JPS6042694A - Power device for underwater travelling body - Google Patents

Power device for underwater travelling body

Info

Publication number
JPS6042694A
JPS6042694A JP58150290A JP15029083A JPS6042694A JP S6042694 A JPS6042694 A JP S6042694A JP 58150290 A JP58150290 A JP 58150290A JP 15029083 A JP15029083 A JP 15029083A JP S6042694 A JPS6042694 A JP S6042694A
Authority
JP
Japan
Prior art keywords
underwater vehicle
thermoelectric
power
temperature heat
underwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58150290A
Other languages
Japanese (ja)
Inventor
津垣 昌一郎
内海 文武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP58150290A priority Critical patent/JPS6042694A/en
Publication of JPS6042694A publication Critical patent/JPS6042694A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、水中走行体、特に深海の海中・海底を自ら
の動力源で走行して調査・作業等を行なう無人潜水走行
体の動力装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power system for an underwater vehicle, particularly an unmanned underwater vehicle that travels under the sea or on the ocean floor in the deep sea using its own power source to conduct investigations, work, etc.

近年、海洋石油開発作業は漸次大深度の海底に及んでき
ており、観察、メンテナンス等の単純な作業は、人命の
安全の面から無人潜水走行体で行なわれるようになりっ
\ある。これらの無人潜水走行体は、年々改良され、高
性能、大深度用のものが次々と開発され市場に出て来て
いるが、従来のものは動力供給及び情報伝達の面がらテ
ザ一式(有索式)となっており、水上の母船より直接、
又はアンビリカルケーブル(へその緒、命綱)で母船に
繋がれた海底のランチャ−と繋がれ、推進用、作業用の
動力、情報機器等の電力はテザーを介して供給されてい
た。
In recent years, offshore oil exploration work has gradually reached deep seabeds, and simple tasks such as observation and maintenance are now being carried out by unmanned submersible vehicles for the safety of human life. These unmanned underwater vehicles have been improved year by year, and high-performance, deep-dive models are being developed one after another and are appearing on the market, but conventional ones require a complete set of tethers (with a tether) in terms of power supply and information transmission. (rope type), directly from the mother ship on the water.
Alternatively, it was connected to a launcher on the ocean floor that was connected to the mother ship with an umbilical cable (umbilical cord, lifeline), and power for propulsion, work, information equipment, etc. was supplied via the tether.

しかしながら、テザ一式の水中走行体は次のような欠点
があり、海中作業に対して充分な適応性があるとは云い
難い。すなわち、 (イ) テザーがからまるため、海底油井ジャケット等
の構造物の内部に入ることが出来ず、又走行経路、行動
半径が制限される。
However, the underwater vehicle with a set of tethers has the following drawbacks, and it cannot be said that it has sufficient adaptability for underwater work. That is, (a) Because the tether becomes tangled, it is impossible to enter structures such as submarine oil well jackets, and the travel route and radius of movement are restricted.

(ロ) テザーの水中抵抗のため、自由な行動が妨げら
れ、特に潮流のある場合は甚だしい。
(b) The underwater resistance of the tether impedes free movement, especially when there is a current.

又、有人走行体やダイパーの潜水可能な深度であっても
、たとえば、潮流下における構造物内部における石油の
ブローオフ、災害事故調査においては、危険のためダイ
パーや有人水中走行体は接近できず、又テザ一式水中走
行体も構造物にからまるおそれがあるため、進入できな
いし、防噴装置の操作等は潮流のためテザーの抵抗が大
きく微細な作業は困難になる。
In addition, even if the depth is such that a manned underwater vehicle or Daiper can dive, for example, when blowing off oil inside a structure under tidal currents or investigating a disaster, the Diaper or manned underwater vehicle cannot approach due to the danger. In addition, underwater vehicles with tethers cannot enter because they may become entangled with structures, and detailed operations such as operating blowout preventers are difficult due to the large resistance of the tether due to the tidal currents.

以上の理由により、テザーなしの自律認識・作業水中走
行体が強く要求され、その早急な開発が望まれている。
For the above reasons, there is a strong demand for an autonomous recognition/working underwater vehicle without a tether, and its immediate development is desired.

これを実現するための技術課題の一つとして、該水中走
行体に内蔵し、無人で運転することのできる動力装置を
提供することが挙げられる。
One of the technical challenges to achieve this is to provide a power unit that is built into the underwater vehicle and can be operated unmanned.

