700°C and 1100°C, the lifetime is high and there is little variation. It can also be seen that the lifetime of the ringer does not necessarily improve as the temperature rises. Furthermore, when the above-mentioned phosphorus glass layer forming temperature is applied to the Si substrate, crystal defects in the Si substrate are reduced due to the ring getter effect and the annealing effect. For example, by heating at 1000° C. for about 1 hour, crystal defects are reduced to one to two orders of magnitude compared to before heating, and the lifetime increases accordingly. In addition, when forming phosphorus glass by CVD, the heating temperature is at most 600°C or less,
There is almost no annealing effect mentioned above. FIG. 5 shows a comparison of the forward blocking characteristics of the thyristor between conventional a and an embodiment b of the present invention, and FIG. 6 similarly shows the forward conduction characteristics of the thyristor between conventional a and an embodiment of the present invention. Compare and show. The fifth of these
From the figure, it can be seen that the forward blocking voltage increases by about twice as much in the method according to the embodiment of the present invention as compared to the conventional method (FIG. 1).
It can be seen from FIG. 6 that the on-voltage at an anode current of 100 QA is reduced to about 112. As explained above, according to the present invention, the switching characteristics (temporal) are slightly improved (when multiple units are connected in parallel, the effects described above are achieved), and it is possible to increase the withstand voltage and reduce heat loss. ,
Furthermore, reproducibility and control range in the manufacturing process are improved. In the above embodiment, it was applied to a thyristor, but
It goes without saying that the method of the present invention can be applied to switching elements such as power transistors, G'IOs, and optical thyristors.
例えばGTOの場合はカソード層となるn型層15を形
成した後、このn型層15をメサエツチング等により複
数に分割し、この分割した面に第2図bと同様にリンガ
ラス層26を形成する訳である。なおこのG′10の場
合にはリンガラス層26の形成後の金拡散条件は800
℃、2紛〜4時間である。このようにして得られたGT
Oの特性は、ゲートターンオフ電流が60代陽極電流が
60いの時オン電圧が2.2V(従来のGTOは3.3
V位)、サージ電流耐量が5000A(従来のGTOは
3000A程度)、オフ電圧が3000V(従来のGT
Oは1500V程度)であつた。また上記実施例におい
て、金拡散前の熱処理工程で代表的なものだけを考えた
が、本発明の方法は、リンを含む層例えばリンガラス層
形成工程とライフタイムキラー拡散工程との間に、熱酸
化工程、p型拡散工程、CVD工程等何等かの熱処理工
程が介在しても本発明の作用効果は損われない。For example, in the case of GTO, after forming an n-type layer 15 which becomes a cathode layer, this n-type layer 15 is divided into a plurality of parts by mesa etching etc., and a phosphorus glass layer 26 is formed on the divided surfaces as in FIG. 2b. That's why. In addition, in the case of this G'10, the gold diffusion conditions after forming the phosphor glass layer 26 are 800
℃, 2 to 4 hours. GT obtained in this way
The characteristics of O are that when the gate turn-off current is 60V and the anode current is 60V, the on-voltage is 2.2V (conventional GTO is 3.3V).
V), surge current withstand capacity is 5000A (conventional GTO is approximately 3000A), off voltage is 3000V (conventional GT
O was approximately 1500V). Further, in the above embodiments, only typical heat treatment steps before gold diffusion were considered, but in the method of the present invention, between the step of forming a layer containing phosphorus, such as a phosphorus glass layer, and the lifetime killer diffusion step, Even if some heat treatment process such as a thermal oxidation process, p-type diffusion process, or CVD process is involved, the effects of the present invention are not impaired.
第1図a−dは従来のスイッチング素子の製造方法を説
明するための工程断面図、第2図a−eは本発明の一実
施例を説明するための工程断面図、第3図は第1図の製
造工程に対応したライフタイムの変化と第2図の製造工
程に対応したライフタイムの変化と対比して示した曲線
図、第4図は本発明の作用効果を説明するための曲線図
、第5図は本発明の一実施例(第2図)の順方向阻止特
性bと従来(第1図)の順方向阻止特性aを対比して示
した図、第6図は本発明の一実施例(第2図)の順方向
導通特性と従来(第1図)の順方向導通特性を対比して
示した図である。
11・ ・・n型Sj基板、旦・・・・・・Si基体、
12・・・・・アノード層となるp型層、13・・・・
・・pベース層となるp型層、14及び26・・・・・
リンガラス層、15・・・・・・カソード層となるn型
層。1A to 1D are process sectional views for explaining a conventional method for manufacturing a switching element, FIGS. 2A to 2E are process sectional views for explaining an embodiment of the present invention, and FIG. A curve diagram showing a comparison between the change in lifetime corresponding to the manufacturing process shown in Figure 1 and the change in lifetime corresponding to the manufacturing process shown in Figure 2. Figure 4 is a curve for explaining the effects of the present invention. 5 is a diagram comparing the forward blocking characteristic b of an embodiment of the present invention (FIG. 2) with the forward blocking characteristic a of the conventional method (FIG. 1), and FIG. 2 is a diagram showing a comparison between the forward conduction characteristics of the embodiment (FIG. 2) and the conventional conduction characteristics (FIG. 1). FIG. 11... n-type Sj substrate, dan... Si substrate,
12...p-type layer serving as an anode layer, 13...