ところで、海底石油探査の目的で海底の地形地質を調査
するため、海上の母船より発射し、あらかじめ定められ
たコースを走行した後、母船に帰投する小型の水中走行
体があるが、このように毎回母船に帰ってくる場合は、
動力源として蓄電池を使用し、充電又は交換することが
容易である。
By the way, in order to investigate the topography and geology of the seabed for the purpose of seabed oil exploration, there is a small underwater vehicle that is launched from a mother ship at sea, travels a predetermined course, and then returns to the mother ship. If you return to the mother ship every time,
It uses a storage battery as a power source and is easy to charge or replace.

しかし、深海底で調査及び作業を行なう水中走行体の場
合は、毎回水中の母船から発進し、母船に帰ることは時
間及び動力の損失が大きく、又海底面に接地して走行す
る型の場合は自刃で母船迄浮上することが困難な場合が
多い。したがって、深海底で活動する水中走行体は、ア
ンビリカルケーブルで母船と繋がれた海底のランチャ−
から発進し、帰投する。そのため母船上で電池に充電し
たり、電池を交換したりすることができず、長期間にわ
たって燃料補給又は充電の必要のない動力装置を水中走
行体中に内蔵するか、又は動力源として電池を持ちラン
チャ−内で安全確実に充電できる装置を備えるかのいず
れかが必要になる。
However, in the case of underwater vehicles that conduct research and work on the deep seabed, launching from a submerged mother ship and returning to the mother ship each time involves a large loss of time and power, and in the case of underwater vehicles that conduct research and work on the deep seabed, In many cases, it is difficult to surface to the mother ship due to self-defense. Therefore, underwater vehicles operating on the deep seabed are connected to a launcher on the seabed that is connected to the mother ship with an umbilical cable.
Start from and return. Therefore, it is not possible to charge or replace batteries on the mother ship, and it is necessary to build a power device into the underwater vehicle that does not require refueling or charging for a long period of time, or to use batteries as a power source. It is necessary to have a device that can safely and reliably charge the battery inside the carry-on launcher.

この発明は、水中走行体中に内蔵され、充電又は燃料補
給の必要のない水中走行体用動力装置を提供することを
目的とする。
An object of the present invention is to provide a power device for an underwater vehicle that is built into the underwater vehicle and does not require charging or refueling.

燃料補給の不要な動力装置としては原子力及び放射性同
位元素の利用が考えられる。軍事目的の潜水艦では既に
原子力が推進動力に利用されている。この場合は原子炉
の熱によって加熱された駆動媒体でタービンを駆動して
発電機を回し、その電力で推進用電動機を運転するよう
にしている。
The use of nuclear power and radioactive isotopes can be considered as power plants that do not require refueling. Nuclear power is already being used for propulsion in military submarines. In this case, a driving medium heated by the heat of the nuclear reactor drives a turbine to turn a generator, and the resulting electric power drives a propulsion motor.

原子力潜水艦ではタービンや発電機を塔載するスペース
を耐圧殻内に設けることは比較的容易である。又、ター
ビンの制御、メインテナンスは完全無人化は困難である
。したがって、深海底での調査、作業用の無人走行体の
動力源としては、原子力で発電用タービンを駆動する方
式の動力源は使用することが困難である。
In nuclear submarines, it is relatively easy to provide space within the pressure hull to mount turbines and generators. Furthermore, it is difficult to completely unattend control and maintenance of the turbine. Therefore, it is difficult to use a power source that uses nuclear power to drive a power generation turbine as a power source for an unmanned vehicle for investigating or working on the deep seabed.

又放射性同位元素の崩壊熱を利用した発電装置は、人工
衛星等の電源として用いられている。
Furthermore, power generation devices that utilize the decay heat of radioactive isotopes are used as power sources for artificial satellites and the like.

さて、高温熱源と低温熱源との間の熱落差を利用して熱
を電気に変換する技術として「熱電素子発電技術」が最
近内外で活発に研究開発が行なわれている。
Thermoelectric power generation technology, a technology that converts heat into electricity by utilizing the thermal difference between a high-temperature heat source and a low-temperature heat source, has recently been actively researched and developed at home and abroad.

熱電素子とは、熱電性能(熱を電気に変換する性能)の
優れた半導体であって、その一方の面を加熱し、他方の
面を冷却することによって、両面間に温度差に応じた起
電力が発生する。
A thermoelectric element is a semiconductor with excellent thermoelectric performance (the ability to convert heat into electricity), and by heating one side and cooling the other side, it generates an electric current depending on the temperature difference between the two sides. Electricity is generated.