... p-type layer, 14 and 26, which becomes p base layer...
Phosphorous glass layer, 15... N-type layer that becomes a cathode layer.
Claims (1)
体の少なくとも一方の面にn型不純物を含む層を形成す
る工程と、該工程後に熱処理して前記n型不純物を拡散
してn型層を形成する工程と、該工程により得られたn
型層側或いは前記半導体基体の他方の面からライフタイ
ムキラー原子を拡散する工程と具備してなるスイッチン
グ素子の製造方法において、前記n型不純物を拡散して
n型層を形成する工程と、前記ライフタイムキラー原子
を拡散する工程との間に、前記半導体基体の少なくとも
一方の面にリンを含む層を形成して、前記n型層形成温
度より低く且つ前記ライフタイムキラー原子の拡散温度
より高い700℃〜1100℃の温度でリンゲツタを施
すことを特徴とするスイッチング素子の製造方法。1 A step of forming a layer containing an n-type impurity on at least one surface of a semiconductor substrate whose at least one surface is a p-type semiconductor layer, and after the step, heat treatment is performed to diffuse the n-type impurity to form an n-type layer. a step of forming, and n obtained by the step.
A method for manufacturing a switching element comprising the step of diffusing lifetime killer atoms from the mold layer side or the other surface of the semiconductor substrate, the step of diffusing the n-type impurity to form an n-type layer; During the step of diffusing lifetime killer atoms, a layer containing phosphorus is formed on at least one surface of the semiconductor substrate, and the temperature is lower than the n-type layer formation temperature and higher than the diffusion temperature of the lifetime killer atoms. A method for manufacturing a switching element, characterized in that ring etching is performed at a temperature of 700°C to 1100°C.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12687179A JPS6043034B2 (en) | 1979-10-03 | 1979-10-03 | Manufacturing method of switching element |
DE3037316A DE3037316C2 (en) | 1979-10-03 | 1980-10-02 | Process for the production of power thyristors |
US06/213,099 US4370180A (en) | 1979-10-03 | 1980-12-04 | Method for manufacturing power switching devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12687179A JPS6043034B2 (en) | 1979-10-03 | 1979-10-03 | Manufacturing method of switching element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5651861A JPS5651861A (en) | 1981-05-09 |
JPS6043034B2 true JPS6043034B2 (en) | 1985-09-26 |
Family
ID=14945896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12687179A Expired JPS6043034B2 (en) | 1979-10-03 | 1979-10-03 | Manufacturing method of switching element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6043034B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58139848U (en) * | 1982-03-15 | 1983-09-20 | 三菱電機株式会社 | starter motor |
JPS611457A (en) * | 1984-06-12 | 1986-01-07 | Kawasaki Steel Corp | Continuous casting method of titaniferous aluminum killed steel |
JP2559692B2 (en) * | 1985-05-31 | 1996-12-04 | 川崎製鉄株式会社 | Anti-blurring defect prevention method for ultra low carbon cold rolled steel sheet |
-
1979
- 1979-10-03 JP JP12687179A patent/JPS6043034B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5651861A (en) | 1981-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5156981A (en) | Method of making a semiconductor device of a high withstand voltage | |
JP3727827B2 (en) | Semiconductor device | |
US4920062A (en) | Manufacturing method for vertically conductive semiconductor devices | |
JP3692157B2 (en) | Controllable power semiconductor elements | |
US3982269A (en) | Semiconductor devices and method, including TGZM, of making same | |
US3538401A (en) | Drift field thyristor | |
JPH0661497A (en) | Semiconductor device and its manufacture | |
US4662957A (en) | Method of producing a gate turn-off thyristor | |
US4402001A (en) | Semiconductor element capable of withstanding high voltage | |
US5223442A (en) | Method of making a semiconductor device of a high withstand voltage | |
EP0190934B1 (en) | Method of manufacturing a thyristor | |
US3198999A (en) | Non-injecting, ohmic contact for semiconductive devices | |
JPS6043034B2 (en) | Manufacturing method of switching element | |
US3500141A (en) | Transistor structure | |
KR930003555B1 (en) | Manufacturing method of semiconductor device | |
JPS61150280A (en) | Vertical mos transistor | |
US3909319A (en) | Planar structure semiconductor device and method of making the same | |
US4682198A (en) | Gate turn-off thyristor with integral capacitive anode | |
JPH0992828A (en) | Insulated bipolar transistor and its manufacture | |
JPH09172167A (en) | Semiconductor device | |
JPS6119104B2 (en) | ||
US7161230B2 (en) | Insulated gate bipolar transistor having a high switching speed and method for fabricating the same | |
JPH0740607B2 (en) | Method of manufacturing thin film transistor | |
JPS6041468B2 (en) | Manufacturing method of gate turn-off thyristor | |
US4397695A (en) | Method for stabilizing the current gain of NPN -silicon transistors |