本発明は、熱電素子の上述の特性に著目し、熱電素子の
一面を加熱する高温熱源として長期間燃料補給の必要が
なく、僅かの燃料で大きな熱出力の得られる原子力又は
放射性同位元素を利用し、熱電素子の他方の面を冷却す
る低温熱源として深海底の低温度の海水を利用する熱電
発電装置を水中走行体の動力源としたことを特徴とする
The present invention focuses on the above-mentioned characteristics of thermoelectric elements, and uses nuclear or radioactive isotopes as a high-temperature heat source that heats one side of the thermoelectric element without requiring long-term refueling and which can provide a large heat output with a small amount of fuel. The power source of the underwater vehicle is a thermoelectric generator that uses low-temperature seawater from the deep sea floor as a low-temperature heat source to cool the other side of the thermoelectric element.

以下、本発明を図面に示す実施例に基いて詳細に説明す
る。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings.

さて、熱電素子には、N型とP型とがあって、N型とP
型とで加熱、冷却面と起電力の方向との関係は逆になる
。したがって、第1図に示す如く、熱電素子1のP型の
熱電素子P1.P2.・・・・・・と、N型の熱電素子
N1.N2.・・・・・・とを交互に並べ、隣り合った
熱電素子の2つずつを上側では、PlとN1゜P2とN
2.・・・・・・、下側ではN1とP2.・・・・・・
と言う具合に金属電極片2で千鳥に接続し、いずれが一
方の面の電極片を加熱し、他の面の電極片を冷却する、
換言すればP型、N型の熱電素子を電気的には直列に、
熱的には並列に接合して1つのモジュールにまとめ、そ
の一方の面を加熱し、他方の面を冷却して両面間に温度
差を与えると、両端の熱電素子に接続された端子間に起
電力が発生する。
Now, there are two types of thermoelectric elements: N type and P type.
The relationship between the heating and cooling surfaces and the direction of the electromotive force is reversed depending on the mold. Therefore, as shown in FIG. 1, the P-type thermoelectric element P1. P2. . . . and an N-type thermoelectric element N1. N2. . . . are arranged alternately, and each two adjacent thermoelectric elements are arranged at Pl and N1°P2 and N on the upper side.
2. ......, N1 and P2 on the lower side.・・・・・・
In this way, the metal electrode pieces 2 are connected in a staggered manner, and one heats the electrode piece on one side and cools the electrode piece on the other side.
In other words, P-type and N-type thermoelectric elements are electrically connected in series,
Thermally, if they are connected in parallel to form a single module, and one side is heated and the other side is cooled to create a temperature difference between the two sides, the temperature difference between the terminals connected to the thermoelectric elements at both ends An electromotive force is generated.

熱電モジュールの例を第2図(a)l (b)l (e
)l (d)に示す。
Examples of thermoelectric modules are shown in Figure 2 (a) l (b) l (e
)l Shown in (d).

(a)は該モジュールの上面、(b)は正面、(C)は
下面、(d)は側面を示す。適数個のP型及びN型素子
1を図に示す如く2列に、各列ではP型とN型とが交互
に並び横断方向の2個はP型とN型とが並ぶように配設
し、銅板より成る電極片2で上面では第2図(a)に示
す如く横断方向に並んだP型N型の2個ずつを接続し、
下面では第2図(C)に示す如く、モジュールの長手方
向に隣合ったP型N型の2個を練瓦積みの如く互い違い
に接続し、両端の下面に電極片2の付かない熱電素子の
下面には電極板2と同様の端子板6を接続して構成され
ている。
(a) shows the top surface of the module, (b) shows the front surface, (C) shows the bottom surface, and (d) shows the side surface. A suitable number of P-type and N-type elements 1 are arranged in two rows as shown in the figure, with P-type and N-type elements alternately arranged in each row and P-type and N-type elements lined up in two transverse directions. The electrode pieces 2 made of a copper plate are used to connect two P type electrodes and two N type electrodes arranged in the transverse direction on the upper surface as shown in FIG. 2(a).
On the bottom surface, as shown in Figure 2 (C), two P type and N type pieces that are adjacent to each other in the longitudinal direction of the module are connected alternately like brickwork, and thermoelectric elements without electrode pieces 2 are attached to the bottom surface of both ends. A terminal plate 6 similar to the electrode plate 2 is connected to the lower surface of the electrode plate 2.

電極板2及び端子板3は電気的導体であると同時に伝熱
面とも成る。
The electrode plate 2 and the terminal plate 3 serve as both electrical conductors and heat transfer surfaces.

熱電モジュール4は第3図に示す如く、低温熱媒り及び
高温熱媒Hが夫々内部を流れる4角形断面の伝熱管5,
6で、その表面が電極片2に密着する如く、伝熱管5,
6と熱電モジュール4とを交互に積重ねられ、熱電発電
装置が構成される。
As shown in FIG. 3, the thermoelectric module 4 includes a heat transfer tube 5 with a rectangular cross section, in which a low temperature heat medium and a high temperature heat medium H flow, respectively.
6, the heat exchanger tube 5, so that its surface is in close contact with the electrode piece 2,
6 and thermoelectric modules 4 are stacked alternately to form a thermoelectric power generation device.

本発明の熱電発電装置では、第4図に系統図として示す
如く、モジュール4の一面に接触する低温伝熱管5には
ポンプ7により走行体8外から低温の海水9を流入させ
、管壁を介してモジュール4と熱交換し、加熱されて再
び走行体外に排出する。
In the thermoelectric power generation device of the present invention, as shown in the system diagram in FIG. 4, low-temperature seawater 9 is introduced from outside the traveling body 8 by a pump 7 into the low-temperature heat exchanger tube 5 that contacts one side of the module 4, and the tube wall is heated. It exchanges heat with the module 4 through it, is heated, and is discharged outside the vehicle again.

一方、モジュール4の他方の面に接触する高温伝熱管乙
にはポンプ10により原子炉又は放射性同位元素11に
より加熱された高温の熱媒体が循環し、管壁を介してモ
ジュール4に熱を+4る。
On the other hand, a high-temperature heat transfer medium heated by a nuclear reactor or radioactive isotope 11 is circulated by a pump 10 through a high-temperature heat transfer tube B that contacts the other surface of the module 4, and heat is transferred to the module 4 via the tube wall by +4 Ru.

原子燃料又は放射性同位元素は僅かの質量で大きなエネ
ルギーを発生し、その寿命は非常に長い。
Nuclear fuel or radioactive isotopes produce a large amount of energy with a small mass and have a very long lifespan.

又低熱源の海水は深海底では温度が低く、シたがって発
電効率を向上させることができる。又、タービン及び発
電機の如く機械的な可動部分が殆んどないので(高温、
低温媒体の循環ポンプのみ)無人でも容易に運転でき又
故障する部分が殆んどないのでメインテナンスフリーと
することができる。
In addition, seawater, which is a low heat source, has a low temperature on the deep sea floor, which can improve power generation efficiency. Also, since there are almost no mechanically moving parts like turbines and generators (high temperatures,
Low-temperature medium circulation pump only) It can be easily operated even when unattended, and since there are almost no parts that can break down, it can be maintenance-free.

以上の如く、本発明によれば、長期間燃料の補給、電池
の充電、交換が不要で、自動制御が容易でメイテナンス
フリーの電源が得られるのでテザーなしの水中走行体の
動力源として有効に利用することができる。
As described above, according to the present invention, there is no need for long-term replenishment of fuel, battery charging, or replacement, automatic control is easy, and maintenance-free power can be obtained, making it effective as a power source for underwater vehicles without tethers. It can be used for.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱電素子発電の原理を説明する図式図、第2図
(a)l (b)t (e)、 (d)は夫々熱電モジ
ュールの1例の上面図、正面図、下面図及び側面図、第
3図は上記モジュールと高温及び低温伝熱管とにより構
成された熱電発電装置ゐ一部を示す斜視図、第4図は本
発明の実施例の系統図である。 1・・・熱電素子 4・・・熱電モジュール5・・・低
温伝熱管 6・・・高温伝熱管8・・・水中走行体 9
・・・海水 11・・・原子炉又は放射性同位元素
Figure 1 is a schematic diagram explaining the principle of thermoelectric power generation, and Figures 2 (a), (b), (e), and (d) are top, front, and bottom views of an example of a thermoelectric module, respectively. 3 is a side view, and FIG. 3 is a perspective view showing a part of the thermoelectric power generation device constituted by the above-mentioned module and high temperature and low temperature heat exchanger tubes. FIG. 4 is a system diagram of an embodiment of the present invention. 1... Thermoelectric element 4... Thermoelectric module 5... Low temperature heat exchanger tube 6... High temperature heat exchanger tube 8... Underwater traveling body 9
... Seawater 11 ... Nuclear reactor or radioactive isotope

Claims (2)

【特許請求の範囲】[Claims] (1) 水中走行体に塔載する原子炉より発生する熱に
より加熱された熱媒体を高温熱源として熱電素子の一方
の面を加熱し、該水中走行体の周囲の海水を低温熱源と
して上記の熱電素子の他方の面を冷却することによって
起−力を発生するようにしだ熱電発電装置を電源とする
ことを特徴とする水中走行体の動力装置。
(1) One side of the thermoelectric element is heated using a heat medium heated by heat generated from a nuclear reactor mounted on an underwater vehicle as a high-temperature heat source, and the seawater around the underwater vehicle is used as a low-temperature heat source to perform the above-mentioned method. 1. A power device for an underwater vehicle, characterized in that a thermoelectric generator is used as a power source to generate an electromotive force by cooling the other side of a thermoelectric element.
(2) 水中走行体に塔載する放射性同位元素より発生
する熱により加熱された熱媒体を高温熱源として熱電素
子の一方の面を加熱し、該水中走行体の周囲の海水を低
温熱源として上記の熱電素子の他方の面を冷却すること
によって起電力を発生するようにした熱電発電装置を電
源とすることを特徴とする水中走行体の動力装置。
(2) One side of the thermoelectric element is heated using a heat medium heated by heat generated from a radioactive isotope mounted on the underwater vehicle as a high-temperature heat source, and the seawater around the underwater vehicle is used as a low-temperature heat source. A power device for an underwater vehicle, characterized in that the power source is a thermoelectric power generation device that generates an electromotive force by cooling the other side of a thermoelectric element.
JP58150290A 1983-08-19 1983-08-19 Power device for underwater travelling body Pending JPS6042694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58150290A JPS6042694A (en) 1983-08-19 1983-08-19 Power device for underwater travelling body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58150290A JPS6042694A (en) 1983-08-19 1983-08-19 Power device for underwater travelling body

Publications (1)

Publication Number Publication Date
JPS6042694A true JPS6042694A (en) 1985-03-06

Family

ID=15493750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58150290A Pending JPS6042694A (en) 1983-08-19 1983-08-19 Power device for underwater travelling body

Country Status (1)

Country Link
JP (1) JPS6042694A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137386A (en) * 2018-02-12 2019-08-22 ザ・ボーイング・カンパニーThe Boeing Company Underwater energy harvesting drone and method for operation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137386A (en) * 2018-02-12 2019-08-22 ザ・ボーイング・カンパニーThe Boeing Company Underwater energy harvesting drone and method for operation

Similar Documents

Publication Publication Date Title
Wang et al. Reviews of power systems and environmental energy conversion for unmanned underwater vehicles
US9648777B2 (en) Water-based computing system
US20210313481A1 (en) Power Conversion Module for Use With Optical Energy Transfer and Conversion System
CN108983112B (en) Small-size nuclear power supply integration test device
CN102064576B (en) Temperature difference energy power supply system of marine monitoring platform
Buckle et al. Autonomous underwater vehicle thermoelectric power generation
KR102605462B1 (en) Underwater energy harvesting drone and method for operation
KR101771148B1 (en) Solar heat collector type thermoelectric generator module and system comprising the same
Hyakudome et al. Development of advanced lithium-ion battery for underwater vehicle
JPS6042694A (en) Power device for underwater travelling body
Sun et al. Reimagining autonomous underwater vehicle charging stations with wave energy
KR20230073421A (en) Renewable Energy Generation System And Control Method Therefor
CN108767349B (en) Energy recovery system and method for ship body and ship body
CN116335866A (en) Renewable energy source generator and control method thereof
KR20230126258A (en) Renewable Energy Generation System
Narayanaswamy et al. Challenges in realizing reliable subsea electric power grid for tidal energy farms
CN210744829U (en) Device for carrying out seabed wireless charging by using wave energy
Bernalte et al. New approaches for renewable energy management in autonomous marine vehicles
McKinney et al. A Low-Flow Marine Hydrokinetic Turbine for a Floating Unmanned Mobile Platform
Lu et al. Research on environmental energy-driven intelligent unmanned underwater vehicles and their key technologies
NL2031827B1 (en) Method for generating and storing energy.
Fan et al. Underwater applications of light emitting diodes
CN218343700U (en) Modular overwater operation system
KR20230126254A (en) Renewable Energy Generation System
KR20240030187A (en) A cooling water temperature control system for an immersion type battery and a method for temperature control thereof.